首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetreau C  Tourbez M  Lavalette D 《Biochemistry》2000,39(46):14219-14231
Photodissociation of (CO)P-450(cam)(substrate) complexes was found to trigger a conformational relaxation process that interferes with ligand rebinding at temperatures as low as 140 K even though the protein conformational substates (CS(1)) remain frozen. To analyze the rebinding and relaxation kinetics, we developed a model that takes the distribution of relaxation rates explicitly into account and in which rebinding and relaxation rates are connected by a linear free energy relation. In all complexes heme relaxation occurs first and is probably faster than 100 ns even at 77 K. This is the only process found in substrate-free P-450(cam). Above 140 K and in the presence of a substrate, this initial, fast rebinding state (P) progressively relaxes to another state (P degrees ) in which rebinding is slower. The relaxation rate is independent of solvent rigidity and is governed by the protein's internal dynamics. Rebinding enthalpies in P and P degrees as well as the enthalpy shift brought about by relaxation correlate with the substrate propensity to block access to the iron site. In P degrees the barrier is higher because the substrate is closer to the heme normal and exerts more steric repulsion for CO binding. The relaxation process implies the return of substrate and heme to their ligand-free positions in which access to the heme is reduced.  相似文献   

2.
Phenomena occurring in the heme pocket after photolysis of carbonmonoxymyoglobin (MbCO) below about 100 K are investigated using temperature-derivative spectroscopy of the infrared absorption bands of CO. MbCO exists in three conformations (A substrates) that are distinguished by the stretch bands of the bound CO. We establish connections among the A substates and the substates of the photoproduct (B substates) using Fourier-transform infrared spectroscopy together with kinetic experiments on MbCO solution samples at different pH and on orthorhombic crystals. There is no one-to-one mapping between the A and B substates; in some cases, more than one B substate corresponds to a particular A substate. Rebinding is not simply a reversal of dissociation; transitions between B substates occur before rebinding. We measure the nonequilibrium populations of the B substates after photolysis below 25 K and determine the kinetics of B substate transitions leading to equilibrium. Transitions between B substates occur even at 4 K, whereas those between A substates have only been observed above about 160 K. The transitions between the B substates are nonexponential in time, providing evidence for a distribution of substates. The temperature dependence of the B substate transitions implies that they occur mainly by quantum-mechanical tunneling below 10 K. Taken together, the observations suggest that the transitions between the B substates within the same A substate reflect motions of the CO in the heme pocket and not conformational changes. Geminate rebinding of CO to Mb, monitored in the Soret band, depends on pH. Observation of geminate rebinding to the A substates in the infrared indicates that the pH dependence results from a population shift among the substates and not from a change of the rebinding to an individual A substate.  相似文献   

3.
Rebinding and relaxation in the myoglobin pocket   总被引:28,自引:0,他引:28  
The infrared stretching bands of carboxymyoglobin (MbCO) and the rebinding of CO to Mb after photodissociation have been studied in the temperature range 10-300 K in a variety of solvents. Four stretching bands imply that MbCO can exist in four substates, A0-A3. The temperature dependences of the intensities of the four bands yield the relative binding enthalpies and and entropies. The integrated absorbances and pH dependences of the bands permit identification of the substates with the conformations observed in the X-ray data (Kuriyan et al., J. Mol. Biol. 192 (1986) 133). At low pH, A0 is hydrogen-bonded to His E7. The substates A0-A3 interconvert above about 180 K in a 75% glycerol/water solvent and above 270 K in buffered water. No major interconversion is seen at any temperature if MbCO is embedded in a solid polyvinyl alcohol matrix. The dependence of the transition on solvent characteristics is explained as a slaved glass transition. After photodissociation at low temperature the CO is in the heme pocket B. The resulting CO stretching bands which are identified as B substates are blue-shifted from those of the A substates. At 40 K, rebinding after flash photolysis has been studied in the Soret, the near-infrared, and the integrated A and B substates. All data lie on the same rebinding curve and demonstrate that rebinding is nonexponential in time from at least 100 ns to 100 ks. No evidence for discrete exponentials is found. Flash photolysis with monitoring in the infrared region shows four different pathways within the pocket B to the bound substates Ai. Rebinding in each of the four pathways B----A is nonexponential in time to at least 10 ks and the four pathways have different kinetics below 180 K. From the time and temperature dependence of the rebinding, activation enthalpy distributions g(HBA) and preexponentials ABA are extracted. No pumping from one A substate to another, or one B substate to another, is observed below the transition temperature of about 180 K. If MbCO is exposed to intense white light for 10-10(3) s before being fully photolyzed by a laser flash, the amplitude of the long-lived states increases. The effect is explained in terms of a hierarchy of substates and substate symmetry breaking. The characteristics of the CO stretching bands and of the rebinding processes in the heme pocket depend strongly on the external parameters of solvent, pH and pressure. This sensitivity suggests possible control mechanisms for protein reactions.  相似文献   

