首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
家蝇幼虫抗菌肽MDL-2对细菌细胞渗透性及代谢功能影响   总被引:2,自引:0,他引:2  
研究了家蝇幼虫抗菌肽MDL-2与细菌相互作用时,抗菌肤MDL-2对细菌细胞壁的溶解作用、细胞膜渗透性和代谢的影响.抗菌肽MDL-2在抗菌过程中首先与细菌的细胞壁相互作用,使其破裂,抗菌肽对革兰氏阴性细菌大肠杆菌细胞壁的作用有浓度依赖性,而对革兰氏阳性细菌金黄色葡萄球菌MDL-2在较低的浓度时即可发生细胞壁破坏作用;抗菌...  相似文献   

2.
AIMS: The aim of this study was to investigate the links between survival of Escherichia coli in sea water microcosms in the laboratory and the presence of porins in the outer membrane. The E. coli strains studied were a wild-type strain and a series of outer membrane protein (omp) mutants. METHODS AND RESULTS: Bacteria were suspended in natural or filtered-autoclaved sea water microcosms and numbers determined over an incubation period by plate count and by count of cells capable of respiration. CONCLUSIONS: The type of omp mutation has a significant impact in bacterial survival. The double OmpC-OmpF mutant and the OmpR mutant (which was incapable of synthesizing OmpC and OmpF) survived poorly compared with single omp mutants and the wild-type strain. This suggests that these proteins are important in determining the entry of E. coli into the survival mode. The EnvZ mutant, which lacks the protein by which the cell senses some changes in the environment, survived as well as the wild-type strain when compared by plate counts and by respiring cell count. The loss of the EnvZ protein has no effect on survival but it could prevent the organism sensing the changes in the environment through which entry into the survival state is triggered. SIGNIFICANCE AND IMPACT OF THE STUDY: This work is another piece in the puzzle as to how bacteria survive stress conditions.  相似文献   

3.
The outer membrane (OM) of Gram-negative bacteria provides a protective barrier for natural occurring inhibitors. Pressure mediated OM permeabilisation therefore contributes to the elimination of Escherichia coli and Salmonella by pressure preservation processes. Pressure mediated inactivation, sublethal injury, and membrane permeabilisation of E. coli were determined using two strains differing in their barotolerance. Pressure treatment of E. coli TMW 2.427 at 300, 500 and 600 MPa for 40 min resulted in a 0, 1, and greater 6 log decrease of viable cell counts, respectively. The kinetics of OM and cytoplasmic membrane permeabilisation after pressure treatment were determined by staining of pressure treated cells with the fluorescent dyes propidium iodide (PI) and 1-N-phenylnaphtylamine (NPN), respectively. A slight increase of PI fluorescence was observed at conditions resulting in a greater 6 log decrease of viable cell counts only. In contrast, increased NPN fluorescence indicating OM permeabilisation was observed prior to cell death and sublethal injury. An on-line assay for determination of pressure mediated OM damage based on NPN fluorescence was established to distinguish between reversible and irreversible OM damage. Generally, the same degree of outer membrane damage was observed by either on line or off line determinations. However, whereas reversible membrane damage occurred fast and in thermodynamic equilibrium with pressure conditions, irreversible outer membrane damage was a time dependent process.  相似文献   

4.
Proteins that are exported from the cytoplasm to the periplasm and outer membrane of Gram-negative bacteria, or the cell wall and growth medium of Gram-positive bacteria, are generally synthesized as precursors with a cleavable signal peptide. During or shortly after pre-protein translocation across the cytoplasmic membrane, the signal peptide is removed by signal peptidases. Importantly, pre-protein processing by signal peptidases is essential for bacterial growth and viability. This review is focused on the signal peptidases of Gram-positive bacteria, Bacillus and Streptomyces species in particular. Evolutionary concepts, current knowledge of the catalytic mechanism, substrate specificity requirements and structural aspects are addressed. As major insights in signal peptidase function and structure have been obtained from studies on the signal peptidase LepB of Escherichia coli, similarities and differences between this enzyme and known Gram-positive signal peptidases are highlighted. Notably, while the incentive for previous research on Gram-positive signal peptidases was largely based on their role in the biotechnologically important process of protein secretion, present-day interest in these essential enzymes is primarily derived from the idea that they may serve as targets for novel anti-microbials.  相似文献   

