首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Initiator tRNAs have an anticodon loop conformation distinct from that of elongation tRNAs as detected by susceptibility to S1 nuclease. We now find the anticodon loop conformation of E. coli tRNAfMet to be stable under different salt conditions as detected by using S1 nuclease as a structural probe. In contrast, a conformational change is observed in the T- and D- loop of this tRNA in the absence of added Mg2+. This change can be suppressed by spermine. Even under those conditions effecting a change in T- and D- loop conformation, the anticodon loop does not change. This suggests that the conformational shift is controlled by Mg2+ and restricted to the D- and T- loop region only without affecting the anticodon domain. The use of S1 nuclease as a conformational probe requires the use of kinetic studies to determine the initial cleavage sites. Thus, the use of a strong inhibitor which immediately stops the action of this nuclease is necessary. ATP is shown to be such an inhibitor.  相似文献   

2.
S Joseph  H F Noller 《The EMBO journal》1998,17(12):3478-3483
Translocation, catalyzed by elongation factor EF-G, is the precise movement of the tRNA-mRNA complex within the ribosome following peptide bond formation. Here we examine the structural requirement for A- and P-site tRNAs in EF-G-catalyzed translocation by substituting anticodon stem-loop (ASL) analogs for the respective tRNAs. Translocation of mRNA and tRNA was monitored independently; mRNA movement was assayed by toeprinting, while tRNA and ASL movement was monitored by hydroxyl radical probing by Fe(II) tethered to the ASLs and by chemical footprinting. Translocation depends on occupancy of both A and P sites by tRNA bound in a mRNA-dependent fashion. The requirement for an A-site tRNA can be satisfied by a 15 nucleotide ASL analog comprising only a 4 base pair (bp) stem and a 7 nucleotide anticodon loop. Translocation of the ASL is both EF-G- and GTP-dependent, and is inhibited by the translocational inhibitor thiostrepton. These findings show that the D, T and acceptor stem regions of A-site tRNA are not essential for EF-G-dependent translocation. In contrast, no translocation occurs if the P-site tRNA is substituted with an ASL, indicating that other elements of P-site tRNA structure are required for translocation. We also tested the effect of increasing the A-site ASL stem length from 4 to 33 bp on translocation from A to P site. Translocation efficiency decreases as the ASL stem extends beyond 22 bp, corresponding approximately to the maximum dimension of tRNA along the anticodon-D arm axis. This result suggests that a structural feature of the ribosome between the A and P sites, interferes with movement of tRNA analogs that exceed the normal dimensions of the coaxial tRNA anticodon-D arm.  相似文献   

3.
The iterative movement of the tRNA-mRNA complex through the ribosome is a hallmark of the elongation phase of protein synthesis. We used synthetic anticodon stem-loop analogs (ASL) of tRNA(Phe) to systematically identify ribose 2'-hydroxyl groups that are essential for binding and translocation from the ribosomal A site. Our results show that 2'-hydroxyl groups at positions 33, 35, and 36 in the A site ASL are important for translocation. Consistent with the view that the molecular basis of translocation may be similar in all organisms, the 2'-hydroxyl groups at positions 35 and 36 in the ASL interact with universally conserved bases G530 and A1493, respectively, in 16S rRNA. Furthermore, these interactions are also essential for the decoding process, indicating a functional relationship between decoding and translocation.  相似文献   

