首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Aim, Scope and Background  The data-intensive nature of life cycle assessment (LCA), even for non-complex products, quickly leads to the utilization of various methods of representing the data in forms other than written characters. Up until now, traditional representations of life cycle inventory (LCI) data and environmental impact analysis (EIA) results have usually been based on 2D and 3D variants of simple tables, bar charts, pie charts and x/y graphs. However, these representation methods do not sufficiently address aspects such as representation of life cycle inventory information at a glance, filtering out data while summarizing the filtered data (so as to reduce the information load), and representation of data errors and uncertainty. Main Features  This new information representation approach with its glyph-based visualization method addresses the specific problems outlined above, encountered when analyzing LCA and EIA related information. In particular, support for multi-dimensional information representation, reduction of information load, and explicit data feature propagation are provided on an interactive, computer-aided basis. Results  Three-dimensional, interactive geometric objects, so called OM-glyphs, were used in the visualization method introduced, to represent LCA-related information in a multi-dimensional information space. This representation is defined by control parameters, which in turn represent spatial, geometric and retinal properties of glyphs and glyph formations. All relevant analysis scenarios allowed and valid can be visualized. These consist of combinations of items for the material and energy inventories, environmental items, life cycle phases and products, or their parts and components. Individual visualization scenarios, once computed and rendered on a computer screen, can then interactively be modified in terms of visual viewpoint, size, spatial location and detail of data represented, as needed. This helps to increase speed, efficiency and quality of the assessment performance, while at the same time considerably reducing mental load due to the more structured manner in which information is represented to the human expert. Conclusions  The previous paper in this series discussed the motivation for a new approach to efficient information visualization in LCA and introduced the essential basic principles. This second paper offers more insight into and discussion on technical details and the framework developed. To provide a means for better understanding the visualization method presented, examples have been given. The main purpose of the examples, as already indicated, is to demonstrate and make transparent the mapping of LCA related data and their contexts to glyph parameters. Those glyph parameters, in turn, are used to generate a novel form of sophisticated information representation which is transparent, clear and compact, features which cannot be achieved with any traditional representation scheme. Outlook  Final technical details of this approach and its framework will be presented and discussed in the next paper. Theoretical and practical issues related to the application of this visualization method to the computed life cycle inventory data of an actual industrial product will also be discussed in this next paper.  相似文献   

2.
Aim, Scope and Background  Acquisition and analysis of huge amounts of data still pose a challenge, with few options available for solutions and support. Life cycle assessment (LCA) experts face such problems on a daily basis. However, data do not become useful until some of the information they carry is extracted, and most important, represented in a way humans can both recognize efficiently and understand and interpret as quickly as possible. Unfortunately, information representation techniques as used in this field are still based on traditional low-dimensional information spaces, featuring only a few basic choices to represent life cycle (LC) related data. We must part from those traditional techniques and shift to visual representations that are easier for us to understand due to the human capability for detecting spatial structures and shapes represented in different colors and textures. Then all the advantages of modern, advanced information visualization can be applied and exploited. Main Features  With the introduction of a new glyph-based information representation and visualization approach to LCA, current issues of representing LC-related information efficiently at a glance are being tackled. These new techniques support reduction of information load by providing tools to select and summarize data, assist in making explicit and transparent data feature propagation, and provide a means of representing data errors and uncertainty. In this approach the human perceptual capability for easily and quickly recognizing and understanding graphical objects in different colors and textures is exploited for the design and application of highly structured and advanced forms of multi-dimensional information representation. Results  Now in the example presented in this paper, OM-glyphs were used to represent LCA-related information for an industrial product and its compiled life cycle inventory under conditions normal for LCA. To demonstrate the application and benefits of the approach introduced, several different visualization scenarios were computed and presented. These were illustrated with a selection of generated glyph-based displays containing spherical glyph clusters for environmental items such as air pollutants and water pollutants, and inventory glyph matrices related to components and to LC phases. Where appropriate, to further aid understanding and clarity, displays were additionally shown with various orientations and in enlarged form. This is a functional feature of interactive 3D OM-glyph based information visualization that can be used in practice to efficiently navigate through displays while at the same time adjusting rendered scenes to the needs of the user at any given time. Due to the huge amount of data acquired and compiled, only a small fraction of the glyph-based displays could be shown, and, in consequence, only a fraction of the data properties, patterns and features available could be discussed in detail. However, it is believed that the basic principles and methods of this approach, as shown in a real application, could be clearly conveyed, and, most important, that the benefits and potential could be displayed in a convincing manner. This technology will support a marked increase in efficiency, speed and quality in LC information analysis. Conclusions  This paper concludes our short series on efficient information visualization in LCA. A new approach to efficient information visualization has been introduced, together with its basic principles. This background was enriched with discussions on and further insights into technical details of the approach and the framework developed. The first practical examples were provided in the previous paper, demonstrating the mapping of LCA-related data and their contexts to glyph parameters. In this paper the application of the approach was presented using data for an actual industrial product. During the discussions, and with the various glyph-based displays shown, it could be convincingly demonstrated that all data features, trends, patterns, relationships, and data imperfections detected and examined, and sometimes traced, could be quickly and efficiently recognized in a short time. Even basic data features, such as small gaps in the data propagation of related values, could be easily seen using OM-glyphs. In the case of traditional data representation, using for example LCI tables, this would require the identification and comparison of several thousand numerical entries. As is the case with all new technology, however, it is still difficult to obtain the interest of the experts, and to convince them that such new ideas will eventually change the face of industry. Outlook  A new, advanced and efficient information representation and visualization approach has been introduced to the LCA community. Hopefully, through this small series of papers, some interest will have been generated in the field of advanced information visualization. For the first time this area has been related to LCA, and some seeds for interdisciplinary research may have been sown. Now it is up to individuals, the experts in the various fields elated to those issues, to respond. The desired results will be stimulating discussions, an exchange of ideas, further initiated multilateral, interdisciplinary efforts, and improved collaboration between partners from academia and industry. At that point, efficient information visualization will finally have arrived at, and received, its deserved place within LCA.  相似文献   

