首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The human SPG4 locus encodes the spastin gene, which is responsible for the most prevalent form of autosomal dominant hereditary spastic paraplegia (AD-HSP), a neurodegenerative disorder. Here we identify the predicted gene product CG5977 as the Drosophila homolog of the human spastin gene, with much higher sequence similarities than any other related AAA domain protein in the fly. Furthermore we report a new potential transmembrane domain in the N-terminus of the two homologous proteins. During embryogenesis, the expression pattern of Drosophila spastin becomes restricted primarily to the central nervous system, in contrast to the ubiquitous expression of the vertebrate spastin genes. Given this nervous system-specific expression, it will be important to determine if Drosophila spastin loss-of-function mutations also lead to neurodegeneration.  相似文献   

3.
The Suppressor of Underreplication ( SuUR) gene contributes to the regulation of DNA replication in regions of intercalary heterochromatin in salivary gland polytene chromosomes. In the SuUR mutant these regions complete replication earlier than in wild type and, as a consequence, undergo full polytenization. Here we describe the effects of ectopic expression of SuUR using the GAL4-UAS system. We demonstrate that ectopically expressed SuUR exerts qualitatively distinct influences on polyploid and diploid tissues. Ectopic expression of SuUR inhibits DNA replication in polytene salivary gland nuclei, and reduces the degree of amplification of chorion protein genes that occurs in the follicle cell lineage. Effects caused by ectopic SuUR in diploid tissues vary considerably; there is no obvious effect on eye formation, but apoptosis is observed in the wing disc, and wing shape is distorted. The effect of ectopic SuUR expression is enhanced by mutations in the genes E2F and mus209 ( PCNA). Differential responses of polyploid and diploid cells to ectopic SuUR may reflect differences in the mechanisms underlying mitotic cell cycles and endocycles.Communicated by G. P. Georgiev  相似文献   

4.
So far, two thioredoxin proteins, DHD and Trx-2, have been biochemically characterized in Drosophila melanogaster. Here, with the cloning and characterization of TrxT we describe an additional thioredoxin with testis-specific expression. TrxT and dhd are arranged as a gene pair, transcribed in opposite directions and sharing a 471 bp regulatory region. We show that this regulatory region is sufficient for correct expression of the two genes. This gene pair makes a good model for unraveling how closely spaced promoters are differentially regulated by a short common control region. Both TrxT and DHD proteins are localized within the nuclei in testes and ovaries, respectively. Use of a transgenic construct expressing TrxT fused to Enhanced Yellow Fluorescent Protein reveals a clear association of TrxT with the Y chromosome lampbrush loops ks-1 and kl-5 in primary spermatocytes. The association is lost in the absence of the Y chromosome. Our results suggest that nuclear thioredoxins may have regulatory functions in the germline.Sequence data from this paper have been deposited with the EMBL/GenBank Data Libraries under Accession number AJ507731  相似文献   

5.
6.
7.
The primary sex determination signal in Drosophila melanogaster, the ratio of X chromosomes to autosomes, sets the activity state of the switch gene, Sex-lethal ( Sxl), by regulating the establishment promoter, m-Sxl-Pe. We have identified and characterized the establishment promoter, v-Sxl-Pe, of the distantly related species Drosophila virilis. Like melanogaster, the virilis Sxl-Pe is organized into four sub-domains: the Sxl-Pe mRNA leader and exon E1 of Sxl protein, the core promoter, the sex-specific element and the augmentation element. The core promoter and sex-specific element of v-Sxl-Pe show considerable sequence similarity to m-Sxl-Pe and contain target sites for components of the X/A signaling system. While the augmentation element of v-Sxl-Pe also has sequence motifs that could function as target sites for the X/A signaling system, it shows little similarity to the melanogaster augmentation element. Functional studies reveal that v-Sxl-Pe drives sex-specific expression in D. melanogaster embryos and that the activity of the virilis promoter is controlled by known components of the melanogaster X/A counting system. Although v-Sxl-Pe responds appropriately to the melanogaster sex determination signal, it is less active than Sxl-Pe from melanogaster. Unexpectedly, the reduced activity is due to differences in the activity of the conserved core promoter, while the non-conserved augmentation element functions effectively. These findings suggest that low-affinity target sites for the X/A counting system are critical for the functioning of Sxl-Pe.  相似文献   

