首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cultured myometrial cells establish communicating gap junctions   总被引:5,自引:0,他引:5  
Myometrial cells were isolated and cultured from term rat uterus. The myometrial origin of the cultures was verified by antibody staining of cellular desmin and alpha-smooth muscle actin. The presence of functional gap junctions was indicated by transfer of radiolabeled nucleotide and microinjected Lucifer yellow dye. The cultured cells expressed mRNA recognized by a connexin43 gap junction cDNA probe. To our knowledge, this is the first report that isolated myometrial cells form gap junctions in culture.  相似文献   

2.
3.

Background  

Gap junctions increase in size and abundance coincident with parturition, forming an intercellular communication network that permits the uterus to develop the forceful, coordinated contractions necessary for delivery of the fetus. Lindane, a pesticide used in the human and veterinary treatment of scabies and lice as well as in agricultural applications, inhibits uterine contractions in vitro, inhibits myometrial gap junctions, and has been associated with prolonged gestation length in rats. The aim of the present study was to investigate whether brief exposures to lindane would elicit sustained inhibition of rat uterine contractile activity and myometrial gap junction intercellular communication.  相似文献   

4.
Lindane (gamma-hexachlorocyclohexane) is a commonly used pesticide that bioaccumulates in mammalian adipose tissue. Lindane inhibits gap junctional intercellular communication and oscillatory contractions of pregnant rat myometrium in vitro. The present study investigated the role of oxidative stress in lindane's inhibition of myometrial function in mid-gestation pregnant rat uteri. Lucifer yellow dye was microinjected into cultured myocytes to assess gap junctional intercellular communication. Lindane exposure (100 microM) resulted in a time-dependent, biphasic inhibition of dye transfer. This pattern of inhibition was also seen upon cell exposure to the pro-oxidant, tert-butyl hydroperoxide (100 microM). Lindane's initial and secondary-onset dye transfer inhibitions were reversed by cotreatment and pretreatment with the antioxidants, alpha-tocopherol (25-100 microM), diphenyl-1,4-phenylene diamine (10-30 microM), and superoxide dismutase (100-400 U/ml). D-mannitol (100-300 mM) also reversed lindane's initial dye transfer inhibition. Nitro blue tetrazolium reduction to formazan (measured spectrophotometrically) was elevated upon exposure of cultured cells to lindane or tert-butyl hydroperoxide, indicating the presence of reducing agents. Lipid peroxidation, assessed as thiobarbituric acid-reactive substances, was also elevated in lindane-exposed cell cultures. alpha-Tocopherol reversed this elevation. Finally, uterine contractility was assessed by measuring isometric contractions of uterine strips hung in standard muscle baths. Pretreatment with alpha-tocopherol prevented lindane's abolishment of uterine contractions in vitro. These data support the hypothesis that lindane inhibits uterine contractility and myometrial gap junctions by establishing an oxidative stress environment.  相似文献   

5.
The effects of estradiol-17 beta and indomethacin on myometrial gap junction development, plasma estradiol levels and uterine PGF2 alpha content were evaluated in immature and/or ovariectomized, mature rats. High doses of estradiol stimulated the development of gap junctions in the myometrium of animals from both groups. Concomitant injections of estradiol and indomethacin to ovariectomized rats potentiated the estradiol stimulation of gap junctions. Plasma estradiol levels were lower in ovariectomized rats treated with both estradiol and indomethacin than in animals treated with estradiol alone. Indomethacin also enhanced the uptake and retention of 3H-estradiol into uterine tissues. Uterine PGF2 alpha content of ovarectomized rats was stimulated with the initial injection of estradiol but thereafter, the PGF2 alpha content declined with repeated injections to values lower than that observed in controls. Prostaglandin F2 alpha content in tissues from rats treated with estradiol plus indomethacin were also higher than that observed in rats treated with indomethacin alone, however, the values obtained in both groups were significantly lower compared to those from control animals. These results are consistent with the hypothesis that steroid hormones and prostaglandins regulate myometrial gap junction formation. Regulation of myometrial gap junctions by prostaglandins is discussed with respect to a down regulation of the steroid-receptor mechanism and effects on cyclo-oxygenase or lipoxygenase products.  相似文献   

