首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of oxidation of dichloroethene (DCE) and trichloroethylene (TCE) by three mutant strains of Pseudomonas butanovora containing single amino acid substitutions in the α-subunit of butane monooxygenase hydroxylase (BMOH-α) were compared to the properties of the wild-type strain (Rev WT). The rates of oxidation of three chloroethenes (CEs) were reduced in mutant strain G113N and corresponded with a lower maximum rate of butane oxidation. The rate of TCE degradation was reduced by one-half in mutant strain L279F, whereas the rates of DCE oxidation were the same as those in Rev WT. Evidence was obtained that the composition of products of CE oxidation differed between Rev WT and some of the mutant strains. For example, while Rev WT released nearly all available chlorine stoichiometrically during CE oxidation, strain F321Y released about 40% of the chlorine during 1,2-cis-DCE and TCE oxidation, and strain G113N released between 14 and 25% of the available chlorine during oxidation of DCE and 56% of the available chlorine during oxidation of TCE. Whereas Rev WT, strain L279F, and strain F321Y formed stoichiometric amounts of 1,2-cis-DCE epoxide during oxidation of 1,2-cis-DCE, only about 50% of the 1,2-cis-DCE oxidized by strain G113N was detected as the epoxide. Evidence was obtained that 1,2-cis-DCE epoxide was a substrate for butane monooxygenase (BMO) that was oxidized after the parent compound was consumed. Yet all of the mutant strains released less than 40% of the available 1,2-cis-DCE chlorine, suggesting that they have altered activity towards the epoxide. In addition, strain G113N was unable to degrade the epoxide. TCE epoxide was detected during exposure of Rev WT and strain F321Y to TCE but was not detected with strains L279F and G113N. Lactate-dependent O2 uptake rates were differentially affected by DCE degradation in the mutant strains, providing evidence that some products released by the altered BMOs reduced the impact of CE on cellular toxicity. The use of CEs as substrates in combination with P. butanovora BMOH-α mutants might allow insights into the catalytic mechanism of BMO to be obtained.  相似文献   

2.
3.
We examined cooxidation of three different dichloroethenes (1,1-DCE, 1,2-trans DCE, and 1,2-cis DCE) by butane monooxygenase (BMO) in the butane-utilizing bacterium "Pseudomonas butanovora." Different organic acids were tested as exogenous reductant sources for this process. In addition, we determined if DCEs could serve as surrogate inducers of BMO gene expression. Lactic acid supported greater rates of oxidation of the three DCEs than the other organic acids tested. The impacts of lactic acid-supported DCE oxidation on BMO activity differed among the isomers. In intact cells, 50% of BMO activity was irreversibly lost after consumption of approximately 20 nmol mg protein(-1) of 1,1-DCE and 1,2-trans DCE in 0.5 and 5 min, respectively. In contrast, a comparable loss of activity required the oxidation of 120 nmol 1,2-cis DCE mg protein(-1). Oxidation of similar amounts of each DCE isomer ( approximately 20 nmol mg protein(-1)) produced different negative effects on lactic acid-dependent respiration. Despite 1,1-DCE being consumed 10 times faster than 1,2,-trans DCE, respiration declined at similar rates, suggesting that the product(s) of oxidation of 1,2-trans DCE was more toxic to respiration than 1,1-DCE. Lactate-grown "P. butanovora" did not express BMO activity but gained activity after exposure to butane, ethene, 1,2-cis DCE, or 1,2-trans DCE. The products of BMO activity, ethene oxide and 1-butanol, induced lacZ in a reporter strain containing lacZ fused to the BMO promoter, whereas butane, ethene, and 1,2-cis DCE did not. 1,2-trans DCE was unique among the BMO substrates tested in its ability to induce lacZ expression.  相似文献   