3.
4.
This article presents an approach to estimate missing elements in hybrid life cycle inventories. Its development is motivated by a desire to rationalize inventory compilation while maintaining the quality of the data. The approach builds on a hybrid framework, that is, a combination of process‐ and input–output‐based life cycle assessment (LCA) methodology. The application of Leontief's price model is central in the proposed procedure. Through the application of this approach, an inventory with no cutoff with respect to costs can be obtained. The formal framework is presented and discussed. A numerical example is provided in Supplementary Appendix S1 on the Web.  相似文献   

5.
Methodology for developing gate-to-gate Life cycle inventory information   总被引:1,自引:0,他引:1  
Life Cycle Assessment (LCA) methodology evaluates holistically the environmental consequences of a product system or activity, by quantifying the energy and materials used, the wastes released to the environment, and assessing the environmental impacts of those energy, materials and wastes. Despite the international focus on environmental impact and LCA, the quality of the underlying life cycle inventory data is at least as, if not more, important than the more qualitative LCA process. This work presents an option to generate gate-to-gate life cycle information of chemical substances, based on a transparent methodology of chemical engineering process design (an ab initio approach). In the broader concept of a Life Cycle Inventory (LCI), the information of each gate-to-gate module can be linked accordingly in a production chain, including the extraction of raw materials, transportation, disposal, reuse, etc. to provide a full cradle to gate evaluation. The goal of this article is to explain the methodology rather than to provide a tutorial on the techniques used. This methodology aims to help the LCA practitioner to obtain a fair and transparent estimate of LCI data when the information is not readily available from industry or literature. Results of gate-to-gate life cycle information generated using the cited methodology are presented as a case study. It has been our experience that both LCI and LCA information provide valuable means of understanding the net environmental consequence of any technology. The LCI information from this methodology can be used more directly in exploring engineering and chemistry changes to improve manufacturing processes. The LCA information can be used to set broader policy and to look at more macro improvements for the environment.  相似文献   