6.
The effects of estradiol-17ß and indomethacin on myometrial gap junction development, plasma estradiol levels and uterine PGF content were evaluated in immature and/or ovariectomized, mature rats. High doses of estradiol stimulated the development of gap junctions in the myometrium of animals from both groups. Concomitant injections of estradiol and indomethacin to ovariectomized rats potentiated the estradiol stimulation of gap junctions. Plama estradiol levels were lower in ovariectomized rats treated with both estradiol and indomethacin than in animals treated with estradiol alone. Indomethacin also enhanced the uptake and retention of 3H-estradiol into uterine tissues. Uterine PGF content of ovarectomized rats was stimulated with the initial injection of estradiol but thereafter, the PGF content declined with repeated injections to values lower than that observed in controls. Prostaglandin F content in tissues from rats treated with estradiol plus indomethacin were also higher than that observed in rats treated with indomethacin alone, however, the values obtained in both groups were significantly lower compared to those from control animals. These results are consistent with the hypothesis that steroid hormones and prostaglandins regulate myometrial gap junction formation. Regulation of myometrial gap junctions by prostaglandins is discussed with respect to down regulation of the steroid-receptor mechanism and effects on cyclo-oxygenase or lipoxygenase products.  相似文献   

7.
The effects of estradiol treatment on the development of myometrial gap junctions and premature labour were investigated using timed pregnant rats. In control animals myometrial gap junctions were infrequent between days 17 and 20 of pregnancy, but began to develop on day 21 and were at maximum frequency, size, and membrane area on day 22 during delivery. Gap junctions were completely absent from the myometrium 48 h after delivery. Animals treated with 500 micrograms 17 beta-estradiol/day starting on day 16 of pregnancy developed numerous myometrial gap junctions and delivered their pups prematurely on day 19. Similarly, treatment with 50 micrograms estradiol/day resulted in the development of myometrial gap junctions on day 20 of pregnancy and premature labour. However, treatment with various doses of estradiol up to and including 500 micrograms/day for 3 days beginning 1 day before delivery was not able to maintain the presence of myometrial gap junctions during the postpartum period. These results support the hypothesis that estradiol stimulates the development of myometrial gap junctions and that the presence of gap junctions in the myometrium is a requirement for the occurrence of term, as well as preterm labour. Furthermore, it is evident from this study that the postpartum regression of myometrial gap junctions is not dependent on the decrease in estradiol.  相似文献   

8.
Longitudinal muscle of myometrial tissues from immature rats were examined by quantitative thin section electron microscopy for the presence of gap junctions after treatment with estradiol with and without tamoxifen, and cycloheximide for 1-6 days. Gap junctions were present between myometrial cells on days 4, 5, and 6 after treatment with estradiol (500 micrograms/day). Tamoxifen administered concomitantly with estradiol over the 6-day period completely prevented induction of the junctions. Gap junctions were not detected in the myometrium after treatment with tamoxifen alone. Administration of cycloheximide together with estradiol on day 0 of the 6-day period had no effect on gap junction frequency but resulted in a reduction in gap junction size in the myometrium after continued treatment with the hormone. Treatment with cycloheximide on day 1, however, significantly suppressed the effect of further estradiol treatment on the induction of gap junctions in the myometrium. Junctions were not visible in the tissues from animals treated with cycloheximide alone or in the control groups treated with sesame oil. These results indicate that estradiol influences the presence of gap junctions in the myometrium by regulating the synthesis of gap junction proteins through the steroid receptor mechanism.  相似文献   