4.
Butane monooxygenases of butane-grown Pseudomonas butanovora, Mycobacterium vaccae JOB5, and an environmental isolate, CF8, were compared at the physiological level. The presence of butane monooxygenases in these bacteria was indicated by the following results. (i) O(2) was required for butane degradation. (ii) 1-Butanol was produced during butane degradation. (iii) Acetylene inhibited both butane oxidation and 1-butanol production. The responses to the known monooxygenase inactivator, ethylene, and inhibitor, allyl thiourea (ATU), discriminated butane degradation among the three bacteria. Ethylene irreversibly inactivated butane oxidation by P. butanovora but not by M. vaccae or CF8. In contrast, butane oxidation by only CF8 was strongly inhibited by ATU. In all three strains of butane-grown bacteria, specific polypeptides were labeled in the presence of [(14)C]acetylene. The [(14)C]acetylene labeling patterns were different among the three bacteria. Exposure of lactate-grown CF8 and P. butanovora and glucose-grown M. vaccae to butane induced butane oxidation activity as well as the specific acetylene-binding polypeptides. Ammonia was oxidized by all three bacteria. P. butanovora oxidized ammonia to hydroxylamine, while CF8 and M. vaccae produced nitrite. All three bacteria oxidized ethylene to ethylene oxide. Methane oxidation was not detected by any of the bacteria. The results indicate the presence of three distinct butane monooxygenases in butane-grown P. butanovora, M. vaccae, and CF8.  相似文献   

5.
6.
Pseudomonas butanovora grown on butane or 1-butanol expresses two 1-butanol dehydrogenases, a quinoprotein (BOH) and a quinohemoprotein (BDH). BOH exhibited high affinity towards 1-butanol (K(m) = 1.7 +/- 0.2 microM). BOH also oxidized butyraldehyde and 2-butanol (K(m) = 369 +/- 85 microM and K(m) = 662 +/- 98 microM, respectively). The mRNA induction profiles of BOH and BDH at three different levels of 1-butanol, a nontoxic level (0.1 mM), a growth-supporting level (2 mM), and a toxic level (40 mM), were similar. When cells were grown in citrate-containing medium in the presence of different levels of 1-butanol, wild-type P. butanovora could tolerate higher levels of 1-butanol than the P. butanovora boh::tet strain and the P. butanovora bdh::kan strain. A model is proposed in which the electrons from 1-butanol oxidation follow a branched electron transport chain. BOH may be coupled to ubiquinone, with the electrons being transported to a cyanide-sensitive terminal oxidase. In contrast, electrons from BDH may be transferred to a terminal oxidase that is less sensitive to cyanide. The former pathway may function primarily in energy generation, while the latter may be more important in the detoxification of 1-butanol.  相似文献   

7.
The involvement of two primary alcohol dehydrogenases, BDH and BOH, in butane utilization in Pseudomonas butanovora (ATCC 43655) was demonstrated. The genes coding for BOH and BDH were isolated and characterized. The deduced amino acid sequence of BOH suggests a 67-kDa alcohol dehydrogenase containing pyrroloquinoline quinone (PQQ) as cofactor and in the periplasm (29-residue leader sequence). The deduced amino acid sequence of BDH is consistent with a 70.9-kDa, soluble, periplasmic (37-residue leader sequence) alcohol dehydrogenase containing PQQ and heme c as cofactors. BOH and BDH mRNAs were induced whenever the cell's 1-butanol oxidation activity was induced. When induced with butane, the gene for BOH was expressed earlier than the gene for BDH. Insertional disruption of bdh or boh affected adversely, but did not eliminate, butane utilization by P. butanovora. The P. butanovora mutant with both genes boh and bdh inactivated was unable to grow on butane or 1-butanol. These cells, when grown in citrate and incubated in butane, developed butane oxidation capability and accumulated 1-butanol. The enzyme activity of BOH was characterized in cell extracts of the P. butanovora strain with bdh disrupted. Unlike BDH, BOH oxidized 2-butanol. The results support the involvement of two distinct NAD(+)-independent, PQQ-containing alcohol dehydrogenases, BOH (a quinoprotein) and BDH (a quinohemoprotein), in the butane oxidation pathway of P. butanovora.  相似文献   