8.
The Drosophila melanogaster broad locus is essential for normal metamorphic development. Broad encodes three genetically distinct functions (rbp, br, and 2Bc) and a family of four zinc-finger DNA-binding proteins (Z1-Z4). The Z1, Z2, and Z3 protein isoforms are primarily associated with the rbp, br, and 2Bc genetic functions respectively. The Z4 protein isoform also provides some rbp genetic function, however an essential function for the Z4 isoform in metamorphosis has not been identified. To determine the degree of conservation of Z4 function between the tobacco hornworm Manduca sexta and Drosophila we generated transgenic Drosophila expressing the Manduca broad Z4 isoform and used this transgene to rescue rbp mutant lethality during Drosophila metamorphosis. We find that the Manduca Z4 protein has significant biological activity in Drosophila with respect to rescue of rbp-associated lethality. There was also some overlap in effects on cuticle gene expression between the Manduca Z4 and Drosophila Z1 isoforms that was not shared with the Drosophila Z4 isoform. Our findings show that Z4 function has been conserved over the 260-million-year period since the divergence of Diptera and Lepidoptera, and are consistent with the hypothesis that the Drosophila Z4 and Manduca Z4 isoforms have essential roles in metamorphosis.Edited by M. Akam  相似文献   

9.
Cao X  Li K  Suh SG  Guo T  Becraft PW 《Planta》2005,220(5):645-657
The maize (Zea mays L.) CRINKLY4 (CR4) gene encodes a serine/threonine receptor-like kinase that controls an array of developmental processes in the plant and endosperm. The Arabidopsis thaliana (L.) Heynh. genome encodes an ortholog of CR4, ACR4, and four CRINKLY4-RELATED (CRR) proteins: AtCRR1, AtCRR2, AtCRR3 and AtCRK1. The available genome sequence of rice (Oryza sativa L.) encodes a CR4 ortholog, OsCR4, and four CRR proteins: OsCRR1, OsCRR2, OsCRR3 and OsCRR4, not necessarily orthologous to the Arabidopsis CRRs. A phylogenetic study showed that AtCRR1 and AtCRR2 form a clade closest to the CR4 group while all the other CRRs form a separate cluster. The five Arabidopsis genes are differentially expressed in various tissues. A construct formed by fusion of the ACR4 promoter and the GUS reporter, ACR4::GUS, is expressed primarily in developing tissues of the shoot. The ACR4 cytoplasmic domain functions in vitro as a serine/threonine kinase, while the AtCRR1 and AtCRR2 kinases are not active. The ability of ACR4 to phosphorylate AtCRR2 suggests that they might function in the same signal transduction pathway. T-DNA insertions were obtained in ACR4, AtCRR1, AtCRR2, AtCRR3 and AtCRK1. Mutations in acr4 show a phenotype restricted to the integuments and seed coat, suggesting that Arabidopsis might contain a redundant function that is lacking in maize. The lack of obvious mutant phenotypes in the crr mutants indicates they are not required for the hypothetical redundant function.  相似文献   

10.
11.
Sex-determining cascades are supposed to have evolved in a retrograde manner from bottom to top. Wilkins 1995 hypothesis finds support from our comparative studies in Drosophila melanogaster and Musca domestica, two dipteran species that separated some 120 million years ago. The sex-determining cascades in these flies differ at the level of the primary sex-determining signal and their targets, Sxl in Drosophila and F in Musca. Here we present evidence that they converge at the level of the terminal regulator, doublesex (dsx), which conveys the selected sexual fate to the differentiation genes. The dsx homologue in Musca, Md-dsx, encodes male-specific (MdDSXM) and female-specific (MdDSXF) protein variants which correspond in structure to those in Drosophila. Sex-specific regulation of Md-dsx is controlled by the switch gene F via a splicing mechanism that is similar but in some relevant aspects different from that in Drosophila. MdDSXF expression can activate the vitellogenin genes in Drosophila and Musca males, and MdDSXM expression in Drosophila females can cause male-like pigmentation of posterior tergites, suggesting that these Musca dsx variants are conserved not only in structure but also in function. Furthermore, downregulation of Md-dsx activity in Musca by injecting dsRNA into embryos leads to intersexual differentiation of the gonads. These results strongly support a role of Md-dsx as the final regulatory gene in the sex-determining hierarchy of the housefly.Edited by D. Tautz  相似文献   

12.
13.
Broken chromosome ends are believed to be capped by a terminal protein complex, and can be maintained in Drosophila melanogaster for many generations. We investigated whether the vicinity of a chromosome end affected P element mobilization and the subsequent repair of the resulting DNA lesion. High levels of P element excision were observed when at least 5 kb of DNA was located between the P element and the end of the chromosome, but recovery of chromosomes from which the P element had been excised was greatly reduced when the chromosome end was positioned less than 5 kb away from the original P element insertion site. Moreover, when the P element was mobilized in terminal deficiency ( y TD ) alleles, excision events were accompanied by deletions of sequences originally located distal to the P element.Communicated by G. Reuter  相似文献   