9.
Summary In uterine smooth muscles, gap junction plaques rapidly form during the final stages of gestation. To investigate the related mechanisms, regional differences in myometrial gap junction development in rat uterus were examined quantitatively during delivery, using thin-section and freeze-fracture techniques in combination with light- and electron microscopy.Examination of implanted and nonimplanted horns in the unilaterally ligated rat bicornuate uteri, revealed no differences in the occurrence of gap junction plaques, but after 2 to 4 pups had been delivered, the contracted segments contained more gap junction plaques than did noncontracted segments examined immediately before delivery. In all segments, gap junctions were found more frequently in the circular muscle layers than in the longitudinal muscle layers. Gap junctions ranged in size from 0.002 m2 to 0.52 m2, but two-thirds were less than 0.1 m2. The frequency of small gap junction plaques (less than 0.1 m2) was higher in the noncontracted segment.These results suggest that gap junctions are dynamic structures, and that their formation is controlled not only by general hormonal factors, possibly involved in gap junction increases in the myometrium before delivery, but also by local factors, possibly related to the contraction, that may accelerate an increase in gap junction formation during delivery.  相似文献   

10.
Structural diversity of gap junctions. A review.   总被引:8,自引:0,他引:8  
W J Larsen 《Tissue & cell》1977,9(3):373-394
Gap junctions are plasma membrane specializations characterized as aggregates of intramembranous particles in two apposed membranes meeting particle-to-particle in the 2-4 nm intermembrane 'gap'. Recent thin-section and freeze-fracture evidence has revealed significant structural variations of gap junctional structure at various stages of development and from different organisms and tissues. It is suggested that a comparative analysis of these differences may provide clues to the specific biological functions(s) of these ubiquitous organelles.  相似文献   

11.
The differentiation of the neuromuscular junction is a multistep process requiring coordinated interactions between nerve terminals and muscle. Although innervation is not needed for muscle production, the formation of nerve-muscle contacts, intramuscular nerve branching, and neuronal survival require reciprocal signals from nerve and muscle to regulate the formation of synapses. Following the production of muscle fibers, clusters of acetylcholine receptors (AChRs) are concentrated in the central regions of the myofibers via a process termed “prepatterning”. The postsynaptic protein MuSK is essential for this process activating possibly its own expression, in addition to the expression of AChR. AChR complexes (aggregated and stabilized by rapsyn) are thus prepatterned independently of neuronal signals in developing myofibers. ACh released by branching motor nerves causes AChR-induced postsynaptic potentials and positively regulates the localization and stabilization of developing synaptic contacts. These “active” contact sites may prevent AChRs clustering in non-contacted regions and counteract the establishment of additional contacts. ACh-induced signals also cause the dispersion of non-synaptic AChR clusters and possibly the removal of excess AChR. A further neuronal factor, agrin, stabilizes the accumulation of AChR at synaptic sites. Agrin released from the branching motor nerve may form a structural link specifically to the ACh-activated endplates, thereby enhancing MuSK kinase activity and AChR accumulation and preventing dispersion of postsynaptic specializations. The successful stabilization of prepatterned AChR clusters by agrin and the generation of singly innervated myofibers appear to require AChR-mediated postsynaptic potentials indicating that the differentiation of the nerve terminal proceeds only after postsynaptic specializations have formed.  相似文献   

12.
Actin dynamics play multiple roles in promoting cell movement, changing cell shapes, and establishing intercellular adhesion. Cell contact events are involved in tissue morphogenesis, immune responses, and cancer cell invasion. In epithelial cells, cell-cell contacts mature to form apical junctions with which the actin cytoskeleton physically associates. Living cell imaging shows, however, that the apical junctional complex is less dynamically regulated than the actin cytoskeleton, indicating that their interaction does not remain stable. Given that several cell adhesion modules are clustered at apical junctions, the sum of weak or transient interactions may create linkages that can be strong yet easily remodeled. Here we describe how subcellular protein interactions are coordinated to induce changes in actin organization and dynamics, in response to the status of apical junctions.  相似文献   