8.
The induction of the enzyme activities involved in butane metabolism in Pseudomonas butanovora was characterized. P. butanovora was grown on butane or its metabolites, both singly and in mixtures with other growth substrates. Cells grown in each of the butane metabolites readily consumed the growth substrate and downstream metabolites, but consumed the upstream butane metabolites more slowly. Upstream activities in the butane metabolism could be induced by downstream metabolites, but to much lower levels than with the primary substrate. The induction of butane oxidation was not repressed when P. butanovora was grown or incubated in a mixture of butane and 1-butanol, butyraldehyde or butyrate. However, no induction of butane consumption was observed in a mixture of butane and lactate, which is indicative of catabolite repression. In lactate-grown cells that were rid of the growth substrate and incubated with butane and acetylene (to inactivate newly formed butane monooxygenase), the consumption of butane, 1-butanol and butyraldehyde consumption was not induced. The overall results suggest an independent regulatory mechanism for each of the enzyme activities in butane metabolism. In addition, a low, constitutive butane oxidation was observed in cells grown on substrates other than butane metabolites.  相似文献   

9.
Pseudomonas butanovora grows on butane by means of an inducible soluble alkane monooxygenase (sBMO). The induction of sBMO was studied using the wild type and a sBMO reporter strain. The reporter strain has the lacZ::kan cassette inserted into bmoX, the gene that encodes the alpha-subunit of the hydroxylase of sBMO. The beta-galactosidase activity in the reporter strain was not induced by butane, but was induced by 1-butanol and butyraldehyde. P. butanovora expressed sBMO product-independent activity at 3.0+/-1 nmol ethylene oxide min(-1) mg protein(-1) in stationary phase. The sBMO product-independent activity likely primes the expression of sBMO by butane.  相似文献   

10.
11.
Methane hydroxylation through methane monooxygenases (MMOs) is a key aspect due to their control of the carbon cycle in the ecology system and recent applications of methane gas in the field of bioenergy and bioremediation. Methanotropic bacteria perform a specific microbial conversion from methane, one of the most stable carbon compounds, to methanol through elaborate mechanisms. MMOs express particulate methane monooxygenase (pMMO) in most strains and soluble methane monooxygenase (sMMO) under copper-limited conditions. The mechanisms of MMO have been widely studied from sMMO belonging to the bacterial multicomponent monooxygenase (BMM) superfamily. This enzyme has diiron active sites where different types of hydrocarbons are oxidized through orchestrated hydroxylase, regulatory and reductase components for precise control of hydrocarbons, oxygen, protons, and electrons. Recent advances in biophysical studies, including structural and enzymatic achievements for sMMO, have explained component interactions, substrate pathways, and intermediates of sMMO. In this account, oxidation of methane in sMMO is discussed with recent progress that is critical for understanding the microbial applications of C-H activation in one-carbon substrates.  相似文献   

12.
Trichloroethylene (TCE) oxidation was examined in 9 different methanotrophs grown under conditions favoring expression of the membrane associated methane monooxygenase. Depending on the strain, TCE oxidation rates varied from 1 to 677 pmol/min/mg cell protein. Levels of TCE in the reaction mixture were reduced to below 40 nmolar in some strains. Cells incubated in the presence of acetylene, a selective methane monooxygenase inhibitor, did not oxidize TCE.Cultures actively oxidizing TCE were monitored for the presence of the soluble methane monooxygenase (sMMO) and membrane associated enzyme (pMMO). Transmission electron micrographs revealed the cultures always contained the internal membrane systems characteristic of cells expressing the pMMO. Naphthalene oxidation by whole cells, or by the cell free, soluble or membrane fractions was never observed. SDS denaturing gels of the membrane fraction showed the polypeptides associated with the pMMO. Cells exposed to 14C-acetylene showed one labeled band at 26 kDa, and this protein was observed in the membrane fraction. In the one strain examined by EPR spectroscopy, the membrane fraction of TCE oxidizing cells showed the copper complexes characteristic of the pMMO. Lastly, most of the strains tested showed no hybridization to sMMO gene probes. These findings show that the pMMO is capable of TCE oxidation; although the rates are lower than those observed for the sMMO.  相似文献   