6.
Background, Intention, Goal and Scope  The analytical laboratory is traditionally considered to be a service provider. This has resulted in laboratory environmental management being considered mostly from a pollution prevention and waste minimization perspective. There is a recognized need to view environmental performance of a laboratory service provider from a broader perspective. This broader perspective is inclusive of sampling, analysis and the potential for impacts to arise from the use of output information products. A generic methodology for the measurement and benchmarking of the overall environmental performance of an analytical laboratory and its outputs using the Laboratory Product Model (LPM) is described. Environmental performance indicators, relating to inputs and processing are proposed. Objectives  The project seeks to broaden the focus of environmental performance away from the individual analytical unit processes to a more encompassing ‘cradle-to-grave’ approach incorporating sample collection and results reporting and use. To support this approach, a functional unit of output for a laboratory has to be defined. Methods  A life cycle assessment approach, incorporating life cycle inventory considerations, is applied within the LPM conceptual framework. Results and Discussion  This approach facilitates a shift in thinking from laboratory service to the life cycle of laboratory product inputs and outputs. It enables LCA methodologies to be applied to environmental performance through the application of the LPM. The definition of a laboratory product output facilitates benchmarking and comparison of laboratories. Conclusions  The LPM approach assigns a critical role to the laboratory for the sustainability of the laboratory operations from sample collection, through analysis to the use of its product outputs. Recommendations and Outlook  The application of the LPM offers a top down approach for the evaluation of the environmental performance of an analytical laboratory. It is expected to provide a useful tool for assessing and benchmarking the environmental performance of analytical laboratories.  相似文献   

7.
Goal, Scope and Background  Performing a life cycle assessment (LCA) has been a rather resource and time-consuming business. The method of data collection may be problematic, and the quality of the final results can be influenced by the reliability of the data. Therefore, it is helpful to utilize an on-line data gathering system to save time and to improve the reliability of the collected raw data. Main Features  We have developed an LCA software package for a steel company. The software consists of two major parts: an LCA tool kit and an interface program. The LCA tool kit is a user interface for handling an LCA database server. It has powerful functions to execute systematic analysis, not only for the amount of energy and raw materials, but also for the volume of pollutants generated by each component. The latter is an interface program between a data handling system and an on-line data gathering system. This interface program is linked with three enterprise database systems, such as enterprise resource planning (ERP), an environmental management system (EMS) and an energy server system (ESS). In this study, we compared three different ways of performing LCA. Two of them are on-line methods, and another is manual. Results and Discussion  Among the three methods, the best method was on-line LCA linked with ERP, EMS and ESS. Case studies in steel works have shown that the current method is superior to manual data gathering in terms of time and cost (man-month) savings, data reliability and other applications. Results of life cycle inventory and life cycle impact assessment for steel products have shown monthly fluctuations due to fuel usage ratio, which have not been detected before using manual data gathering. Conclusions  An LCA can be performed quickly, if one is to employ the on-line data gathering system we have developed. The system consists of an LCA software package including the interface program and LCA tool kit, and the enterprise database systems. Case studies for LCA with the on-line system have shown superior performance to that carried out using the manual data entry method. Recommendations and Perspective  This system enables an enterprise to take Type III and conduct benchmarking to other companies or societies within a short time. Also, combining this tool with an environmental performance evaluation or accounting system can allow one to achieve a more progressive environmental management.  相似文献   

8.
Life cycle assessment of contaminated sites remediation   总被引:1,自引:0,他引:1  
For the federal state of Baden-Wiirttemberg, Germany, the decision tool “Umweltbilanz von Altlastensanierungsverfahren” has been developed and found suitable for the quantification and evaluation of environmental impacts caused by remediation of contaminated sites. The developed tool complements the remediation toolbox of Baden-Wiirttemberg. The tool includes a streamlined life cycle assessment (LCA) and a synopsis of the LCA results with the results of a risk assessment of the contaminated site. The risk assessment tool is not explained here. The data base for the life cycle inventory includes several techniques used in remedial actions. The life cycle impact assessment utilises 14 impact categories. The method allows comparisons between remedial options for specific contaminated sites. A software tool has been developed to be available in 1999.  相似文献   