14.
The protein Merlin is involved in the regulation of cell proliferation and differentiation in the eyes and wings of Drosophila and is a homolog of the human protein encoded by the Neurofibromatosis 2 (NF2) gene whose mutations cause auricular nerve tumors. Recent studies show that Merlin and Expanded cooperatively regulate the recycling of membrane receptors, such as the epidermal growth factor receptor (EGFR). By performing a search for potential genetic interactions between Merlin (Mer) and the genes important for vesicular trafficking, we found that ectopic expression in the wing pouch of the clathrin adapter protein Lap involved in clathrin-mediated receptor endocytosis resulted in the formation of extra vein materials. On the one hand, coexpression of wild-type Merlin and lap in the wing pouch restored normal venation, while overexpression of a dominant-negative mutant Mer DBB together with lap enhanced ectopic vein formation. Using various constructs with Merlin truncated copies, we showed the C-terminal portion of the Merlin protein to be responsible for the Merlin-lap genetic interaction. Furthermore, we showed that the Merlin and Lap proteins colocalized at the cortex of the wing imaginal disc cells.  相似文献   

15.
16.
17.
Extensive research has been carried out to understand how circadian clocks regulate various physiological processes in organisms. The discovery of clock genes and the molecular clockwork has helped researchers to understand the possible role of these genes in regulating various metabolic processes. In Drosophila melanogaster, many studies have shown that the basic architecture of circadian clocks is multi-oscillatory. In nature, different neuronal subgroups in the brain of D. melanogaster have been demonstrated to control different circadian behavioural rhythms or different aspects of the same circadian rhythm. Among the circadian phenomena that have been studied so far in Drosophila, the egg-laying rhythm is unique, and relatively less explored. Unlike most other circadian rhythms, the egg-laying rhythm is rhythmic under constant light conditions, and the endogenous or free-running period of the rhythm is greater than those of most other rhythms. Although the clock genes and neurons required for the persistence of adult emergence and activity/rest rhythms have been studied extensively, those underlying the circadian egg-laying rhythm still remain largely unknown. In this review, we discuss our current understanding of the circadian egg-laying rhythm in D. melanogaster, and the possible molecular and physiological mechanisms that control the rhythmic output of the egg-laying process.  相似文献   

18.
Transposable elements are being developed as tools for genomics and for the manipulation of insect genotypes for the purposes of biological control. An understanding of their transposition behavior will facilitate the use of these elements. The behavior of an autonomous Hermes transposable element from Musca domestica in the soma and germ-line of Drosophila melanogaster was investigated using the method of transposon display. In the germ-line, Hermes transposed at a rate of approximately 0.03 jumps per element per generation. Within the soma Hermes exhibited markedly non-random patterns of integration. Certain regions of the genome were distinctly preferred over others as integration targets, while other regions were underrepresented among the integration sites used. One particular site accounted for 4.4% of the transpositions recovered in this experiment, all of which were located within a 2.5-kb region of the actin5C promoter. This region was also present within the Hermes element itself, suggesting that this clustering is an example of transposable element "homing". Clusters of integration sites were also observed near the original donor sites; these represent examples of local hopping. The information content (sequence specificity) of the 8-bp target site was low, and the consensus target site resembles that determined from plasmid-based integration assays.  相似文献   

19.
20.
The genomic analysis of heterochromatin is essential for studying chromosome behavior as well as for understanding chromosome evolution. The Y chromosome of Drosophila melanogaster is entirely heterochromatic and the under-representation of this chromosome in genomic libraries together with the difficulty of assembling its sequence has made its study very difficult. Here, we present the construction of bacterial artificial chromosome (BAC) contigs from regions h14, h16 and the centromeric region h18. The analysis of these contigs shows that telomere-derived sequences are present at internal regions. In addition, immunostaining of prometaphase chromosomes with an antibody to the kinetochore-specific protein BubR1 has revealed the presence of this protein in some Y chromosome regions rich in telomere-related sequences. Collectively, our data provide further evidence for the hypothesis that the Drosophila Y chromosomes might have evolved from supernumerary chromosomes.The first two authors contributed equally to this workAntonia Martín-Gallardo died Monday, 23 August 2004, after a long battle with cancerThe GenBank Accession numbers for the sequences reported in this paper are AJ549653–96, AJ549701–2, AJ549725–6, AJ 549737–8, AJ549747–8, AJ549751–2, AJ 586980, AJ781048–58  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号