4.
In cattle and other species in which the pool of resting, primordial follicles is formed during fetal life, little is known about the regulation of the early stages of ovarian follicular development. We used histological morphometry and a combination of observations in vivo and experiments in vitro to study the timing and regulation of follicle formation and the acquisition of the capacity of primordial follicles to initiate growth in cattle. In vivo, primordial, primary, and secondary follicles were first observed around Days 90, 140, and 210 of gestation, respectively. The long interval between the first appearance of primordial and primary follicles suggests that primordial follicles are not capable of activating when they are first formed, or they are inhibited from activating. This hypothesis was confirmed by the finding that most primordial follicles in pieces of ovarian cortex obtained from fetal ovaries older than 140 days activated (i.e., initiated growth) after 2 days in vitro, whereas follicles in cortical pieces from 90- to 140-day-old fetal ovaries did not. We tested the hypothesis that the oocytes of newly formed primordial follicles are not in meiotic arrest and found that before Day 141, most oocytes ( approximately 73%) were in prediplotene stages of prophase I, whereas after Day 140, the majority of oocytes ( approximately 85%) had arrested at the diplotene stage. This observation was further confirmed by the finding that levels of mRNA for YBX2, a protein associated with meiotic arrest, were 2.3 times higher in ovarian cortical pieces isolated after versus before Day 141. Primordial follicles in cortical pieces from 90- to 140-day-old fetal ovaries did activate during a longer, 10-day culture, but activation could be inhibited by adding estradiol or progesterone, but not dihydrotestosterone (all at 10(-6) M). Fetal ovaries secreted estradiol in vitro, and secretion by ovaries from 83 to 140-day-old fetuses declined precipitously ( approximately 30-fold) with age, consistent with the hypothesis that estradiol inhibits activation of newly formed primordial follicles in vivo. In summary, the results show that newly formed primordial follicles do not activate in vivo or within 2 days in vitro and that capacity to activate is correlated with achievement of meiotic arrest by the oocyte and can be inhibited by estradiol, which fetal ovaries actively produce around the time of follicle formation.  相似文献   

5.
The intrinsic fluorescence of the Wye base was used to study the conformational change of the anticodon loop of yeast tRNAPhe brought about by the addition of magnesium. The fluorescence emission and excitation spectra show dramatic changes as magnesium is added to the solution. The rotational relaxation time changes from 6 nsec without added magnesium to 33 nsec with 10 mM magnesium at an ionic strength of 0.1 M. Stern-Volmer quenching by iodide or iodoethanol shows greater access of the base to the quencher with no added magnesium. A plausible interpretation of this data is that the base stack of the anticodon loop is altered by tilting or twisting the Wye base with respect to the adjacent bases and the base becomes parallel to its neighbors upon the addition of magnesium.  相似文献   

6.
An inhibitor of lectin-induced splenocyte proliferation from serum of normal chickens has been characterized. This suppressive factor, found in both serum and plasma and at concentrations as low as 3%, causes a 50% inhibition in proliferative responses to T-cell lectins of autologous and heterologous lymphoid cells. The inhibitor in serum also dramatically suppresses murine IL-2 synthesis, proliferation of murine spleen cells stimulated with PHA, and synthesis of DNA in xenogeneic-transformed mammalian lymphoblastoid cell lines. Serum does not block binding of the lectin to lymphoid cells and the suppressive activity cannot be overcome by any dose of lectin. The inhibitor of DNA synthesis is destroyed by pepsin. NH4(2)SO4 (50%) and TCA (15%) treatments both precipitate the suppressor factor, which further indicates that the suppressive factor is a protein. A 330-fold purification of the inhibitory protein from serum was obtained when boiled serum was passed over a Sepharose 6B and then a DEAE-Sephacel column which was washed at pH 5.0 and eluted with 0.2 M NaCl. SDS-PAGE with silver staining revealed a nonreduced protein with an apparent molecular weight of 61 kDa. Less than 2 micrograms of the protein thus obtained caused a 50% inhibition in the proliferation of chicken lymphoid cells to Con A. The inhibitor of DNA synthesis is therefore not cytotoxic, does not bind to Con A or to mannose or glucose residues on lymphocytes, is acid and heat stable, and is associated with a protein that has a molecular weight of 61 kDa. Since such low concentrations of this naturally occurring, proteinaceous, immunosuppressive factor cause substantial inhibition of IL-2 synthesis and proliferative activity of T cells, this protein may be a very important immunomodulator.  相似文献   

