首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Media of various compositions were employed to recover halophilic archaebacteria from a variety of naturally occurring thalassohaline environments, including saturated brines and stromatolithic algal mats. Maximum recovery rates were obtained on media containing natural brine and a whole cell extract of Halobacterium cutirubrum . These rates were up to 102-fold higher than rates obtained on media prepared with either component alone and up to 107-fold higher than rates obtained on conventional media. Enhanced recovery in the presence of natural brine and H. cutirubrum extract was due to those constituents allowing the bacteria present in situ to adapt to growth on laboratory media. However, several isolates demonstrated an absolute requirement for a factor present in both H. cutirubrum extract and natural brine.  相似文献   

2.
Extensive diversity in features of aromatic amino acid biosynthesis and regulation has become recognized in eubacteria, but almost nothing is known about the extent to which such diversity exists within the archaebacteria. Methanohalophilus mahii, a methylotrophic halophilic methanogen, was found to synthesize l-phenylalanine and l-tyrosine via phenylpyruvate and 4-hydroxyphenylpyruvate, respectively. Enzymes capable of using l-arogenate as substrate were not found. Prephenate dehydrogenase was highly sensitive to feedback inhibition by l-tyrosine and could utilize either NADP+ (preferred) or NAD+ as cosubstrate. Tyrosine-pathway dehydrogenases having the combination of narrow specificity for a cyclohexadienyl substrate but broad specificity for pyridine nucleotide cofactor have not been described before. The chorismate mutase enzyme found is a member of a class which is insensitive to allosteric control. The most noteworthy character state was prephenate dehydratase which proved to be subject to multimetabolite control by feedback inhibitor (l-phenylalanine) and allosteric activators (l-tyrosine, l-tryptophan, l-leucine, l-methionine and l-isoleucine). This interlock type of prephenate dehydratase, also known to be broadly distributed among the gram-positive lineage of the eubacteria, was previously shown to exist in the extreme halophile, Halobacterium vallismortis. The results are consistent with the conclusion based upon 16S rRNA analyses that Methanomicrobiales and the extreme halophiles cluster together.Abbreviation DAHP 3-deoxy-d-arabino-heptulosonate-7-phosphate  相似文献   

3.
4.
An extremely halophilic archaebacterium Halobacterium cutirubrum was demonstrated to be devoid of any polyamine except agmatine when grown in a synthetic medium with no exogenous polyamines. Decarboxylation activities of homoarginine and canavanine as well as of arginine were shown to be present in cell lysates of 5 strains of extreme halophiles examined. H. halobium R1 was shown to have an additional pathway to synthesize agmatine from glutamic acid.  相似文献   

5.
The levels of synthesis of six proteins were increased at elevated growth temperature of the extremely halophilic archaebacterium Halobacterium cutirubrum. One of these proteins, with an apparent molecular mass of 97 kDa on sodium dodecylsulfate–polyacrylamide gel electrophoresis (SDS–PAGE), bound to an ATP-agarose column in the presence of 4 M NaCl, but not in the absence of salt, indicating that this protein retained its ATP-binding activity only at high salt concentration. The NH2-terminal sequence of this protein and the internal sequences of the tryptic peptides covering 1/3 of the total number of residues coincided with that deduced from the nucleotide sequence of the dnaK gene isolated from H. cutirubrum. The results strongly suggest that this apparent 97-kDa protein is the gene product of dnaK, although the molecular mass calculated from the nucleotide sequence is only 68,495, much smaller than the value of this protein determined by SDS–PAGE. Ferguson plot analysis indicated that this protein showed anomalous mobility on SDS–PAGE. We have purified DnaK homologue to greater than 90% homogeneity with stepwise elution from an ATP-agarose column.  相似文献   

6.
The halophilic archaebacterium Halobacterium strain GRB harbours a multicopy plasmid of 1.7 kb which is negatively supercoiled. After addition of novobiocin to culture medium all 1.7 kb plasmid molecules become positively supercoiled. Positive supercoiling occurs at the same dose of novobiocin inhibiting the eubacterial DNA gyrase in vitro. Novobiocin also induces positive supercoiling of pHV2, a 6.3 kb plasmid from Halobacterium volcanii. These results indicate the existence of a mechanism producing positive superturns in halobacteria. The 1.7 kb plasmid from Halobacterium GRB could be used to produce high amounts of pure positively supercoiled DNA for biophysical and biochemical studies.  相似文献   

7.
8.
A halophilic alkaline phosphatase was highly purified (about 510-fold with about 21% yield) from a moderate halophile, Halomonas sp. 593. The N-terminal 35 amino acid sequence of this enzyme was found to be more acidic than those previously isolated from Vibrio spp., and this enzyme was partially resistant to SDS. Several enzymatic properties demonstrated that it showed higher halophilicity than those enzymes from Vibrio spp.  相似文献   