4.
Band III is a near-infrared electronic transition at ~13,000 cm(-1) in heme proteins that has been studied extensively as a marker of protein conformational relaxation after photodissociation of the heme-bound ligand. To examine the influence of the heme pocket structure and ligand dynamics on band III, we have studied carbon monoxide recombination in a variety of myoglobin mutants after photolysis at 3 K using Fourier transform infrared temperature-derivative spectroscopy with monitoring in three spectral ranges, (1) band III, the mid-infrared region of (2) the heme-bound CO, and (3) the photodissociated CO. Here we present data on mutant myoglobins V68F and L29W, which both exhibit pronounced ligand movements at low temperature. From spectral and kinetic analyses in the mid-infrared, a small number of photoproduct populations can be distinguished, differing in their distal heme pocket conformations and/or CO locations. We have decomposed band III into its individual photoproduct contributions. Each photoproduct state exhibits a different "kinetic hole-burning" (KHB) effect, a coupling of the activation enthalpy for rebinding to the position of band III. The analysis reveals that the heme pocket structure and the photodissociated CO markedly affect the band III transition. A strong kinetic hole-burning effect results only when the CO ligand resides in the docking site on top of the heme group. Migration of CO away from the heme group leads to an overall blue shift of band III. Consequently, band III can be used as a sensitive tool to study ligand dynamics after photodissociation in heme proteins.  相似文献   

5.
6.
Ligand binding to heme proteins: connection between dynamics and function   总被引:18,自引:0,他引:18  
Ligand binding to heme proteins is studied by using flash photolysis over wide ranges in time (100 ns-1 ks) and temperature (10-320 K). Below about 200 K in 75% glycerol/water solvent, ligand rebinding occurs from the heme pocket and is nonexponential in time. The kinetics is explained by a distribution, g(H), of the enthalpic barrier of height H between the pocket and the bound state. Above 170 K rebinding slows markedly. Previously we interpreted the slowing as a "matrix process" resulting from the ligand entering the protein matrix before rebinding. Experiments on band III, an inhomogeneously broadened charge-transfer band near 760 nm (approximately 13,000 cm-1) in the photolyzed state (Mb*) of (carbonmonoxy)myoglobin (MbCO), force us to reinterpret the data. Kinetic hole-burning measurements on band III in Mb* establish a relation between the position of a homogeneous component of band III and the barrier H. Since band III is red-shifted by 116 cm-1 in Mb* compared with Mb, the relation implies that the barrier in relaxed Mb is 12 kJ/mol higher than in Mb*. The slowing of the rebinding kinetics above 170 K hence is caused by the relaxation Mb*----Mb, as suggested by Agmon and Hopfield [(1983) J. Chem. Phys. 79, 2042-2053]. This conclusion is supported by a fit to the rebinding data between 160 and 290 K which indicates that the entire distribution g(H) shifts. Above about 200 K, equilibrium fluctuations among conformational substates open pathways for the ligands through the protein matrix and also narrow the rate distribution. The protein relaxations and fluctuations are nonexponential in time and non-Arrhenius in temperature, suggesting a collective nature for these protein motions. The relaxation Mb*----Mb is essentially independent of the solvent viscosity, implying that this motion involves internal parts of the protein. The protein fluctuations responsible for the opening of the pathways, however, depend strongly on the solvent viscosity, suggesting that a large part of the protein participates. While the detailed studies concern MbCO, similar data have been obtained for MbO2 and CO binding to the beta chains of human hemoglobin and hemoglobin Zürich. The results show that protein dynamics is essential for protein function and that the association coefficient for binding from the solvent at physiological temperatures in all these heme proteins is governed by the barrier at the heme.  相似文献   