13.
Phenylacetylene was investigated as a differential inhibitor of ammonia monooxygenase (AMO), soluble methane monooxygenase (sMMO) and membrane-associated or particulate methane monooxygenase (pMMO) in vivo. At phenylacetylene concentrations > 1 microM, whole-cell AMO activity in Nitrosomonas europaea was completely inhibited. Phenylacetylene concentrations above 100 microM inhibited more than 90% of sMMO activity in Methylococcus capsulatus Bath and Methylosinus trichosporium OB3b. In contrast, activity of pMMO in M. trichosporium OB3b, M. capsulatus Bath, Methylomicrobium album BG8, Methylobacter marinus A45 and Methylomonas strain MN was still measurable at phenylacetylene concentrations up to 1,000 microM. AMO of Nitrosococcus oceanus has more sequence similarity to pMMO than to AMO of N. europaea. Correspondingly, AMO in N. oceanus was also measurable in the presence of 1,000 microM phenylacetylene. Measurement of oxygen uptake indicated that phenylacetylene acted as a specific and mechanistic-based inhibitor of whole-cell sMMO activity; inactivation of sMMO was irreversible, time dependent, first order and required catalytic turnover. Corresponding measurement of oxygen uptake in whole cells of methanotrophs expressing pMMO showed that pMMO activity was inhibited by phenylacetylene, but only if methane was already being oxidized, and then only at much higher concentrations of phenylacetylene and at lower rates compared with sMMO. As phenylacetylene has a high solubility and low volatility, it may prove to be useful for monitoring methanotrophic and nitrifying activity as well as identifying the form of MMO predominantly expressed in situ.  相似文献   

14.
Soluble methane monooxygenase (sMMO) expression and activity were monitored under conditions that either promoted or suppressed the expression of nitrogenase in Methylosinus trichosporium OB3b wild-type (WT) and in its sMMO-constitutive mutant, PP319. Both WT and mutant cultures had reduced sMMO activity and protein levels under elevated O2 conditions (188 microM) compared with low O2 conditions (24 microM). Simultaneous N2 fixation also reduced sMMO activity in both cultures when O2 was low. However, when O2 levels were increased, nitrogenase expression ceased and sMMO activity was reduced by approximately 77% in the WT, whereas sMMO and nitrogenase expression and activity in PP319 were relatively unaffected by the higher O2 levels. Western immunoblot analysis showed that the nitrogenase Fe protein resolved as two components (apparent molecular mass of 30.5 and 32 kDa) in both the WT and PP319 when O2 levels were low. When O2 levels were high, only the 32-kDa form of the Fe protein was present in PP319, whereas neither form was detectable in the WT. Aerotolerant N2 fixation appears to be associated with the 32-kDa Fe protein in M. trichosporium OB3b.  相似文献   

15.
Chloroform (CF) degradation by a butane-grown enrichment culture, CF8, was compared to that by butane-grown Pseudomonas butanovora and Mycobacterium vaccae JOB5 and to that by a known CF degrader, Methylosinus trichosporium OB3b. All three butane-grown bacteria were able to degrade CF at rates comparable to that of M. trichosporium. CF degradation by all four bacteria required O(inf2). Butane inhibited CF degradation by the butane-grown bacteria, suggesting that butane monooxygenase is responsible for CF degradation. P. butanovora required exogenous reductant to degrade CF, while CF8 and M. vaccae utilized endogenous reductants. Prolonged incubation with CF resulted in decreased CF degradation. CF8 and P. butanovora were more sensitive to CF than either M. trichosporium or M. vaccae. CF degradation by all three butane-grown bacteria was inactivated by acetylene, which is a mechanism-based inhibitor for several monooxygenases. Butane protected all three butane-grown bacteria from inactivation by acetylene, which indicates that the same monooxygenase is responsible for both CF and butane oxidation. CF8 and P. butanovora were able to degrade other chlorinated hydrocarbons, including trichloroethylene, 1,2-cis-dichloroethylene, and vinyl chloride. In addition, CF8 degraded 1,1,2-trichloroethane. The results indicate the potential of butane-grown bacteria for chlorinated hydrocarbon transformation.  相似文献   