9.
Accumulation of compatible solutes, by uptake or de novo synthesis, enables bacteria to reduce the difference between osmotic potentials of the cell cytoplasm and the extracellular environment. To examine this process in the halophilic and halotolerant methanogenic archaebacteria, 14 strains were tested for the accumulation of compatible solutes in response to growth in various extracellular concentrations of NaCl. In external NaCl concentrations of 0.7 to 3.4 M, the halophilic methanogens accumulated K+ ion and low-molecular-weight organic compounds. beta-Glutamate was detected in two halotolerant strains that grew below 1.5 M NaCl. Two unusual beta-amino acids, N epsilon-acetyl-beta-lysine and beta-glutamine (3-aminoglutaramic acid), as well as L-alpha-glutamate were compatible solutes among all of these strains. De novo synthesis of glycine betaine was also detected in several strains of moderately and extremely halophilic methanogens. The zwitterionic compounds (beta-glutamine, N epsilon-acetyl-beta-lysine, and glycine betaine) and potassium were the predominant compatible solutes among the moderately and extremely halophilic methanogens. This is the first report of beta-glutamine as a compatible solute and de novo biosynthesis of glycine betaine in the methanogenic archaebacteria.  相似文献   

10.
A total of 118 halophilic archaeal collection of strains were screened for lipolytic activity and 18 of them were found positive on Rhodamine agar plates. The selected five isolates were further characterized to determine their optimum esterase and lipase activities at various ranges of salt, temperature and pH. The esterase and lipase activities were determined by the hydrolysis of pNPB and pNPP, respectively. The maximum hydrolytic activities were found in the supernatants of the isolates grown at complex medium with 25% NaCl and 1% gum Arabic. The highest esterase activity was obtained at pH 8-8.5, temperature 60-65 degrees C and NaCl 3-4.5 M. The same parameters for the highest lipase activities were found to be pH 8, temperature 45-65 degrees C and NaCl 3.5-4 M. These results indicate the presence of salt-dependent and temperature-tolerant lipolytic enzymes from halophilic archaeal strains. Kinetic parameters were determined according to Lineweaver-Burk plot. The KM and V (max) values were lower for pNPP hydrolysis than those for pNPB hydrolysis. The results point that the isolates have higher esterase activity comparing to lipase activity.  相似文献   

11.
The protein sequences of seven members of the superoxide dismutase (SOD) family from halophilic archaebacteria have been aligned and compared with each other and with the homologous Mn and Fe SOD sequences from eubacteria and the methanogenic archaebacterium Methanobacterium thermoautotrophicum. Of 199 common residues in the SOD proteins from halophilic archaebacteria, 125 are conserved in all seven sequences, and 64 of these are encoded by single unique triplets. The 74 remaining positions exhibit a high degree of variability, and for almost half of these, the encoding triplets are connected by at least two nonsynonymous nucleotide substitutions. The majority of nucleotide substitutions within the seven genes are nonsynonymous and result in amino acid replacement in the respective protein; silent third-codon-position (synonymous) substitutions are unexpectedly rare. Halophilic SODs contain 30 specific residues that are not found at the corresponding positions of the methanogenic or eubacterial SOD proteins. Seven of these are replacements of highly conserved amino acids in eubacterial SODs that are believed to play an important role in the three-dimensional structure of the protein. Residues implicated in formation of the active site, catalysis, and metal ion binding are conserved in all Mn and Fe SODs. Molecular phylogenies based on parsimony and neighbor-joining methods coherently group the halophile sequences but surprisingly fail to distinguish between the Mn SOD of Escherichia coli and the Fe SOD of M. thermoautotrophicum as the outgroup. These comparisons indicate that as a group, the SODs of halophilic archaebacteria have many unique and characteristic features. At the same time, the patterns of nucleotide substitution and amino acid replacement indicate that these genes and the proteins that they encode continue to be subject to strong and changing selection. This selection may be related to the presence of oxygen radicals and the inter- and intracellular composition and concentration of metal cations.  相似文献   