7.
The kinetic properties of the three taxonomic A substates of sperm whale carbonmonoxy myoglobin in 75% glycerol/buffer are studied by flash photolysis with monitoring in the infrared stretch bands of bound CO at nu(A0) approximately 1967 cm-1, nu(A1) approximately 1947 cm-1, and nu(A3) approximately 1929 cm-1 between 60 and 300 K. Below 160 K the photodissociated CO rebinds from the heme pocket, no interconversion among the A substates is observed, and rebinding in each A substate is nonexponential in time and described by a different temperature-independent distribution of enthalpy barriers with a different preexponential. Measurements in the electronic bands, e.g., the Soret, contain contributions of all three A substates and can, therefore, be only approximately modeled with a single enthalpy distribution and a single preexponential. The bond formation step at the heme is fastest for the A0 substate, intermediate for the A1 substate, and slowest for A3. Rebinding between 200 and 300 K displays several processes, including geminate rebinding, rebinding after ligand escape to the solvent, and interconversion among the A substates. Different kinetics are measured in each of the A bands for times shorter than the characteristic time of fluctuations among the A substates. At longer times, fluctuational averaging yields the same kinetics in all three A substates. The interconversion rates between A1 and A3 are determined from the time when the scaled kinetic traces of the two substates merge. Fluctuations between A1 and A3 are much faster than those between A0 and either A1 or A3, so A1 and A3 appear as one kinetic species in the exchange with A0. The maximum-entropy method is used to extract the distribution of rate coefficients for the interconversion process A0 <--> A1 + A3 from the flash photolysis data. The temperature dependencies of the A substate interconversion processes are fitted with a non-Arrhenius expression similar to that used to describe relaxation processes in glasses. At 300 K the interconversion time for A0 <--> A1 + A3 is 10 microseconds, and extrapolation yields approximately 1 ns for A1 <--> A3. The pronounced kinetic differences imply different structural rearrangements. Crystallographic data support this conclusion: They show that formation of the A0 substate involves a major change of the protein structure; the distal histidine rotates about the C(alpha)-C(beta) bond, and its imidazole sidechain swings out of the heme pocket into the solvent, whereas it remains in the heme pocket in the A1 <--> A3 interconversion. The fast A1 <--> A3 exchange is inconsistent with structural models that involve differences in the protonation between A1 and A3.  相似文献   

8.
9.
In this work we show that ligand migration and active site conformational relaxation can occur independently of each other in hemoproteins. The complicated kinetics of carbon monoxide rebinding with cytochrome P450cam display up to five distinct processes between 77 K and 300 K. They were disentangled by using a combination of three approaches: 1), the competition of the ligand with xenon for the occupation of internal protein cavities; 2), the modulation of the amount of distal steric hindrance within the heme pocket by varying the nature of the substrate; and 3), molecular mechanics calculations to support the proposed heme-substrate relaxation mechanism and to seek internal cavities. In cytochrome P450cam, active site conformational relaxation results from the displacement of the substrate toward the heme center upon photodissociation of the ligand. It is responsible for the long, puzzling bimodal nature of the rebinding kinetics observed down to 77 K. The relaxation rate is strongly substrate-dependent. Ligand migration is slower and is observed only above 135 K. Migration and return rates are independent of the substrate.  相似文献   

10.
By the electron paramagnetic resonance (EPR) technique, recovery kinetics for nitric oxide (NO) to heme following cryogenic photolysis were studied for the nitrosylferrocytochrome a3 center in cytochrome c oxidase and for myoglobin. The recovery was nonexponential, as has been observed in previous cryogenic CO and O2 rebinding to heme systems. NO rebinding to heme a3 started near a temperature of 50 K and was related to a distribution of thermal activation energies. At the peak of the distribution the activation energy was 3.1 kcal/mol, and the preexponential in the recovery rate was 10(9.9) s-1. For recovery of NO back to the a3 heme, the activation energy was threefold less than that for CO where CO binds to nearby Cua3 following photolysis from heme a3, but was larger than the activation energy for CO, O2, and probably NO rebinding to myoglobin. NO ligand rebinding to myoglobin occurred at a temperature as low as 15 K and in a temperature regime where tunneling could occur. However, the rate of NO rebinding to myoglobin did increase with temperature in the 15-25 K range.  相似文献   

