首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rad B  Kowalczykowski SC 《Biochemistry》2012,51(13):2921-2929
A member of the SF2 family of helicases, Escherichia coli RecQ, is involved in the recombination and repair of double-stranded DNA breaks and single-stranded DNA (ssDNA) gaps. Although the unwinding activity of this helicase has been studied biochemically, the mechanism of translocation remains unclear. To this end, using ssDNA of varying lengths, the steady-state ATP hydrolysis activity of RecQ was analyzed. We find that the rate of ATP hydrolysis increases with DNA length, reaching a maximum specific activity of 38 ± 2 ATP/RecQ/s. Analysis of the rate of ATP hydrolysis as a function of DNA length implies that the helicase has a processivity of 19 ± 6 nucleotides on ssDNA and that RecQ requires a minimal translocation site size of 10 ± 1 nucleotides. Using the T4 phage encoded gene 32 protein (G32P), which binds ssDNA cooperatively, to decrease the lengths of ssDNA gaps available for translocation, we observe a decrease in the rate of ATP hydrolysis activity that is related to lattice occupancy. Analysis of the activity in terms of the average gap sizes available to RecQ on the ssDNA coated with G32P indicates that RecQ translocates on ssDNA on average 46 ± 11 nucleotides before dissociating. Moreover, when bound to ssDNA, RecQ hydrolyzes ATP in a cooperative fashion, with a Hill coefficient of 2.1 ± 0.6, suggesting that at least a dimer is required for translocation on ssDNA. We present a kinetic model for translocation by RecQ on ssDNA based on this characterization.  相似文献   

2.
RecQ helicases play an essential role in maintaining genetic integrity in all organisms from Escherichia coli to humans. Defects to these enzymes are responsible for three distinct human diseases: Werner syndrome, Bloom syndrome and Rothmund-Thomson syndrome. All three diseases are characterized by a predisposition to cancer due to increased genomic instability. Previous studies on the effects of non-covalent DNA modifications on the catalytic activity of purified Werner and Bloom DNA helicases have shown that both enzymes have similar sensitivity profiles to these DNA-binding agents and are most strongly inhibited by the minor groove binder distamycin A. In this study, we show that the sensitivity profiles of E. coli RecQ to a number of DNA-binding ligands are different to those observed for WRN and Bloom helicases. These observations may give insights into the differences in molecular mechanisms underlying efficient motor function of RecQ helicases.  相似文献   

3.
We demonstrate that RecQ helicase from Escherichia coli is a catalytic helicase whose activity depends on the concentration of ATP, free magnesium ion, and single-stranded DNA-binding (SSB) protein. Helicase activity is cooperative in ATP concentration, with an apparent S(0.5) value for ATP of 200 microm and a Hill coefficient of 3.3 +/- 0.3. Therefore, RecQ helicase utilizes multiple, interacting ATP-binding sites to mediate double-stranded DNA (dsDNA) unwinding, implicating a multimer of at least three subunits as the active unwinding species. Unwinding activity is independent of dsDNA ends, indicating that RecQ helicase can unwind from both internal regions and ends of dsDNA. The K(M) for dsDNA is 0.5-0.9 microm base pairs; the k(cat) for DNA unwinding is 2.3-2.7 base pairs/s/monomer of RecQ helicase; and unexpectedly, helicase activity is optimal at a free magnesium ion concentration of 0.05 mm. Omitting Escherichia coli SSB protein lowers the rate and extent of dsDNA unwinding, suggesting that RecQ helicase associates with the single-stranded DNA (ssDNA) product. In agreement, the ssDNA-dependent ATPase activity is reduced in proportion to the SSB protein concentration; in its absence, ATPase activity saturates at six nucleotides/RecQ helicase monomer and yields a k(cat) of 24 s(-1). Thus, we conclude that SSB protein stimulates RecQ helicase-mediated unwinding by both trapping the separated ssDNA strands after unwinding and preventing the formation of non-productive enzyme-ssDNA complexes.  相似文献   