7.
Nucleoside base modifications can alter the structures, dynamics, and metal ion binding properties of transfer RNA molecules and are important for accurate aminoacylation and for maintaining translational fidelity and efficiency. The unmodified anticodon stem-loop from Escherichia coli tRNA(Phe) forms a trinucleotide loop in solution, but Mg(2+) and dimethylallyl modification of A(37) N6 disrupt the loop conformation and increase the mobility of the loop and loop-proximal nucleotides. We have used NMR spectroscopy to investigate the binding and structural effects of multivalent cations on the unmodified and dimethylallyl-modified anticodon stem-loops from E. coli tRNA(Phe). The divalent cation binding sites were probed using Mn(2+) and Co(NH(3))(6)(3+). These ions bind along the major groove of the stem and associate with the anticodon loop on the major groove side in a nonspecific manner. Co(NH(3))(6)(3+) stabilizes the U-turn conformation of the loop in the dimethylallyl-modified molecule, and the chemical shift changes that accompany Co(NH(3))(6)(3+) binding are similar to those observed with the addition of Mg(2+). The base-phosphate and base-2'-OH hydrogen bonds that characterize the UNR U-turn motif lead to spectral signatures in the form of unusual (15)N and (1)H chemical shifts and reduced solvent exchange of the U(33) 2'-OH and N3H protons. The unmodified molecule also displays spectral features of the U-turn fold in the presence of Co(NH(3))(6)(3+), but the loop has additional conformations and is dynamic. The results indicate that charge neutralization by a polyvalent cation is sufficient to promote formation of the U-turn fold. However, base modification is necessary to destabilize competing alternative conformers even for a purine-rich loop sequence that is predicted to have strongly favorable base stacking energy.  相似文献   

8.
K L Crossin  D H Carney 《Cell》1981,23(1):61-71
Microtubule disrupting drugs initiated DNA synthesis in serum-free cultures of nonproliferating fibroblast-like cells. The addition of colchicine to chick, mouse and human fibroblasts in serum-free medium stimulated thymidine incorporation at least twofold, with a half-maximal concentration of 1 X 10(-7) M. This stimulation represented up to 75% of the maximal stimulation by thrombin and was paralleled by an increase in the percentage of labeled nuclei. Other microtubule disrupting drugs showed similar stimulation, whereas lumicolchicine had no effect. Indirect immunofluorescent staining of tubulin showed a correlation between microtubule depolymerization and initiation of DNA synthesis by these drugs. A 2 hr treatment with 10(-6) M colchicine caused complete disruption of the microtubular network and stimulated thymidine incorporation (measured 28 hr later) to an even greater extent than continuous colchicine exposure. A similar 2 hr exposure to 10(-6) M colcemid also stimulated thymidine incorporation and led to a 50% increase in cell number. Taxol, a drug which stabilizes cytoplasmic microtubules, blocks initiation of DNA synthesis by colchicine, indicating that microtubule depolymerization is necessary for this initiation. To determine if microtubule depolymerization is involved in stimulation of DNA synthesis by other growth factors, highly purified human thrombin was added to cells with or without colchicine. In no case did colchicine plus thrombin increase DNA synthesis above that of the maximal stimulation by thrombin alone. Furthermore, pretreatment of cultures with taxol (5 micrograms/ml) inhibited approximately 30% of the stimulation of thymidine incorporation by thrombin. Together, these studies demonstrate that microtubule depolymerization is sufficient to initiate both DNA synthesis and events leading to cell division and suggest that microtubule depolymerization may be a required step in initiation of cell proliferation by growth factors such as highly purified human thrombin.  相似文献   