5.
The aim of this work was to identify the initial binding sites to the bacterial membranes of the antimicrobial peptide alphas2-casein f(183-207) and also to acquire further insight into membrane permeabilization of this peptide. Furthermore, cell morphology was studied by transmission electron microscopy. In all the experiments, bovine LFcin was employed as a comparison. Results showed that initial binding sites of alphas2-casein f(183-207) peptide were lipoteichoic acid in Gram-positive bacteria and lipopolysaccharide in Gram-negative. The peptide was able to permeabilize the outer and inner membranes. Moreover, the alphas2-casein peptide f(183-207) generated pores in the outer membrane of Gram-negative bacteria and in the cell wall of Gram-positive bacteria. In the Gram-negative bacteria, f(183-207) originated cytoplasm condensation, and in the Gram-positive bacteria the cytoplasmic content leaked into the extracellular medium. Furthermore, the experiments of inner and outer membrane permeabilization performed with LFcin-B showed that this peptide also has the ability to permeabilize both the inner and outer membranes.  相似文献   

6.
The eosinophil cationic protein (ECP) is an eosinophil-secreted RNase involved in the immune host defense, with a cytotoxic activity against a wide range of pathogens. The protein displays antimicrobial activity against both Gram-negative and Gram-positive strains. The protein can destabilize lipid bilayers, although the action at the membrane level can only partially account for its bactericidal activity. We have now shown that ECP can bind with high affinity to the bacteria-wall components. We have analyzed its specific association to lipopolysaccharides (LPSs), its lipid A component, and peptidoglycans (PGNs). ECP high-affinity binding capacity to LPSs and lipid A has been analyzed by a fluorescent displacement assay, and the corresponding dissociation constants were calculated using the protein labeled with a fluorophor. The protein also binds in vivo to bacteria cells. Ultrastructural analysis of cell bacteria wall and morphology have been visualized by scanning and transmission electron microscopy in both Escherichia coli and Staphylococcus aureus strains. The protein damages the bacteria surface and induces the cell population aggregation on E. coli cultures. Although both bacteria strain cells retain their shape and no cell lysis is patent, the protein can induce in E. coli the outer membrane detachment. ECP also activates the cytoplasmic membrane depolarization in both strains. Moreover, the depolarization activity on E. coli does not require any pretreatment to overcome the outer membrane barrier. The protein binding to the bacteria-wall surface would represent a first encounter step key in its antimicrobial mechanism of action.  相似文献   

7.
Gram-negative and some Gram-positive bacteria that are resistant to bacteriocins of lactic acid bacteria (LAB) were subjected to sublethal stresses and treated with nisin and pediocin AcH. Both bacteriocins reduced the viability of cells surviving sublethal stresses. The results explain the possible mechanisms by which bacteriocins of LAB enter through the walls (or outer membranes) to destabilize the cytoplasmic (or inner) membranes and kill cells of sensitive Gram-positive and resistant, but injured, Gram-negative and Gram-positive bacteria.  相似文献   

8.
Paenibacterin is a broad-spectrum lipopeptide antimicrobial agent produced by Paenibacillus thiaminolyticus OSY-SE. The compound consists of a cyclic 13-residue peptide and an N-terminal C15 fatty acyl chain. The mechanism of action of paenibacterin against Escherichia coli and Staphylococcus aureus was investigated in this study. The cationic lipopeptide paenibacterin showed a strong affinity for the negatively charged lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria. Addition of LPS (100 μg/ml) completely eliminated the antimicrobial activity of paenibacterin against E. coli. The electrostatic interaction between paenibacterin and LPS may have displaced the divalent cations on the LPS network and thus facilitated the uptake of antibiotic into Gram-negative cells. Paenibacterin also damaged the bacterial cytoplasmic membrane, as evidenced by the depolarization of membrane potential and leakage of intracellular potassium ions from cells of E. coli and S. aureus. Therefore, the bactericidal activity of paenibacterin is attributed to disruption of the outer membrane of Gram-negative bacteria and damage of the cytoplasmic membrane of both Gram-negative and Gram-positive bacteria. Despite the evidence of membrane damage, this study does not rule out additional bactericidal mechanisms potentially exerted by paenibacterin.  相似文献   