4.
The DNA binding properties of the Escherichia coli RecQ helicase   总被引:6,自引:0,他引:6  
The RecQ helicase family is highly conserved from bacteria to men and plays a conserved role in the preservation of genome integrity. Its deficiency in human cells leads to a marked genomic instability that is associated with premature aging and cancer. To determine the thermodynamic parameters for the interaction of Escherichia coli RecQ helicase with DNA, equilibrium binding studies have been performed using the thermodynamic rigorous fluorescence titration technique. Steady-state fluorescence anisotropy measurements of fluorescein-labeled oligonucleotides revealed that RecQ helicase bound to DNA with an apparent binding stoichiometry of 1 protein monomer/10 nucleotides. This stoichiometry was not altered in the presence of AMPPNP (adenosine 5'-(beta,gamma-imido) triphosphate) or ADP. Analyses of RecQ helicase interactions with oligonucleotides of different lengths over a wide range of pH, NaCl, and nucleic acid concentrations indicate that the RecQ helicase has a single strong DNA binding site with an association constant at 25 degrees C of K=6.7 +/- 0.95 x 10(6) M(-1) and a cooperativity parameter of omega=25.5 +/- 1.2. Both single-stranded DNA and double-stranded DNA bind competitively to the same site. The intrinsic affinities are salt-dependent, and the formation of DNA-helicase complex is accompanied by a net release of 3-4 ions. Allosteric effects of nucleotide cofactors on RecQ binding to DNA were observed only for single-stranded DNA in the presence of 1.5 mM AMPPNP, whereas both AMPPNP and ADP had no detectable effect on double-stranded DNA binding over a large range of nucleotide cofactor concentrations.  相似文献   

5.
The RecQ helicases belong to an important family of highly conserved DNA helicases that play a key role in chromosomal maintenance, and their defects have been shown to lead to several disorders and cancer in humans. In this work, the conformational and functional properties of the Escherichia coli RecQ helicase have been determined using a wide array of biochemical and biophysical techniques. The results obtained clearly indicate that E. coli RecQ helicase is monomeric in solution up to a concentration of 20 microM and in a temperature range between 4 and 37 degrees C. Furthermore, these properties are not affected by the presence of ATP, which is strictly required for the unwinding and translocating activity of the protein, or by its nonhydrolyzable analogue 5'-adenylyl-beta,gamma-imidodiphosphate. Consistent with the structural properties, functional analysis shows that both DNA unwinding activity and single-stranded DNA-stimulated ATPase specific activity were independent of RecQ concentration. The monomeric state was further confirmed by the ATPase-deficient mutants of RecQ protein. The rate of unwinding was unchanged when the wild type RecQ helicase was mixed with the ATPase-deficient mutants, indicating that nonprotein-protein interactions were involved in the unwinding processes. Taken together, these results indicate that RecQ helicase functions as a monomer and provide new data on the structural and functional properties of RecQ helicase that may help elucidate its mechanism action.  相似文献   

6.
RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domain arrangement which comprises a helicase core, an RecQ C-terminal domain, and an auxiliary element helicase and RNaseD C-terminal (HRDC) domain, the functions of which are poorly understood. In this study, we systematically characterized the roles of the HRDC domain in E. coli RecQ in various DNA transactions by single-molecule FRET. We found that RecQ repetitively unwinds the 3′-partial duplex and fork DNA with a moderate processivity and periodically patrols on the ssDNA in the 5′-partial duplex by translocation. The HRDC domain significantly suppresses RecQ activities in the above transactions. In sharp contrast, the HRDC domain is essential for the deep and long-time unfolding of the G4 DNA structure by RecQ. Based on the observations that the HRDC domain dynamically switches between RecA core- and ssDNA-binding modes after RecQ association with DNA, we proposed a model to explain the modulation mechanism of the HRDC domain. Our findings not only provide new insights into the activities of RecQ on different substrates but also highlight the novel functions of the HRDC domain in DNA metabolisms.  相似文献   

7.
BACKGROUND: DnaB is the primary replicative helicase in Escherichia coli. Native DnaB is a hexamer of identical subunits, each consisting of a larger C-terminal domain and a smaller N-terminal domain. Electron-microscopy data show hexamers with C6 or C3 symmetry, indicating large domain movements and reversible pairwise association. RESULTS: The three-dimensional structure of the N-terminal domain of E. coli DnaB was determined by nuclear magnetic resonance (NMR) spectroscopy. Structural similarity was found with the primary dimerisation domain of a topoisomerase, the gyrase A subunit from E. coli. A monomer-dimer equilibrium was observed for the isolated N-terminal domain of DnaB. A dimer model with C2 symmetry was derived from intermolecular nuclear Overhauser effects, which is consistent with all available NMR data. CONCLUSIONS: The monomer-dimer equilibrium observed for the N-terminal domain of DnaB is likely to be of functional significance for helicase activity, by participating in the switch between C6 and C3 symmetry of the helicase hexamer.  相似文献   

8.
Nakayama H 《Mutation research》2005,577(1-2):228-236
DNA helicases of the RecQ family are distributed among most organisms and are thought to play important roles in various aspects of DNA metabolism. The founding member of the family, RecQ of Escherichia coli, was identified in a study aimed at clarifying the mechanism of thymineless death, a phenomenon underlying the mechanism for the cytotoxicity of the anticancer drug 5-fluorouracil. The present article is concerned solely with E. coli RecQ and tries to offer an integrated picture of the past and present of its study. Finally a brief discussion is given on how RecQ is involved in thymineless death.  相似文献   