9.
Goal, Scope and Background  A methodological approach for representing agricultural products in terms of life cycle inventory is suggested in this paper. This approach was developed during the conduction of an LCA study for two perennial crops of important Brazilian exportation products: green coffee and orange juice, which included tillage cultivation by commercial farms, harvest, as well as product processing when pertinent. The published papers on agricultural products LCA usually discuss the final results in terms of LCIA, being not very clear what methodology or principles were applied on the LCI phase. The aim of this paper is to present a simple methodology that would be employed by different stakeholders as farmers, environment managers and decision makers for evaluating the environmental performance of their products. In recent years, many researchers have tried to make a worldwide effort in order to reach comparable results of LCA studies developed in different countries. So, the proposed methodology has also the aim of isolating the site-dependency of the results that are not strictly related to the agricultural production. The time coverage suggested is the period can be considered as an average for the specific tillage under evaluation, usually two crops, since there is a large variation on the inputs in every other crop, including the higher and subsequent lower productive periods. Method  The functional unit recommended is 1,000 kg of the specific product, being recommended to distinguish the energy used for the cultivation from that used by the processing stage. There are several specific considerations to transform the data collected through the questionnaires in an inventory data set of fertilizers (macro and micro nutrients), correctives, fillers and pesticides further detailed. Water used for chemicals preparation, in the cleaning and processing stages of the harvested crop is also considered. Land use refers to the area used land for cultivation divided by the medium life period of the tillage. The stoichiometric balance is performed based on the elementary composition of the products. An average carbohydrate formula is established for the products considering the relationship among the carbon, hydrogen and oxygen contents of them. The carbohydrate formula (output) is balanced with carbon dioxide and water (inputs) according to the basic principles of the photosynthesis reaction. The differences among the mineral composition of the products and the total content of these elements (N, P, K, Ca, Mg and micronutrients elements) for all the crop inputs (fertilizers, pesticides, correctives) are allocated as outputs of the system. The pesticides is counted in two forms: grouped in classes (herbicide, fungicide, acaricide, bactericide and inseticide) and specified by the chemical name of the active ingredient. Results and Discussion  A simplified inventory useful for different purposes is generated with the principles described in this paper. The exact fate of each pesticide, fertilizer or corrective or assumptions can be further associated to impact categories as nutriphication, human health, natural resources depletion, ecological toxicity, etc. In this approach the mass balance was focused in the grain or fruit growth and not in the plant or tree as a whole, considering basically the elementary composition of the product and the photosynthesis principle. Despite agricultural LCAs performed in different countries have been published, neither of them considers the carbon capture by the agricultural products during their growth. Conclusions  This method is based on well accepted universal principles of stoichiometry applied to the grain or fruit growth. Minimum estimations were introduced in this approach, which produces ‘clean inventories’, with comparable results between different studies. The generated inventory can be gradually improved as the understanding about each emission fate is known, producing a valid methodology for actual and future knowledge about the fate of tillage emissions. The inventory results of this method can be employed by different stakeholders as farmers, environment managers, decision makers and traders, with valuable environmental parameters for evaluating the environmental performance of their products and also for introducing improvements on their systems, without however to exhibit any particular data.  相似文献   

10.
Background, aim, and scope  Analysis of uncertainties plays a vital role in the interpretation of life cycle assessment findings. Some of these uncertainties arise from parametric data variability in life cycle inventory analysis. For instance, the efficiencies of manufacturing processes may vary among different industrial sites or geographic regions; or, in the case of new and unproven technologies, it is possible that prospective performance levels can only be estimated. Although such data variability is usually treated using a probabilistic framework, some recent work on the use of fuzzy sets or possibility theory has appeared in the literature. The latter school of thought is based on the notion that not all data variability can be properly described in terms of frequency of occurrence. In many cases, it is necessary to model the uncertainty associated with the subjective degree of plausibility of parameter values. Fuzzy set theory is appropriate for such uncertainties. However, the computations required for handling fuzzy quantities has not been fully integrated with the formal matrix-based life cycle inventory analysis (LCI) described by Heijungs and Suh (2002). Materials and methods  This paper integrates computations with fuzzy numbers into the matrix-based LCI computational model described in the literature. The approach uses fuzzy numbers to propagate the data variability in LCI calculations, and results in fuzzy distributions of the inventory results. The approach is developed based on similarities with the fuzzy economic input–output (EIO) model proposed by Buckley (Eur J Oper Res 39:54–60, 1989). Results  The matrix-based fuzzy LCI model is illustrated using three simple case studies. The first case shows how fuzzy inventory results arise in simple systems with variability in industrial efficiency and emissions data. The second case study illustrates how the model applies for life cycle systems with co-products, and thus requires the inclusion of displaced processes. The third case study demonstrates the use of the method in the context of comparing different carbon sequestration technologies. Discussion  These simple case studies illustrate the important features of the model, including possible computational issues that can arise with larger and more complex life cycle systems. Conclusions  A fuzzy matrix-based LCI model has been proposed. The model extends the conventional matrix-based LCI model to allow for computations with parametric data variability represented as fuzzy numbers. This approach is an alternative or complementary approach to interval analysis, probabilistic or Monte Carlo techniques. Recommendations and perspectives  Potential further work in this area includes extension of the fuzzy model to EIO-LCA models and to life cycle impact assessment (LCIA); development of hybrid fuzzy-probabilistic approaches; and integration with life cycle-based optimization or decision analysis. Additional theoretical work is needed for modeling correlations of the variability of parameters using interacting or correlated fuzzy numbers, which remains an unresolved computational issue. Furthermore, integration of the fuzzy model into LCA software can also be investigated.  相似文献   