9.
As a nonthermal sterilization technique, ultrasound has attracted great interest in the field of food preservation. In this study, flow cytometry and transmission electron microscopy were employed to investigate ultrasound-induced damage to Escherichia coli and Staphylococcus aureus. For flow cytometry studies, single staining with propidium iodide (PI) or carboxyfluorescein diacetate (cFDA) revealed that ultrasound treatment caused cell death by compromising membrane integrity, inactivating intracellular esterases, and inhibiting metabolic performance. The results showed that ultrasound damage was independent of initial bacterial concentrations, while the mechanism of cellular damage differed according to the bacterial species. For the Gram-negative bacterium E. coli, ultrasound worked first on the outer membrane rather than the cytoplasmic membrane. Based on the double-staining results, we inferred that ultrasound treatment might be an all-or-nothing process: cells ruptured and disintegrated by ultrasound cannot be revived, which can be considered an advantage of ultrasound over other nonthermal techniques. Transmission electron microscopy studies revealed that the mechanism of ultrasound-induced damage was multitarget inactivation, involving the cell wall, cytoplasmic membrane, and inner structure. Understanding of the irreversible antibacterial action of ultrasound has great significance for its further utilization in the food industry.  相似文献   

10.
The aim of this work was to identify the initial binding sites to the bacterial membranes of the antimicrobial peptide αs2-casein f(183-207) and also to acquire further insight into membrane permeabilization of this peptide. Furthermore, cell morphology was studied by transmission electron microscopy. In all the experiments, bovine LFcin was employed as a comparison. Results showed that initial binding sites of αs2-casein f(183-207) peptide were lipoteichoic acid in Gram-positive bacteria and lipopolysaccharide in Gram-negative. The peptide was able to permeabilize the outer and inner membranes. Moreover, the αs2-casein peptide f(183-207) generated pores in the outer membrane of Gram-negative bacteria and in the cell wall of Gram-positive bacteria. In the Gram-negative bacteria, f(183-207) originated cytoplasm condensation, and in the Gram-positive bacteria the cytoplasmic content leaked into the extracellular medium. Furthermore, the experiments of inner and outer membrane permeabilization performed with LFcin-B showed that this peptide also has the ability to permeabilize both the inner and outer membranes.  相似文献   

11.
12.
1. Increased permeability of cytoplasmic membranes in Escherichia coli was a consequence of alternative complement pathway (ACP) activity of serum of channel catfish, Ictalurus punctatus. Evidence was provided by beta-galactosidase activity extracellularly when E. coli was incubated with catfish serum. 2. Lesions were detected on outer membranes of E. coli following exposure to catfish serum. 3. Catfish ACP induced a temporal sequence of pre-killing and killing phases. 4. Loss of cell viability, killing rate and cytoplasmic enzyme release increased with increasing serum concentrations. 5. By incubating E. coli with sera treated to remove complement, both release of cytoplasmic enzyme and bactericidal activity were eliminated. 6. Lethal activity associated with channel catfish ACP against Gram-negative bacteria was functionally comparable to that seen in mammalian and reptilian systems.  相似文献   

13.
Conjugates of a carbacephalosporin with hydroxamate, spermexatol, N,N-bis(2,3-dihydroxybenzoyl)-L-lysine, mixed catecholate/hydroxamate and cyanuric acid-based siderophores were investigated for their potential to promote growth of siderophore indicator strains of Gram-negative and Gram-positive bacteria under iron depleted conditions, for their antibacterial activity and for their ability to use iron transport path-ways to penetrate the Gram-negative bacterial outer membrane. The selective growth promotion of enter-obacterial and pseudomonas strains by hydroxamate, spermexatol and mixed catecholate-hydroxamate siderophore-based conjugates bearing a L- or D-amino acid spacer was correlated with TonB dependent uptake routes. The preferred outer membrane siderophore receptor used in Escherichia coli was found to be Fiu, followed by Cir. Antagonistic effects of siderophores administered with the conjugates to determine antibacterial activity confirmed the active transport of conjugates via siderophore receptors. All of the conjugates were still able to diffuse through the porin proteins OmpC and OmpF. Nevertheless, strong inhibition of E. coli and Pseudomones aeruginosa outer membrane mutants DC2 and K799/61 compared to the parent strains indicated inefficient penetrability of all types of conjugates tested. Mycobacterium smegmatis SG 987 was able to use all of the siderophore-cephalosporin conjugates as growth promotors. Consequently there was no growth inhibition of this strain. © Rapid Science 1998.  相似文献   