9.
Substrate-specific inhibition of RecQ helicase   总被引:6,自引:3,他引:6       下载免费PDF全文
The RecQ helicases constitute a small but highly conserved helicase family. Proteins in this family are of particular interest because they are critical to maintenance of genomic stability in prokaryotes and eukaryotes. Eukaryotic RecQ helicase family members have been shown to unwind not only DNA duplexes but also DNAs with alternative structures, including structures stabilized by G quartets (G4 DNAs). We report that Escherichia coli RecQ can also unwind G4 DNAs, and that unwinding requires ATP and divalent cation. RecQ helicase is comparably active on duplex and G4 DNA substrates, as measured by direct comparison of protein activity and by competition assays. The porphyrin derivative, N-methyl mesoporphyrin IX (NMM), is a highly specific inhibitor of RecQ unwinding activity on G4 DNA but not duplex DNA: the inhibition constant (Ki) for NMM inhibition of G4 DNA unwinding is 1.7 µM, approximately two orders of magnitude below the Ki for inhibition of duplex DNA unwinding (>100 µM). NMM may therefore prove to be a valuable compound for substrate-specific inhibition of other RecQ family helicases in vitro and in vivo.  相似文献   

10.
RecQ DNA helicases are critical components of DNA replication, recombination, and repair machinery in all eukaryotes and bacteria. Eukaryotic RecQ helicases are known to associate with numerous genome maintenance proteins that modulate their cellular functions, but there is little information regarding protein complexes involving the prototypical bacterial RecQ proteins. Here we use an affinity purification scheme to identify three heterologous proteins that associate with Escherichia coli RecQ: SSB (single-stranded DNA-binding protein), exonuclease I, and RecJ exonuclease. The RecQ-SSB interaction is direct and is mediated by the RecQ winged helix subdomain and the C terminus of SSB. Interaction with SSB has important functional consequences for RecQ. SSB stimulates RecQ-mediated DNA unwinding, whereas deletion of the C-terminal RecQ-binding site from SSB produces a variant that blocks RecQ DNA binding and unwinding activities, suggesting that RecQ recognizes both the SSB C terminus and DNA in SSB.DNA nucleoprotein complexes. These findings, together with the noted interactions between human RecQ proteins and Replication Protein A, identify SSB as a broadly conserved RecQ-binding protein. These results also provide a simple model that explains RecQ integration into genome maintenance processes in E. coli through its association with SSB.  相似文献   

11.
RecQ family helicases play a key role in chromosome maintenance. Despite extensive biochemical, biophysical, and structural studies, the mechanism by which helicase unwinds double-stranded DNA remains to be elucidated. Using a wide array of biochemical and biophysical approaches, we have previously shown that the Escherichia coli RecQ helicase functions as a monomer. In this study, we have further characterized the kinetic mechanism of the RecQ-catalyzed unwinding of duplex DNA using the fluorometric stopped-flow method based on fluorescence resonance energy transfer. Our results show that RecQ helicase binds preferentially to 3'-flanking duplex DNA. Under the pre-steady-state conditions, the burst amplitude reveals a 1:1 ratio between RecQ and DNA substrate, suggesting that an active monomeric form of RecQ helicase is involved in the catalysis. Under the single-turnover conditions, the RecQ-catalyzed unwinding is independent of the 3'-tail length, indicating that functional interactions between RecQ molecules are not implicated in the DNA unwinding. It was further determined that RecQ unwinds DNA rapidly with a step size of 4 bp and a rate of approximately 21 steps/s. These kinetic results not only further support our previous conclusion that E. coli RecQ functions as a monomer but also suggest that some of the Superfamily 2 helicases may function through an "inchworm" mechanism.  相似文献   

12.
Ohhata T  Araki R  Fukumura R  Kuroiwa A  Matsuda Y  Tatsumi K  Abe M 《Gene》2000,261(2):251-258
Five members of the RecQ helicase family, RECQL, WRN, BLM, RECQL4 and RECQL5 have been identified in humans. WRN and BLM have been demonstrated to be the responsible genes in Werner and Bloom syndromes, respectively. RECQL4 (RecQ helicase protein-like 4) was identified as a fourth member of the human RecQ helicase family bearing the helicase domain, and it was subsequently shown to be the responsible gene in Rothmund-Thomson syndrome. Here, we isolated mouse RECQL4 and determined the DNA sequence of full-length cDNA as well as the genome organization and chromosome locus. The mouse RECQL4 consists of 3651 base pairs coding 1216 amino acid residues and shares 63.4% of identical and 85.8% of homologous amino acid sequences with human RECQL4. The RECQL4 gene was localized to mouse chromosome 15D3 distal-E1 and rat chromosome 7q34 proximal. They were mapped in the region where the conserved linkage homology has been identified between the two species. Twenty-two exons dispersed over 7 kilo base pairs and all of the acceptor and donor sites for splicing of each exon conformed to the GT/AG rule. Our observations regarding mouse RECQL4 gene will contribute to functional studies on the RECQL4 products.  相似文献   