11.
The rebinding of CO to cytochrome c oxidase from Paracoccus denitrificans in the fully reduced and in the half-reduced (mixed valence) form as a function of temperature was investigated using time-resolved rapid-scan FT-IR spectroscopy in the mid-IR (1200-2100 cm-1). For the fully reduced enzyme, rebinding was complete in approximately 2 s at 268 K and showed a biphasic reaction. At 84 K, nonreversible transfer of CO from heme a3 to CuB was observed. Both photolysis at 84 K and photolysis at 268 K result in FT-IR difference spectra which show similarities in the amide I, amide II, and heme modes. Both processes, however, differ in spectral features characteristic for amino acid side chain modes and may thus be indicative for the motional constraint of CO at low temperature. Rebinding of photodissociated CO for the mixed-valence enzyme at 268 K is also biphasic, but much slower as compared to the fully reduced enzyme. FT-IR difference spectra show band features similar to those for the fully reduced enzyme. Additional strong bands in the amide I and amide II range indicate local conformational changes induced by electron and coupled proton transfer. These signals disappear when the temperature is lowered to 84 K. At 268 K, a difference signal at 1746 cm-1 is observed which is shifted by 6 cm-1 to 1740 cm-1 in 2H2O. The absence of this signal for the mutant Glu 278 Gln allows assignment to the COOH stretching mode of Glu 278, and indicates changes of the conformation, proton position, or protonation of this residue upon electron transfer.  相似文献   

12.
The rebinding kinetics of CO to myoglobin after flash photolysis is nonexponential in time below approximately 180 K; the kinetics is governed by a distribution of enthalpic barriers. This distribution results from inhomogeneities in the protein conformation, referred to as conformational substates. Hole-burning experiments on the Soret and IR CO-stretch bands test the assumption that an inhomogeneous distribution of conformational substates results in inhomogeneously broadened spectra. CO was slowly photolyzed at different wavelengths in the Soret band at 10 K. Both the Soret band and the CO-stretch band A1, centered at 1,945 cm-1, shift during photolysis, demonstrating that different wavelengths excite different parts of the distributed population. We have also done kinetic hole-burning experiments by measuring peak shifts in the Soret and A1 bands as the CO molecules rebind. The shifts indicate that the spectral and enthalpic distributions are correlated. In the A1 band, the spectral and enthalpic distributions are highly correlated while in the Soret the correlation is weak. From the peak shifts in the spectral and kinetic hole-burning experiments the inhomogeneous broadening is estimated to be approximately 15% of the total width in the Soret band and approximately 60% in A1. We have previously measured the tilt angle alpha between the bound CO and the heme normal (Ormos, P., D. Braunstein, H. Frauenfelder, M. K. Hong, S.-L. Lin, T. B. Sauke, and R. D. Young. 1988. Proc. Natl. Acad. Sci. USA. 85:8492-8496) and observed a wave number dependence of the tilt angles within the CO-stretch A bands. Thus the spectral and enthalpic distributions of the A bands are coupled to a heterogeneity of the structure.  相似文献   

13.
14.
The recombination kinetics of photo-dissociated oxyhemerythrin (Sipunculus nudus) have been investigated between 298 K and 90 K. Fast geminate recombinations compete with oxygen escape into the solvent, from which a subsequent slower bimolecular rebinding takes place. In phosphate buffer (pH 7.7) at 278 K, the fast and slow processes are exponential and have comparable amplitudes. Whereas the oxygen escape rate rapidly decreases upon increasing the viscosity, the inward rate from the solvent is found to be independent of viscosity, up to about 50 cP (50 mPa.s). The data suggest that a Brownian-motion-driven displacement of one or several side-chain residues is implied in oxygen escape from within the protein and also that hemerythrin undergoes a conformational change in the deoxy state. At higher viscosities and lower temperature only the geminate phase is observed and the kinetics progressively depart from an exponential. Below about 130 K, the kinetics resemble those reported in the literature for heme proteins. They are consistent with a temperature-independent non-equilibrium frozen distribution of conformational substates. However, between 190 K and 130 K, the profile of the kinetics is invariant on a log/log plot and the results simply differ by a translation along the log t axis. It is shown that this property is expected only for a temperature-dependent distribution of substates in a Boltzmann equilibrium. From room temperature, where rebinding is exponential, down to the 'freezing' temperature, the geminate recombinations display a variety of kinetic laws. It can be shown, however, that for a broad class of substate distributions, the initial slope of the kinetic plot follows an Arrhenius relationship. The activation energy is equal to that of the exponential rate constant measured at high temperature. This result establishes the conditions under which protein data obtained from low-temperature kinetics can be extrapolated to physiological temperature.  相似文献   