13.
Actin dynamics play multiple roles in promoting cell movement, changing cell shapes, and establishing intercellular adhesion. Cell contact events are involved in tissue morphogenesis, immune responses, and cancer cell invasion. In epithelial cells, cell-cell contacts mature to form apical junctions with which the actin cytoskeleton physically associates. Living cell imaging shows, however, that the apical junctional complex is less dynamically regulated than the actin cytoskeleton, indicating that their interaction does not remain stable. Given that several cell adhesion modules are clustered at apical junctions, the sum of weak or transient interactions may create linkages that can be strong yet easily remodeled. Here we describe how subcellular protein interactions are coordinated to induce changes in actin organization and dynamics, in response to the status of apical junctions.  相似文献   

14.
Despite their significance inwound healing, little is known about the molecular determinants ofcell-to-cell adhesion and gap junctional communication in fibroblasts.We characterized intercellular adherens junctions and gap junctions inhuman gingival fibroblasts (HGFs) using a novel model. Calcein-labeleddonor cells in suspension were added onto an established, Texas red dextran (10 kDa)-labeled acceptor cell monolayer. Cell-to-cell adhesionrequired Ca2+ and was >30-fold stronger thancell-to-fibronectin adhesion at 15 min. Electron micrographs showedrapid formation of adherens junction-like structures at ~15 min thatmatured by ~2-3 h; distinct gap junctional complexes wereevident by ~3 h. Immunoblotting showed that HGF expressed -cateninand that cadherins and connexin43 were recruited to theTriton-insoluble cytoskeletal fraction in confluent cultures. Confocalmicroscopy localized the same molecules to intercellular contacts ofacceptor and donor cells. There was extensive calcein dye transfer in acohort of Texas red dextran-labeled cells, but this was almostcompletely abolished by the gap junction inhibitor -glycyrrhetinicacid and the connexin43 mimetic peptide GAP 27. Thisdonor-acceptor cell model allows large numbers (>105) ofcells to form synchronous cell-to-cell contacts, thereby enabling thesimultaneous functional and molecular studies of adherens junctions andgap junctions.

  相似文献   

15.
16.
Cx50 (connexin50), a member of the α-family of gap junction proteins expressed in the lens of the eye, has been shown to be essential for normal lens development. In the present study, we identified a CaMBD [CaM (calmodulin)-binding domain] (residues 141-166) in the intracellular loop of Cx50. Elevations in intracellular Ca2+ concentration effected a 95% decline in gj (junctional conductance) of Cx50 in N2a cells that is likely to be mediated by CaM, because inclusion of the CaM inhibitor calmidazolium prevented this Ca2+-dependent decrease in gj. The direct involvement of the Cx50 CaMBD in this Ca2+/CaM-dependent regulation was demonstrated further by the inclusion of a synthetic peptide encompassing the CaMBD in both whole-cell patch pipettes, which effectively prevented the intracellular Ca2+-dependent decline in gj. Biophysical studies using NMR and fluorescence spectroscopy reveal further that the peptide stoichiometrically binds to Ca2+/CaM with an affinity of ~5 nM. The binding of the peptide expanded the Ca2+-sensing range of CaM by increasing the Ca2+ affinity of the C-lobe of CaM, while decreasing the Ca2+ affinity of the N-lobe of CaM. Overall, these results demonstrate that the binding of Ca2+/CaM to the intracellular loop of Cx50 is critical for mediating the Ca2+-dependent inhibition of Cx50 gap junctions in the lens of the eye.  相似文献   

17.
18.
19.
Cardiac gap junctions were reconstituted into liposomes. To determine if reconstitution resulted in membrane channel formation, we developed an assay for channel function that used a liposome-entrapped peroxidase to detect entry of a substrate into the liposome. The data demonstrate, for the first time, that reconstituted gap junctions from heart are capable of channel-forming activity in artificial membranes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号