11.
Intention, Goal, Scope, Background  To discuss the process of stakeholder involvement as undertaken in a post-consumer paper and packaging waste management LCA study conducted during 1997-2001 for the Melbourne Metropolitan Area, Victoria, Australia. Secondly, to present the findings from a survey conducted with the stakeholder groups regarding their perception of involvement in the project. Objectives  To investigate the stakeholder’s perception; and value of being involved in the LCA study intended to generate quantitative environmental information to support debate, development and implementation of waste management practices. Methods  Stakeholders that were involved in the study, both actively and passively, were surveyed by questionnaire Survey findings were analysed in conjunction with stakeholder interaction experiences obtained in the course of the study. as]Results and Discussion Respondents to the survey believed there was a sufficient level of interaction between stakeholders and researchers during the course of the project. The advisory committee approach helped to timely recognize issues and deal with them appropriately. It furdier assisted in the collection of life cycle inventory data and in obtaining ownership of outcomes by the research ream appropriately responding to the needs and issues raised by stakeholders. Recommendations and Outlook  General recommendations for the inclusion of stakeholders in future studies are to use stakeholder interactions, wherever it is possible and practical, which in turn play an educational role, engage stakeholders from the start of the process and allow additional time in the project plan for review stages, as well as ensuring that all relevant groups are represented — industry, industry associations, government and non-governmental organizations, and also provide sufficient material and progress for discussion at meetings.  相似文献   

12.
Background, aim, and scope  As the sustainability improvement becomes an essential business task of industry, a number of companies are adopting IT-based environmental information systems (EIS). Life cycle assessment (LCA), a tool to improve environmental friendliness of a product, can also be systemized as a part of the EIS. This paper presents a case of an environmental information system which is integrated with online LCA tool to produce sets of hybrid life cycle inventory and examine its usefulness in the field application of the environmental management. Main features  Samsung SDI Ltd., the producer of display panels, has launched an EIS called Sustainability Management Initiative System (SMIS). The system comprised modules of functions such as environmental management system (EMS), green procurement (GP), customer relation (e-VOC), eco-design, and LCA. The LCA module adopted the hybrid LCA methodology in the sense that it combines process LCA for the site processes and input–output (IO) LCA for upstream processes to produce cradle-to-gate LCA results. LCA results from the module are compared with results of other LCA studies made by the application of different methodologies. The advantages and application of the LCA system are also discussed in light of the electronics industry. Results and discussion  LCA can play a vital role in sustainability management by finding environmental burden of products in their life cycle. It is especially true in the case of the electronics industry, since the electronic products have some critical public concerns in the use and end-of-life phase. SMIS shows a method for hybrid LCA through online data communication with EMS and GP module. The integration of IT-based hybrid LCA in environmental information system was set to begin in January 2006. The advantage of the comparing and regular monitoring of the LCA value is that it improves the system completeness and increases the reliability of LCA. By comparing the hybrid LCA and process LCA in the cradle-to-gate stage, the gap between both methods of the 42-in. standard definition plasma display panel (PDP) ranges from 1% (acidification impact category) to −282% (abiotic resource depletion impact category), with an average gap of 68.63%. The gaps of the impact categories of acidification (AP), eutrophication (EP), and global warming (GWP) are relatively low (less than 10%). In the result of the comparative analysis, the strength of correlation of three impact categories (AP, EP, GWP) shows that it is reliable to use the hybrid LCA when assessing the environmental impacts of the PDP module. Hybrid LCA has its own risk on data accuracy. However, the risk is affordable when it comes to the comparative LCA among different models of similar product line of a company. In the results of 2 years of monitoring of 42-in. Standard definition PDP, the hybrid LCA score has been decreased by 30%. The system also efficiently shortens man-days for LCA study per product. This fact can facilitate the eco-design of the products and can give quick response to the customer's inquiry on the product's eco-profile. Even though there is the necessity for improvement of process data currently available, the hybrid LCA provides insight into the assessments of the eco-efficiency of the manufacturing process and the environmental impacts of a product. Conclusions and recommendations  As the environmental concerns of the industries increase, the need for environmental data management also increases. LCA shall be a core part of the environmental information system by which the environmental performances of products can be controlled. Hybrid type of LCA is effective in controlling the usual eco-profile of the products in a company. For an industry, in particular electronics, which imports a broad band of raw material and parts, hybrid LCA is more practicable than the classic LCA. Continuous efforts are needed to align input data and keep conformity, which reduces data uncertainty of the system.  相似文献   