16.
In methanotrophic bacteria, methane is oxidized to methanol by the enzyme methane monooxygenase (MMO). The soluble MMO enzyme complex from Methylocystis sp. strain M also oxidizes a wide range of aliphatic and aromatic compounds, including trichloroethylene. In this study, heterologous DNA probes from the type II methanotroph Methylosinus trichosporium OB3b were used to isolate souble MMO (sMMO) genes from the type II methanotroph Methylocystis sp. strain M. sMMO genes from strain M are clustered on the chromosome and show a high degree of identity with the corresponding genes from Methylosinus trichosporium OB3b. Sequencing and phylogenetic analysis of the 16S rRNA gene from Methylocystis sp. strain M have confirmed that it is most closely related to the type II methanotroph Methylocystis parvus OBBP, which, unlike Methylocystis sp. strain M, does not possess an sMMO. A similar phylogenetic analysis using the pmoA gene, which encodes the 27-kDa polypeptide of the particulate MMO, also places Methylocystis sp. strain M firmly in the genus Methylocystis. This is the first report of isolation and characterization of methane oxidation genes from methanotrophs of the genus Methylocystis.  相似文献   

17.
Methanotrophs have remarkable redundancy in multiple steps of the central pathway of methane oxidation to carbon dioxide. For example, it has been known for over 30 years that two forms of methane monooxygenase, responsible for oxidizing methane to methanol, exist in methanotrophs, i.e., soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), and that expression of these two forms is controlled by the availability of copper. Specifically, sMMO expression occurs in the absence of copper, while pMMO expression increases with increasing copper concentrations. More recently, it was discovered that multiple forms of methanol dehydrogenase (MeDH), Mxa MeDH and Xox MeDH, also exist in methanotrophs and that the expression of these alternative forms is regulated by the availability of cerium. That is, expression of Xox MeDH increases in the presence of cerium, while Mxa MeDH expression decreases in the presence of cerium. As it had been earlier concluded that pMMO and Mxa MeDH form a supercomplex in which electrons from Mxa MeDH are back donated to pMMO to drive the initial oxidation of methane, we speculated that Mxa MeDH could be rendered inactive through marker-exchange mutagenesis but growth on methane could still be possible if cerium was added to increase the expression of Xox MeDH under sMMO-expressing conditions. Here we report that mxaF, encoding the large subunit of Mxa MeDH, could indeed be knocked out in Methylosinus trichosporium OB3b, yet growth on methane was still possible, so long as cerium was added. Interestingly, growth of this mutant occurred in both the presence and the absence of copper, suggesting that Xox MeDH can replace Mxa MeDH regardless of the form of MMO expressed.  相似文献   

18.
Soluble methane monooxygenase (sMMO) can degrade many chlorinated and aromatic pollutants. It is produced by certain methanotrophs such as Methylosinus trichosporium when grown on methane under copper limitation but, due to its low aqueous solubility, methane cannot support dense biomass growth. Since it is water soluble, methanol may be a more attractive growth substrate, but it is widely believed that sMMO is not produced on methanol. In this study, when the growth-limiting substrate was switched from methane to methanol, in the presence of the particulate MMO inhibitor, allylthiourea, growth of M. trichosporium OB3b continued unabated and sMMO activity was completely retained. When allylthiourea was then removed, sMMO activity was maintained for an additional 24 generations, albeit at a slightly lower level due to the presence of 0.70 microM of Cu(2+) in the feed medium. While a biomass density of only 2 g l(-1) could be obtained on methane, 7.4 g l(-1) was achieved by feeding methanol exponentially, and 29 g l(-1) was obtained using a modified feeding strategy employing on-line carbon dioxide production measurement. It was concluded that methanol can be employed to produce large amounts of M. trichosporium biomass containing sMMO.  相似文献   