9.
Synthetic RNA stem loops corresponding to positions 28-42 in the anticodon region of tRNA(Phe) bind efficiently in an mRNA-dependent manner to ribosomes, whereas those made from DNA do not. In order to identify the positions where ribose is required, the anticodon stem-loop region of tRNA(Phe) (Escherichia coli) was synthesized chemically using a mixture of 2'-hydroxyl- and 2'-deoxynucleotide phosphoramidites. Oligonucleotides whose ribose composition allowed binding were retained selectively on nitrocellulose filters via binding to 30S ribosomal subunits. The binding-competent oligonucleotides were submitted to partial alkaline hydrolysis to identify the positions that were enriched for ribose. Quantification revealed a strong preference for a 2'-hydroxyl group at position U33. This was shown directly by the 50-fold lower binding affinity of a stem loop containing a single deoxyribose at position U33. Similarly, defective binding of the corresponding U33-2'-O-methyl-substituted stem-loop RNA suggests that absence of the 2'-hydroxyl group, rather than an altered sugar pucker, is responsible. Stem-loop oligoribonucleotides from different tRNAs with U33-deoxy substitutions showed similar, although quantitatively different effects, suggesting that intramolecular rather than tRNA-ribosome interactions are affected. Because the 2'-hydroxyl group of U33 was shown to be a major determinant of the U-turn of the anticodon loop in the crystal structure of tRNA(Phe) in yeast, our finding might indicate that the U-turn conformation in the anticodon loop is required and/or maintained when the tRNA is bound to the ribosomal P site.  相似文献   

10.
Ashraf SI  McLoon AL  Sclarsic SM  Kunes S 《Cell》2006,124(1):191-205
Long-lasting forms of memory require protein synthesis, but how the pattern of synthesis is related to the storage of a memory has not been determined. Here we show that neural activity directs the mRNA of the Drosophila Ca(2+), Calcium/Calmodulin-dependent Kinase II (CaMKII), to postsynaptic sites, where it is rapidly translated. These features of CaMKII synthesis are recapitulated during the induction of a long-term memory and produce patterns of local protein synthesis specific to the memory. We show that mRNA transport and synaptic protein synthesis are regulated by components of the RISC pathway, including the SDE3 helicase Armitage, which is specifically required for long-lasting memory. Armitage is localized to synapses and lost in a memory-specific pattern that is inversely related to the pattern of synaptic protein synthesis. Therefore, we propose that degradative control of the RISC pathway underlies the pattern of synaptic protein synthesis associated with a stable memory.  相似文献   

11.
The conformation of the anticodon stem-loop of tRNAs required for correct decoding by the ribosome depends on intramolecular and intermolecular interactions that are independent of the tRNA nucleotide sequence. Non-bridging phosphate oxygen atoms have been shown to be critical for the structure and function of several RNAs. However, little is known about the role they play in ribosomal A site binding and translocation of tRNA to the P site. Here, we show that non-bridging phosphate oxygen atoms within the tRNA anticodon stem-loop at positions 33, 35, and 37 are important for A site binding. Those at positions 34 and 36 are not necessary for binding, but are essential for translocation. Our results correlate with structural data, indicating that position 34 interacts with the highly conserved 16S rRNA base G966 and position 36 interacts with the universally conserved tRNA base U33 during translocation to the P site.  相似文献   

12.
tRNA molecules contain 93 chemically unique nucleotide base modifications that expand the chemical and biophysical diversity of RNA and contribute to the overall fitness of the cell. Nucleotide modifications of tRNA confer fidelity and efficiency to translation and are important in tRNA-dependent RNA-mediated regulatory processes. The three-dimensional structure of the anticodon is crucial to tRNA-mRNA specificity, and the diverse modifications of nucleotide bases in the anticodon region modulate this specificity. We have determined the solution structures and thermodynamic properties of Bacillus subtilis tRNATyr anticodon arms containing the natural base modifications N6-dimethylallyl adenine (i6A37) and pseudouridine (ψ39). UV melting and differential scanning calorimetry indicate that the modifications stabilize the stem and may enhance base stacking in the loop. The i6A37 modification disrupts the hydrogen bond network of the unmodified anticodon loop including a C32-A38+ base pair and an A37-U33 base-base interaction. Although the i6A37 modification increases the dynamic nature of the loop nucleotides, metal ion coordination reestablishes conformational homogeneity. Interestingly, the i6A37 modification and Mg2+ are sufficient to promote the U-turn fold of the anticodon loop of Escherichia coli tRNAPhe, but these elements do not result in this signature feature of the anticodon loop in tRNATyr.  相似文献   