13.
Life cycle assessment of fuel ethanol from cassava in Thailand   总被引:2,自引:0,他引:2  
Goal and Scope  A well-to-wheel analysis has been conducted for cassava-based ethanol (CE) in Thailand. The aim of the analysis is to assess the potentials of CE in the form of gasohol E10 for promoting energy security and reducing environmental impacts in comparison with conventional gasoline (CG). Method  In the LCA procedure, three separate but interrelated components: inventory analysis, characterization and interpretation were performed for the complete chain of the fuel life cycle. To compare gasohol E10 and CG, this study addressed their impact potentials per gasoline-equivalent litre, taking into account the performance difference between gasohol and gasoline in an explosion motor. Results and Discussions  The results obtained show that CE in the form of E10, along its whole life cycle, reduces certain environmental loads compared to CG. The percentage reductions relative to CG are 6.1% for fossil energy use, 6.0% for global warming potential, 6.8% for acidification, and 12.2% for nutrient enrichment. Using biomass in place of fossil fuels for process energy in the manufacture of ethanol leads to improved overall life cycle energy and environmental performance of ethanol blends relative to CG. Conclusions and Outlook  The LCA brings to light the key areas in the ethanol production cycle that researchers and technicians need to work on to maximize ethanol’s contribution to energy security and environmental sustainability ESS-Submission Editor: Mark Goedkoop (goedkoop@pre.nl)  相似文献   

14.
The portfolio of impacts that are quantified in life cycle assessment (LCA) has grown to include rather different stressors than those that were the focus of early LCAs. Some of the newest life cycle impact assessment (LCIA) models are still in an early phase of development and have not yet been included in any LCA study. This is the case for sound emissions and noise impacts, which have been only recently modeled. Sound emissions are matter‐less, time dependent, and bound to the physical properties of waves. The way sound emissions and the relative noise impacts are modeled in LCA can show how new or existing matter‐less impacts can be addressed. In this study, we analyze, through the example of sound emissions, the specific features of a matter‐less impact that does not stem from the use of a kilogram of matter, nor is related to the emission of a kilogram of matter. We take as a case study the production of energy by means of wind turbines, contradicting the commonly held assumption that windmills have no emissions during use. We show how to account for sound emissions in the life cycle inventory phase of the life cycle of a wind turbine and then calculate the relative impacts using a noise LCIA model.  相似文献   

15.
Many of the challenges facing knowledge synthesis from life cycle assessment (LCA) studies stem from the inability of study authors and readers to formally agree on the structure and content of the product system models used to perform LCA computations. This article presents a framework for formally disclosing the foreground of an LCA study in a way that permits the computations to be inspected, verified, and reproduced by a reader, provided that the reader has access to the same life cycle inventory and impact characterization resources as the author. The framework can also be used to partition a study into public and private portions, allowing both portions to be critically reviewed but omitting the private information from the disclosure. A disclosure is made up of six components, including three lists of entities in the model and three sparse matrices describing their interconnections. The entity lists make reference to previously‐published resources, including background inventory databases and characterized elementary flows, and the disclosure framework requires both author and reader to agree on the meaning of each of these references. The framework contributes to ongoing efforts within and beyond industrial ecology to improve the reproducibility and verifiability of scholarly works, and if implemented, plots a course toward distributed, platform‐independent computation and validation of LCA results.  相似文献   

16.