19.
Methane monooxygenase (MMO) catalyzes the oxidation of methane to methanol as the first step of methane degradation. A soluble NAD(P)H-dependent methane monooxygenase (sMMO) from the type II methanotrophic bacterium WI 14 was purified to homogeneity. Sequencing of the 16S rDNA and comparison with that of other known methanotrophic bacteria confirmed that strain WI 14 is very close to the genus Methylocystis. The sMMO is expressed only during growth under copper limitation (<0.1 μM) and with ammonium or nitrate ions as the nitrogen source. The enzyme exhibits a low substrate specificity and is able to oxidize several alkanes and alkenes, cyclic hydrocarbons, aromatics, and halogenic aromatics. It has three components, hydroxylase, reductase and protein B, which is involved in enzyme regulation and increases sMMO activity about 10-fold. The relative molecular masses of the native components were estimated to be 229, 41, and 18 kDa, respectively. The hydroxylase contains three subunits with relative molecular masses of 57, 43, and 23 kDa, which are present in stoichiometric amounts, suggesting that the native protein has an α2β2γ2 structure. We detected 3.6 mol of iron per mol of hydroxylase by atomic absorption spectrometry. sMMO is strongly inhibited by Hg2+ ions (with a total loss of enzyme activity at 0.01 mM Hg2+) and Cu2+, Zn2+, and Ni2+ ions (95, 80, and 40% loss of activity at 1 mM ions). The complete sMMO gene sequence has been determined. sMMO genes from strain WI 14 are clustered on the chromosome and show a high degree of homology (at both the nucleotide and amino acid levels) to the corresponding genes from Methylosinus trichosporium OB3b, Methylocystis sp. strain M, and Methylococcus capsulatus (Bath).  相似文献   

20.
We examined cooxidation of three different dichloroethenes (1,1-DCE, 1,2-trans DCE, and 1,2-cis DCE) by butane monooxygenase (BMO) in the butane-utilizing bacterium “Pseudomonas butanovora.” Different organic acids were tested as exogenous reductant sources for this process. In addition, we determined if DCEs could serve as surrogate inducers of BMO gene expression. Lactic acid supported greater rates of oxidation of the three DCEs than the other organic acids tested. The impacts of lactic acid-supported DCE oxidation on BMO activity differed among the isomers. In intact cells, 50% of BMO activity was irreversibly lost after consumption of ~20 nmol mg protein−1 of 1,1-DCE and 1,2-trans DCE in 0.5 and 5 min, respectively. In contrast, a comparable loss of activity required the oxidation of 120 nmol 1,2-cis DCE mg protein−1. Oxidation of similar amounts of each DCE isomer (~20 nmol mg protein−1) produced different negative effects on lactic acid-dependent respiration. Despite 1,1-DCE being consumed 10 times faster than 1,2,-trans DCE, respiration declined at similar rates, suggesting that the product(s) of oxidation of 1,2-trans DCE was more toxic to respiration than 1,1-DCE. Lactate-grown “P. butanovora” did not express BMO activity but gained activity after exposure to butane, ethene, 1,2-cis DCE, or 1,2-trans DCE. The products of BMO activity, ethene oxide and 1-butanol, induced lacZ in a reporter strain containing lacZ fused to the BMO promoter, whereas butane, ethene, and 1,2-cis DCE did not. 1,2-trans DCE was unique among the BMO substrates tested in its ability to induce lacZ expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号