14.
The complex organization of the mycobacterial cell wall poses unique challenges for the study of its assembly. Although mycobacteria are classified evolutionarily as Gram-positive bacteria, their cell wall architecture more closely resembles that of Gram-negative organisms. They possess not only an inner cytoplasmic membrane, but also a bilayer outer membrane that encloses an aqueous periplasm and includes diverse lipids that are required for the survival and virulence of pathogenic species. Questions surrounding how mycobacterial outer membrane lipids are transported from where they are made in the cytoplasm to where they function at the cell exterior are thus similar, and similarly compelling, to those that have driven the study of Gram-negative outer membrane transport pathways. However, little is understood about these processes in mycobacteria. Here we contextualize these questions by comparing our current knowledge of mycobacteria with better-defined systems in other organisms. Based on this analysis, we propose possible models and highlight continuing challenges to improving our understanding of outer membrane assembly in these medically and environmentally important bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.  相似文献   

15.
Peng  Jinxiu  Qiu  Shuai  Jia  Fengjing  Zhang  Lishi  He  Yuhang  Zhang  Fangfang  Sun  Mengmeng  Deng  Yabo  Guo  Yifei  Xu  Zhaoqing  Liang  Xiaolei  Yan  Wenjin  Wang  Kairong 《Amino acids》2021,53(1):23-32

Protonectin was a typical amphiphilic antimicrobial peptide with potent antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, when its eleventh amino acid in the sequence was substituted by phenylalanine, the analog named phe-Prt showed potent antimicrobial activity against Gram-positive bacteria, but no antimicrobial activity against Gram-negative bacteria, indicating a significant selectivity between Gram-positive bacteria and Gram-negative bacteria. However, when Gram-negative bacteria were incubated with EDTA, the bacteria were susceptible to phe-Prt. Next, the binding effect of phe-Prt with LPS was determined. Our result showed that LPS could hamper the bactericidal activity of phe-Prt against Gram-positive bacteria. The result of zeta potential assay further confirmed the binding effect of phe-Prt with LPS for it could neutralize the surface charge of E. coli and LPS. Then, the effect of phe-Prt on the integrity of outer membrane of Gram-negative bacteria was determined. Our results showed that phe-Prt had a much weaker disturbance to the outer membrane of Gram-negative bacteria than the parent peptide protonectin. In summary, the introduction of l-phenylalanine into the sequence of antimicrobial peptide protonectin made phe-Prt show significant selectivity against Gram-positive bacteria, which could partly be attributed to the delay effect of LPS for phe-Prt to access to cell membrane. Although further study is still needed to clarify the exact mechanism of selectivity, the present study provided a strategy to develop antimicrobial peptides with selectivity toward Gram-positive and Gram-negative bacteria.

  相似文献   

16.
The Tat pathway is distinct from the Sec machinery given its unusual capacity to export folded proteins, which contain a twin-arginine (RR) signal peptide, across the plasma membrane. The functionality of the Tat pathway has been demonstrated for several Gram-negative and Gram-positive mesophilic bacteria. To assess the specificity of the Tat system, and to analyze the capacity of a mesophilic bacterial Tat system to translocate cytoplasmic proteins from hyperthermophilic bacteria, we fused the Thermus thermophilus beta-glycosidase (Glc) to the twin-arginine signal peptide of the E. coli TorA protein. When expressed in E. coli, the thermophilic RR-Glc chimera was successfully synthesized and efficiently translocated into the periplasm of the wild type strain. In contrast, the beta-glycosidase accumulated within the cytoplasm of all the tat mutants analyzed. The beta-glycosidase synthesized in these strains exhibited thermophilic properties. These results demonstrated, for the first time, the capacity of the E. coli Tat system to export cytoplasmic hyperthermophilic protein, implying an important potential of the Tat system for the production of thermostable enzymes used in bioprocessing applications.  相似文献   