Background and Objective  

Life cycle assessment (LCA) is a highly data intensive undertaking, where collecting the life cycle inventory (LCI) data is the most labour intensive part. The aim of this paper is to show a method for representing the LCI in a simplified manner which not only allows an estimative, quantitative LCA, but also the application of advanced analysis methods to LCA.  相似文献   

17.
Goal, Scope and Background  Green Productivity (GP) is a new paradigm in sustainable manufacturing where resource conservation and waste minimization constitute the strategy in simultaneously enhancing environmental performance and productivity. This productivity approach to the sustainability of industries requires the adoption of clean production technology and the development of appropriate indicators and instruments to measure environmental performance in a continuous improvement strategy that focuses on the manufacturing stage of the product life cycle. The analysis may be expanded to include the entire life cycle with increasing details on impacts, improvement strategies and indicators. Methods  The study proposes a methodology for GP assessment that integrates the essential components of life cycle assessment (LCA) and multicriteria decision analysis specifically the analytic hierarchy process (AHP). LCA provides a systematic and holistic perspective for GP analysis that spans inventory, impact and improvement assessment. The AHP is utilized as a decision framework and valuation tool for impact and improvement assessment to come up with priority weights. Indicators are derived and measured from a streamlined LCA focused on a number of parameters within the gate-to-gate analysis to demonstrate the GP concept in relation to resource utilization and waste minimization. An input-output approach using a suitable material balance in a scenario analysis provides the basis of GP performance measurement. Results and Conclusion  The diagnostic model is applied on a semiconductor assembly/packaging operation. From the streamlined life cycle inventory, impact factors were derived for water resource depletion (WRD), energy resource depletion (ERD), human toxicity-air (HTA), human toxicity-land (HTL), human toxicity-water (HTW), aquatic ecotoxicity (ETA) and terrestrial ecotoxicity (ETT). Valuation of impact factors using the AHP showed the high significance of ETT, HTL, WRD and ERD. This especially reflects the impact of the industry on the solid waste problem as a result of emissions to land associated with human toxicity and ecotoxicity effects and the intensive use of water and energy resources. Using scenario analysis, the effect of implementing a process-based improvement technique on a product-specific operation was determined and the highest values in GP are for energy utilization, water utilization and terrestrial ecotoxicity. Recommendation and Perspective  Expert system technology was explored in developing a diagnostic prototype that emulates how human experts diagnose green productivity of manufacturing processes. The aim was to investigate how such a diagnosis could be performed in an intelligent fashion that it is also easily accessible as a decision support for industries. The expert system model will provide flexibility in testing the relationships of environmental performance and productivity parameters as well as in preserving and disseminating valuable human expertise in GP program implementation. This is a continuing research effort that is building the knowledge base for GP assessment. It will include case studies over a wider range or level of detail regarding the impacts and improvement techniques and the other stages of the product life cycle.  相似文献   

18.
A qualitative, quantitative, and overall quality assessment of life cycle inventory is suggested. The method is composed of five indicators which are set up at three levels of the inventory quality: flows, processes, and the system. The method allows one to assess the reliability of the method generating inventory data (justness of data, completeness of data, representativity of processes, repeatability of system definition) and at the same time to quantify the uncertainty of the resulting data made under the data generation method. LCA practitioners can finally decide the overall inventory quality through the information for the acceptability of the inventory result comparing the objective of quality and the cost necessary to improve the quality. The operation of the method was verified in the application to the production of polyethylene bottles. The proposed method was also found applicable for the validation of data in the ISO’s LCA data documentation format.  相似文献   

19.

Purpose  

Information constitutes one of the main barriers for applying life cycle assessment (LCA) due to complexity and need for great amounts of it. However, most of the parameters that determine the data are defined early in the product development process. Knuckle boom cranes constitute a complex product which poses a particularly pressing need for simplification. This paper models the LCA inventory information out of design parameters. The paper also presents a tool implementing this.  相似文献   

20.
赵薇  梁赛  于杭  邓娜 《生态学报》2017,37(24):8197-8206
结合城市生活垃圾管理系统特征,系统归纳基于生命周期评价(Life cycle assessment,LCA)方法的城市生活垃圾管理模型的发展现状,并对LCA方法在城市生活垃圾管理中的实践以及在我国开展城市生活垃圾管理LCA研究的应用前景进行评述。分析表明,LCA是城市生活垃圾管理领域的重要工具之一,基于LCA方法的城市生活垃圾管理模型在全生命周期环境影响评价与识别、处置工艺选择与改进、可持续生活垃圾管理决策支持等方面具有十分重要的应用价值。中国在本地化生活垃圾管理系统LCA模型开发、清单数据库和评价指标体系构建以及与其他研究方法集成等方面面临挑战。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号