13.
14.
Extracts of the chick embryo chorioallantoic membrane (CAM) obtained from 7-20 day old embryos, contained enzyme activity that could degrade type IV collagen. Peak enzyme activity was observed on days 8-10 of embryogenesis, which coincides with the stage of maximum angiogenesis. This activity decreased to lowest values at days 13-15 and increased thereafter up to day 20. Maximum rate of collagen biosynthesis in CAM was observed between days 7 and 10, with a drastic decrease at day 12, when vascular density has reached a plateau. The type IV collagen-degrading activity of CAM was of the metalloprotease type, since it was inhibited by 1,10-phenanthroline and EDTA but was also partially inhibited by serine and thiol protease inhibitors.  相似文献   

15.
RNA b is the most abundant member of a family of autonomously replicating single- and double-stranded RNA plasmids found in maize mitochondria. The extent to which this molecule is associated with proteins was investigated by rate zonal and CsCl equilibrium density gradient centrifugation of clarified lysates of S cytoplasm maize mitochondria. A soluble complex of RNA b, responsible for synthesis of the more abundant (+) RNA b strand in mitochondrial lysates, was identified. The complex had a buoyant density of 1.49 g/cm3, indicating a substantial non-nucleic acids content. The sedimentation coefficient of the complex, however, was only slightly larger than that of deproteinized RNA b. Synthesis of RNA b as well as the larger RNA plasmid, RNA a, was resistant to heparin, suggesting that, for both RNAs, preformed complexes between an RNA template and an RNA-dependent RNA polymerase capable of elongating in vivo preinitiated RNA plasmid strands, were present in the lysate. Only a small fraction of RNA b molecules were bound in the complex; the bulk of RNA b sedimented at the same rate as the deproteinized RNA. Thus, after replication, maize mitochondrial plasmids are not associated with nucleoprotein capsids although their synthesis takes place through ribonucleoprotein replication complexes.  相似文献   

16.
In neonatal pigs, the feeding-induced stimulation of protein synthesis in skeletal muscle, but not liver, can be reproduced by insulin infusion when essential amino acids and glucose are maintained at fasting levels. In the present study, 7- and 26-day-old pigs were studied during 1) fasting, 2) hyperinsulinemic-euglycemic-euaminoacidemic clamps, 3) euinsulinemic-euglycemic-hyperaminoacidemic clamps, and 4) hyperinsulinemic-euglycemic-hyperaminoacidemic clamps. Amino acids were clamped using a new amino acid mixture enriched in nonessential amino acids. Tissue protein synthesis was measured using a flooding dose of L-[4-(3)H]phenylalanine. In 7-day-old pigs, insulin infusion alone increased protein synthesis in various skeletal muscles (from +35 to +64%), with equivalent contribution of myofibrillar and sarcoplasmic proteins, as well as cardiac muscle (+50%), skin (+34%), and spleen (+26%). Amino acid infusion alone increased protein synthesis in skeletal muscles (from +28 to +50%), also with equivalent contribution of myofibrillar and sarcoplasmic proteins, as well as liver (+27%), pancreas (+28%), and kidney (+10%). An elevation of both insulin and amino acids did not have an additive effect. Similar qualitative results were obtained in 26-day-old pigs, but the magnitude of the stimulation of protein synthesis by insulin and/or amino acids was lower. The results suggest that, in the neonate, the stimulation of protein synthesis by feeding is mediated by either amino acids or insulin in most tissues; however, the feeding-induced stimulation of protein synthesis in skeletal muscle is uniquely regulated by both insulin and amino acids.  相似文献   