12.
Ye X  Ou J  Ni L  Shi W  Shen P 《FEMS microbiology letters》2003,225(1):53-57
We determined the complete nucleotide sequence of the 16341 bp plasmid pHH205 of the extremely halophilic archaeon Halobacterium salinarum J7. The plasmid has a G+C content of 61.1%. A number of direct and inverted repeat sequences were found in pHH205, while no insertion sequences were found. Thirty-eight large open reading frames (ORFs) were identified in both strands, and most of them had no significant similarities to known proteins. A putative protein encoded by ORF31 showed 20-41% homology to some hypothetical proteins, which are annotated in several archaeal genome databases as predicted nucleic acid-binding proteins containing PIN domain. Sequence analysis using the GC skew procedure predicted a possible origin of replication. A 4.8 kb PvuII-SnaBI fragment containing both this region and ORF31 was shown to be able to restore replicate of pWL102, a replicon-deficient plasmid in Haloferax volcanii and in H. salinarum R1. Several methods failed to completely cure H. salinarum J7 of pHH205, suggesting that the plasmid probably played an important role in the growth and metabolism of the host. Our work describes a novel haloarchaeal replicon, which may be useful in the construction of cloning and shuttle vectors.  相似文献   

13.
Characterization of a plasmid from moderately halophilic eubacteria.   总被引:4,自引:0,他引:4  
A plasmid has been isolated for the first time from moderately halophilic eubacteria. Halomonas elongata, Halomonas halmophila, Deleya halophila and Vibrio costicola were found to harbour an 11.5 kbp plasmid (pMH1). The plasmid was isolated and characterized after transformation into Escherichia coli JM101 cells. A restriction map was constructed, and unique restriction sites for EcoRI, EcoRV and ClaI were detected. The occurrence of such a plasmid in the original halophilic strains was confirmed by Southern hybridization. The plasmid carries genetic determinants that mediate resistance to kanamycin, tetracycline, and neomycin. This property, together with its relatively small size, its stability in E. coli cells, and the presence of unique restriction sites, makes pMH1 a good candidate for the development of a cloning vector for moderate halophiles.  相似文献   

14.
Purpose

Higher alcohol is a by-product of the fermentation of wine, and its content is one of the most important parameters that affect and are used to appraise the final quality of Chinese rice wine. Ammonium compensation is an efficient and convenient method to reduce the content of higher alcohols, but the molecule mechanism is poorly understood. Therefore, an iTRAQ-based proteomic analysis was designed to reveal the proteomic changes of Saccharomyces cerevisiae to elucidate the molecular mechanism of ammonium compensation in reducing the content of higher alcohols.

Methods

The iTRAQ proteomic analysis method was used to analyze a blank group and an experimental group with an exogenous addition of 200 mg/L (NH4)2HPO4 during inoculation. The extracted intracellular proteins were processed by liquid chromatography-mass spectrometry and identified using bioinformatics tools. Real-time quantitative polymerase chain reaction was used to verify the gene expression of differentially expressed proteins.

Results

About 4062 proteins, including 123 upregulated and 88 downregulated proteins, were identified by iTRAQ-based proteomic analysis. GO and KEGG analysis uncovered that significant proteins were concentrated during carbohydrate metabolism, such as carbon metabolism, glyoxylate, and dicarboxylate metabolism, pyruvate metabolism, and the nitrogen metabolism, such as amino acid synthesis and catabolism pathway. In accordance with the trend of differential protein regulation in the central carbon metabolism pathway and the analysis of carbon metabolic flux, a possible regulatory model was proposed and verified, in which ammonium compensation facilitated glucose consumption, regulated metabolic flow direction into tricarboxylic acid, and further led to a decrease in higher alcohols. The results of RT-qPCR confirmed the authenticity of the proteomic analysis results at the level of gene.

Conclusion

Ammonium assimilation promoted by ammonium compensation regulated the intracellular carbon metabolism of S. cerevisiae and affected the distribution of metabolic flux. The carbon flow that should have gone to the synthesis pathway of higher alcohols was reversed to the TCA cycle, thereby decreasing the content of higher alcohols. These findings may contribute to an improved understanding of the molecular mechanism for the decrease in higher alcohol content through ammonium compensation.

  相似文献   

15.
16.
The in vitro protein folding activity of an FKBP (FK506 binding protein, abbreviated to MTFK) from a thermophilic archaeon, Methanococcus thermolithotrophicus, was investigated. MTFK exhibited FK506 sensitive PPIase (peptidyl prolyl cis-trans isomerase) activity which accelerated the speed of ribonuclease T1 refolding, which is rate-limited by isomerization of two prolyl peptide bonds. In addition, MTFK suppressed the aggregation of folding intermediates and elevated the final yield of rhodanese refolding. We called this activity of MTFK the chaperone activity. The chaperone activity of MTFK was also inhibited by FK506. Alignment of the amino acid sequences of MTFK with human FKBP12 showed that MTFK has two insertion sequences, consisting of 13 and 44 amino acids, at the N- and C-termini, respectively [Furutani, M., Iida, T., Yamano, S., Kamino, K., and Maruyama, T. (1998) J. Bacteriol. 180, 388-394]. To study the relationship between chaperone and PPIase activities of MTFK, mutant MTFKs with deletions of these insertion sequences or with amino acid substitutions were created. Their PPIase and chaperone activities were measured using a synthetic oligopeptide and denatured rhodanese as the substrates, respectively. The far-UV circular dichroism spectra of the wild type and the mutants were also analyzed. The results suggested that (1) the PPIase activity did not correlate with chaperone activity, (2) both insertion sequences were required for MTFK to take a proper conformation, and (3) the insertion sequence (44 amino acids) in the C-terminus was important for the chaperone activity.  相似文献   