17.
目的:旨在建立耐低温革兰氏阴性菌外膜蛋白体外折叠体系,为膜蛋白合成耐低温机制提供理论基础。方法:以包涵体的形式在大肠杆菌中过量表达了来源于耐低温希瓦氏菌的OmpA同源外膜蛋白Omp74的全蛋白质和N端跨膜结构域,纯化包涵体后,用高浓度尿素或强阴离子表面活性剂溶液溶解包涵体,以非离子表面活性剂为折叠介质,建立该外膜蛋白的体外折叠体系,同时以大肠杆菌的OmpA作为对照进行了比较研究。结果:与OmpA相比,Omp74体外折叠受温度影响较小,低浓度的阴离子表面活性剂能促Omp74的折叠,但对OmpA的折叠没有影响;C端结构域抑制Omp74在表面活性剂中的折叠;Omp74在0.5%的月桂酰基麦芽糖苷(DDM)和0.4%的十二烷基肌氨酸钠的混合溶液中能达到接近100%的折叠效率。  相似文献   

18.
Antimicrobial action of novel chitin derivative   总被引:2,自引:0,他引:2  
Aminoethyl-chitin (AEC) was synthesized in an attempt to both increase solubility of chitin in water and biological activity. AEC was obtained by grafting 2-chloroethylamino hydrochloride onto chitin at C-6 position. The structure of AEC was elucidated FT-IR and (1)H NMR spectroscopy, and its antimicrobial activity was investigated using three Gram-positive and Gram-negative bacteria. The integrity of the cell membranes of the representatives E. coli and S. aureus was investigated by determining the release of intracellular components of cells. When treated with AEC, release of 260 nm absorbing materials quickly increased both E. coli and S. aureus, but absorbance value was different due to the difference in cell structures. For detailed study, outer membrane (OM) and inner membrane (IM) permeabilization assay were performed using the fluorescent probe 1-N-phenylnaphthylamine (NPN) and the release of cytoplasmic beta-galactosidase activity. The results showed that AEC rapidly increased NPN uptake and the release of cytoplasmic beta-galactosidase via increasing the permeability of OM and IM. In addition, cytotoxic effect of AEC was assessed using human lung fibroblast (MRC-5) cell line, and AEC showed less toxic against MRC-5.  相似文献   

19.
The C-type lectin RegIIIβ can kill certain Gram-positive and Gram-negative bacteria. The susceptibility of S. Typhimurium depends on the bacterial growth phase, i.e., bacteria from the logarithmic growth phase do bind RegIIIβ and are subsequently killed. Lipid A is one of the bacterial targets for RegIIIβ. However, at the molecular level, it is not understood how RegIIIβ interacts with and kills Gram-negative bacteria. Here, we show that RegIIIβ interacts with Gram-negative bacteria in two distinct steps. Initially, it binds to surface-exposed lipid A. The lipid A can be shielded by the O-antigen of lipopolysaccharide (LPS), as indicated by the exquisite susceptibility of wbaP mutants to RegIIIβ-mediated killing. Increased cell viability after incubation with an anti-lipid A antibody also supports this conclusion. This RegIIIβ-binding permeabilizes the outer membrane to hydrophobic dyes like Ethidium bromide or to bulky bacteriolytic enzymes like lysozyme. Conversely, compromising the outer membrane integrity by the mild detergent Triton X-100 enhances the antibacterial effect of RegIIIβ. Based on our observations, we conclude that RegIIIβ interacts with Gram-negative bacteria in two subsequent steps. Initially, it binds to the outer membrane thus leading to outer membrane permeabilization. This initial step is necessary for RegIIIβ to reach a second, still not well understood target site (presumably localized in the periplasm or the cytoplasmic membrane), thereby triggering bacterial death. This provides novel insights into the outer membrane-step of the bactericidal mechanism of RegIIIβ.  相似文献   

20.
Abstract Using an antibody raised against d -glucose dehydrogenase (EC 1.1.99.17) purified from Pseudomonas fluorescens , immuno-cross-reactivity with the enzymes from several bacterial strains and localization of the enzyme in Escherichia coli were examined. The antibody cross-reacted with glucose dehydrogenases from various Gram-negative bacteria examined. As a result, it became apparent that the enzymes from Gluconobacter, Acetobacter, Pseudomonas and Acinetobacter , which existed as holoenzymes in the membranes, had lower molecular weights than those from E. coli and Klebsiella , which were apoenzymes.
Treatment with trypsin of right-side out and inside-out membrane vesicles from E. coli clearly demonstrated that d -glucose dehydrogenase was located on the outer surface of the cytoplasmic membrane of E. coli , as had been suggested for Pseudomonas .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号