17.
On the conformation of the alpha sarcin stem-loop of 28S rRNA.   总被引:1,自引:0,他引:1  
A A Szewczak  Y L Chan  P B Moore  I G Wool 《Biochimie》1991,73(7-8):871-877
A synthetic RNA that is a substrate for the cytotoxin alpha sarcin has been examined by NMR. The molecule in question includes the entire sequence of the so-called alpha sarcin loop from rat 28S rRNA (U4316-C4332), and it is cleaved at the residue that corresponds to G4325, the site of alpha sarcin cleavage in 28S rRNA. The data show that the terminal stem designed into the molecule's sequence exists, as expected, and that its loop has a definite structure, which is stable to at least 40 degrees C under ionic conditions compatible with its cleavage by alpha sarcin.  相似文献   

18.
The initiation of SV40 DNA synthesis is not unique to the replication origin   总被引:13,自引:0,他引:13  
R G Martin  V P Setlow 《Cell》1980,20(2):381-391
Replicative intermediates of SV40 were isolated, digested with the restriction endonuclease Bgl I and examined by electron microscopy. Over 98% of the replicative intermediates isolated following infection with wild-type virions at 33 degrees, 37 degrees or 40 degrees C or with tsA209 at 33 degrees C had initiated replication about 35 nucleotides to one side of the Bgl I site. Approximately 1% of the molecules had initiated replication about 2400 nucleotides from the Bgl I site. The remaining molecules may have initiated at other sites. When tsA209 virion-infected cultures were shifted to 40.5 degrees C for 90 min, the relative rate of thymidine incorporation into superhelical viral DNA dropped by more than 97%. The remaining incorporation was not due to "leakiness." The label incorporated into mature superhelical molecules during brief pulses was not preferentially incorporated near the terminus of replication as it was at 33 degrees C. Approximately 33% of the incorporated label represented repair synthesis. Electron microscopy revealed that half of the replicative intermediates formed under these conditions appear to have been initiated randomly around the SV40 genome. Rolling circle molecules contaminated all the preparations of replicative intermediates.  相似文献   

19.
We find that the low frequency Raman spectrum of Zn(II) metallothionein has a single prominent band at 138 cm-1 which is absent from the Raman spectrum of the metal-free protein. This feature is also found for Cd(II) binding to both of the independent metallothionein domains and the metallothionein from Neurospora crassa. TcO(III) coordination to metallothionein results in a similar Raman band which is also found for the complex (Ph4As)[ReO(SCH2CH2S)2]. By comparing these results to literature data for metal-thiolate complexes, this feature is identified as a bending vibration which appears to be characteristic of metal ion coordination by the metallothionein cysteines. Two likely assignments are a symmetric metal-centered mode (delta S-M-S) or a bending mode of the metal-coordinated cysteine thiolates (delta M-S-C).  相似文献   

20.
DNA-RNase H adducts were used for site specific cleavage of RNA and DNA-RNA duplexes, whereas nonspecific DNA interaction with ribonuclease A (RNase A) has been observed. The aim of this study was to examine the complexation of calf-thymus DNA with RNase A at physiological condition, using constant DNA concentration (12.5 mM) and various protein contents (1 microM to 270 microM). FTIR, UV-visible, and CD spectroscopic methods were used to analyse protein binding mode, the binding constant and the effects of nucleic acid-enzyme interaction on both DNA and protein conformations. Our structural analysis showed a strong RNase-PO2 binding and minor interaction with G-C bases with overall binding constant of K = 6.1 x 10(4) M(-1). The RNase-DNA interaction alters the protein secondary structure with a major reduction of the alpha-helix and increase of the beta-sheet and random structure, while DNA remains in the B-family structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号