17.
From the sulphur-dependent, anaerobically grown archaebacterium Sulfolobus ambivalens Caldariella quinone, CQ-6(12H) and the new Sulfolobus quinone SQ-6(12H), 6-(3,7,11,15,19,23-hexamethyltetracosyl)-5-methyl-benz[b]thioph en-4, 7-quinone have been isolated as main components. Lower homologues SQ-5-(10H), SQ-4(8H), SQ-3(6H), phylloquinone-like species CQ-6(10H), SQ-6(10H) and the menaquinone MK-6(12H) are present as minor components. The results are compared with those from Sulfolobus acidocaldarius. Thermococcus celer, Desulfurococcus mucosus and Desulfurococcus mobilis do not contain quinones in comparable amounts.  相似文献   

18.
Many dicationic amidine compounds bind in the DNA minor groove and have excellent biological activity against a range of infectious diseases. Para-substituted aromatic diamidines such as furamidine, which is currently being tested against trypanosomiasis in humans, and berenil, which is used in animals, are typical examples of this class. Recently, a meta-substituted diamidine, CGP 40215A, has been found to have excellent antitrypanosomal activity. The compound has a linear, conjugated linking group that can be protonated under physiological conditions when the compound interacts with DNA. Structural and molecular dynamics analysis of the DNA complex indicated an unusual AT-specific complex that involved water-mediated H-bonds between one amidine of the compound and DNA bases at the floor of the minor groove. To investigate this unique system in more detail DNase I footprinting, surface plasmon resonance biosensor techniques, linear dichroism, circular dichroism, ultraviolet-visible spectroscopy, and additional molecular dynamics simulations have been conducted. Spectrophotometric titrations of CGP 40215A binding to poly(dAT)(2) have characteristics of DNA-binding-induced spectral changes as well as effects due to binding-induced protonation of the compound linker. Both footprinting and surface plasmon resonance results show that this compound has a high affinity for AT-rich sequences of DNA but very weak binding to GC sequences. The dissociation kinetics of the CGP 40215A-DNA complex are much slower than with similar diamidines such as berenil. The linear dichroism results support a minor-groove complex for the compound in AT DNA sequences. Molecular dynamics studies complement the structural analysis and provide a clear picture of the importance of water in mediating the dynamic interactions between the ligand and the DNA bases in the minor groove.  相似文献   

19.
A cycloheximide-resistant strain of Tetrahymena thermophila, expressing a mutant chx-B gene (Ares and Bruns, Genetics 90:463-474, 1978), displayed very different temperature-dependent growth characteristics than either wild-type cells or another cycloheximide-resistant strain expressing a different mutant gene. Whereas wild-type cells showed an immediate decline in ribosome translocation rates when shifted from 30 to 38 or 40 degrees C, this mutant strain (X-8) showed no such decline. These results directly correlated with the growth rate differences we found for these cells at these temperatures. By genetic analysis, we showed that the phenotype of cycloheximide resistance cosegregated with the ability to grow rapidly at 40 degrees C. Analyses, both direct and indirect, suggested that a number of functional and structural characteristics of the ribosomes from strain X-8 cells are most likely conformationally different from those of wild-type ribosomes.  相似文献   

20.
Biomass is normally processed using acidic or basic catalysts, which both have their drawbacks. One suitable alternative is the application of hydrolytic enzymes that can convert biomass into simpler molecules, which can be fermented and processed into biofuel. Hydrolytic enzymes include proteases, lipases, amylases, cellulases, mannanases, chitinases, and xylanases. To discover sources of these enzymes, 19 halophilic strains of microorganisms that are significantly resistant to high salt concentrations were analyzed. The objective of this research was to identify halophilic microorganisms that produce the target enzymes with high activities, and to characterize these enzymes according to their salt tolerances. The results obtained indicated that Pseudolateromonas phenolica, Micrococcus luteus, Pseudoalteromonas peptidolytica, Halomonas socia, Marinobacter maritimus, and Exiguobacterium aurantiacum strain 2 produced the highest protease, lipase, amylase, cellulase, mannanase, chitinase, and xylanase relative activities, respectively. Except for protease from P. phenolica, all the enzymes tested for salt resistance either maintained or increased their activities with increasing NaCl concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号