15.
Truncated hemoglobins (trHbs), are a distinct and newly characterized class of small myoglobin-like proteins that are widely distributed in bacteria, unicellular eukaryotes, and higher plants. Notable and distinctive features associated with trHbs include a hydrogen-bonding network within the distal heme pocket and a long apolar tunnel linking the external solvent to the distal heme pocket. The present work compares the geminate and solvent phase rebinding kinetics from two trHbs, one from the ciliated protozoan Paramecium caudatum (P-trHb) and the other from the green alga Chlamydomonas eugametos (C-trHb). Unusual kinetic patterns are observed including indications of ultrafast (picosecond) geminate rebinding of CO to C-trHb, very fast solvent phase rebinding of CO for both trHbs, time-dependent biphasic CO rebinding kinetics for P-trHb at low CO partial pressures, and for P-trHb, an increase in the geminate yield from a few percent to nearly 100% under high viscosity conditions. Species-specific differences in both the 8-ns photodissociation quantum yield and the rebinding kinetics, point to a pivotal functional role for the E11 residue. The response of the rebinding kinetics to temperature, ligand concentration, and viscosity (glycerol, trehalose) and the viscosity-dependent changes in the resonance Raman spectrum of the liganded photoproduct, together implicate both the apolar tunnel and the static and dynamic properties of the hydrogen-bonding network within the distal heme pocket in generating the unusual kinetic patterns observed for these trHbs.  相似文献   

16.
Carbon monoxide binding to myoglobin was characterized using the photothermal beam deflection method. The volume and enthalpy changes coupled to CO dissociation were found to be 9.3+/-0.8 mL x mol(-1) and 7.4+/-2.8 kcal x mol(-1), respectively. The corresponding values observed for CO rebinding have the same magnitude but opposite sign: Delta V=-8.6+/-0.9 mL x mol(-1) and Delta H=-5.8+/-2.9 kcal x mol(-1). Ligand rebinding occurs as a single conformational step with a rate constant of 5 x 10(5) M(-1) s(-1) and with activation enthalpy of 7.1+/-0.8 kcal x mol(-1) and activation entropy of -22.4+/-2.8 cal x mol(-1) K(-1). Activation parameters for the ligand binding correspond to the activation parameters previously obtained using the transient absorption methods. Hence, at room temperature the CO binding to Mb can be described as a two-state model and the observed volume contraction occurs during CO-Fe bond formation. Comparing these results with CO dissociation reactions, for which two discrete intermediates were characterized, indicates differences in mechanism by which the protein modulates ligand association and dissociation.  相似文献   

17.
Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO) receptor. The mechanisms of activation and deactivation of this heterodimeric enzyme are unknown. For deciphering them, functional domains can be overexpressed. We have probed the dynamics of the diatomic ligands NO and CO within the isolated heme domain β(1)(190) of human sGC by piconanosecond absorption spectroscopy. After photo-excitation of nitrosylated sGC, only NO geminate rebinding occurs in 7.5 ps. In β(1)(190), both photo-dissociation of 5c-NO and photo-oxidation occur, contrary to sGC, followed by NO rebinding (7 ps) and back-reduction (230 ps and 2 ns). In full-length sGC, CO geminate rebinding to the heme does not occur. In contrast, CO geminately rebinds to β(1)(190) with fast multiphasic process (35, 171, and 18 ns). We measured the bimolecular association rates k(on) = 0.075 ± 0.01 × 10(6) M(-1) · S(-1) for sGC and 0.83 ± 0.1 × 10(6) M(-1) · S(-1) for β(1)(190). These different dynamics reflect conformational changes and less proximal constraints in the isolated heme domain with respect to the dimeric native sGC. We concluded that the α-subunit and the β(1)(191-619) domain exert structural strains on the heme domain. These strains are likely involved in the transmission of the energy and relaxation toward the activated state after Fe(2+)-His bond breaking. This also reveals the heme domain plasticity modulated by the associated domains and subunit.  相似文献   

18.
Fourier transform infrared (FTIR) spectroscopy in the CO stretch bands combined with temperature derivative spectroscopy (TDS) was used to characterize intermediate states obtained by photolysis of two sperm whale mutant myoglobins, YQR (L29(B10)Y, H64(E7)Q, T67(E10)R) and YQRF (with an additional I107(G8)F replacement). Both mutants assume two different bound-state conformations, A(0) and A(3), which can be distinguished by their different CO bands near 1965 and 1933 cm(-1). They most likely originate from different conformations of the Gln-64 side chain. Within each A substate, a number of photoproduct states have been characterized on the basis of the temperature dependence of recombination in TDS experiments. Different locations and orientations of the ligand within the protein can be distinguished by the infrared spectra of the photolyzed CO. Recombination from the primary docking site, B, near the heme dominates below 50 K. Above 60 K, ligand rebinding occurs predominantly from a secondary docking site, C', in which the CO is trapped in the Xe4 cavity on the distal side, as shown by crystallography of photolyzed YQR and L29W myoglobin CO. Another kinetic state (C") has been identified from which rebinding occurs around 130 K. Moreover, a population appearing above the solvent glass transition at approximately 180 K (D state) is assigned to rebinding from the Xe1 cavity, as suggested by the photoproduct structure of the L29W sperm whale myoglobin mutant. For both the YQR and YQRF mutants, rebinding from the B sites near the heme differs for the two A substates, supporting the view that the return of the ligand from the C', C", and D states is not governed by the recombination barrier at the heme iron but rather by migration to the active site. Comparison of YQR and YQRF shows that access to the Xe4 site (C') is severely restricted by introduction of the bulky Phe side chain at position 107.  相似文献   

19.
High pressure Fourier transform infrared (FT-IR) spectroscopy is performed for the first time to analyse the active site of inducible nitric oxide synthase (iNOSox) using the carbon monoxide (CO) heme iron ligand stretch mode (nuCO) as spectroscopic probe. A membrane-driven sapphire anvil high-pressure cell is used. Three major conformational substates exist in substrate-free iNOSox which are characterized by nuCO at approximately 1936, 1945 and 1952 cm(-1). High pressure favors the 1936 cm(-1) substate with a volume difference to the 1945 substate of approximately -21 cm3/mol. The pressure induced cytochrome P420 formation with a reaction volume of approximately -80 cm3/mol is observed. Arginine binding produces a very low nuCO at approximately 1905 cm(-1) caused by the H-bond from the substrate to CO. nuCO for the substates in the substrate-free and arginine-bound proteins shift linearly with pressure which is qualitatively similar to the observation on cytochrome P450cam. The slightly smaller positive slope of the shift in substrate-free iNOSox compared to substrate-free P450cam is interpreted as a slightly lesser compressible heme pocket. In contrast, the significant slower negative slope for arginine-bound iNOSox compared to camphor-bound P450cam results from the different kind of interactions to the CO ligand (electrostatic interaction in P450cam, H-bond in iNOSox).  相似文献   

20.
The rates of the bimolecular CO rebinding to the oxygenase domains of inducible and neuronal NOS proteins (iNOSoxy and nNOSoxy, respectively) after photolytic dissociation have been determined by laser flash photolysis. The following mutants at the isoform-specific sites (murine iNOSoxy N115L and rat nNOSoxy L337N, L337F) have been constructed to investigate role of the residues in the CO ligand accessibilities of the NOS isoforms. These residues are in the NOS distal substrate access channel. The effect of the (6R)-5,6,7,8-tetrahydrobiopterin (H(4)B) cofactor and l-arginine (Arg) substrate on the rates of CO rebinding have also been assessed. Addition of l-Arg to the iNOSoxy N115L mutant results in much faster CO rebinding rates, compared to the wild type. The results indicate that modifications to the iNOS channel in which the hydrophilic residue N115 is replaced by leucine (to resemble its nNOS cognate) open the channel somewhat, thereby improving access to the axial heme ligand binding position. On the other hand, introduction of a hydrophilic residue (L337N) or a bulky rigid aromatic residue (L337F) in the nNOS isoform does not significantly affect the kinetics profile, suggesting that the geometry of the substrate access pocket is not greatly altered. The bimolecular CO rebinding rate data indicate that the opening of the substrate access channel in the iNOS N115L mutant may be due to more widespread structural alterations induced by the mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号