13.
RNase E is an essential endoribonuclease that plays a central role in the processing and degradation of RNA in Escherichia coli and other bacteria. Most endoribonucleases have been shown to act distributively; however, Feng et al. [(2002) Proc. Natl. Acad. Sci. U.S.A. 99, 14746-14751] have recently found that RNase E acts via a scanning mechanism. A structural explanation for the processivity of RNase E is provided here, with our finding that the conserved catalytic domain of E. coli RNase E forms a homotetramer. Nondissociating nanoflow-electrospray mass spectrometry suggests that the tetramer binds up to four molecules of a specific substrate RNA analogue. The tetrameric assembly of the N-terminal domain of RNase E is consistent with crystallographic analyses, which indicate that the tetramer possesses approximate D(2) dihedral symmetry. Using X-ray solution scattering data and symmetry restraints, a solution shape is calculated for the tetramer. This shape, together with limited proteolysis data, suggests that the S1-RNA binding domains of RNase E lie on the periphery of the tetramer. These observations have implications for the structure and function of the RNase E/RNase G ribonuclease family and for the assembly of the E. coli RNA degradosome, in which RNase E is the central component.  相似文献   

14.
RecQ helicases are a ubiquitous family of DNA unwinding enzymes required to preserve genome integrity, thus preventing premature aging and cancer formation. The five human representatives of this family play non-redundant roles in the suppression of genome instability using a combination of enzymatic activities that specifically characterize each member of the family. These enzymes are in fact not only able to catalyze the transient opening of DNA duplexes, as any other conventional helicase, but can also promote annealing of complementary strands, branch migration of Holliday junctions and, in some cases, excision of ssDNA tails. Remarkably, the balance between these different activities seems to be regulated by protein oligomerization. This review illustrates the recent progress made in the definition of the structural determinants that control the different enzymatic activities of RecQ helicases and speculates on the possible mechanisms that RecQ proteins might use to promote their multiple functions.  相似文献   

15.
16.
Identification of a putative RNA helicase in E.coli.   总被引:7,自引:2,他引:5       下载免费PDF全文
The human p68 protein, an SV40 large T related antigen, is an RNA dependent ATPase and RNA helicase. It belongs to a new large and highly conserved gene family, the DEAD box proteins, whose members are involved in a variety of processes requiring manipulation of RNA secondary structure such as translation and splicing. Multiple DEAD box genes are present in S.cerevisiae, but only one has previously been described in E.coli. Low stringency screening of an E.coli genomic library with a p68 cDNA probe led to the identification of dbpA, a new E.coli DEAD box gene located at 29.6 minutes on the W3110 chromosome. We report here the nucleotide and deduced amino acid sequences of the gene. We have overexpressed dbpA from its own promoter on a high copy number plasmid and identified the gene product as a approximately 50 kD protein by immunoblotting with an anti-DEAD antibody.  相似文献   

17.
Stalled DNA replication forks can result in incompletely replicated genomes and cell death. DNA replication restart pathways have evolved to deal with repair of stalled forks and E. coli Rep helicase functions in this capacity. Rep and an accessory protein, PriC, assemble at a stalled replication fork to facilitate loading of other replication proteins. A Rep monomer is a rapid and processive single stranded (ss) DNA translocase but needs to be activated to function as a helicase. Activation of Rep in vitro requires self-assembly to form a dimer, removal of its auto-inhibitory 2B sub-domain, or interactions with an accessory protein. Rep helicase activity has been shown to be stimulated by PriC, although the mechanism of activation is not clear. Using stopped flow kinetics, analytical sedimentation and single molecule fluorescence methods, we show that a PriC dimer activates the Rep monomer helicase and can also stimulate the Rep dimer helicase. We show that PriC can self-assemble to form dimers and tetramers and that Rep and PriC interact in the absence of DNA. We further show that PriC serves as a Rep processivity factor, presumably co-translocating with Rep during DNA unwinding. Activation is specific for Rep since PriC does not activate the UvrD helicase. Interaction of PriC with the C-terminal acidic tip of the ssDNA binding protein, SSB, eliminates Rep activation by stabilizing the PriC monomer. This suggests a likely mechanism for Rep activation by PriC at a stalled replication fork.  相似文献   

18.
Lamers MH  Georgescu RE  Lee SG  O'Donnell M  Kuriyan J 《Cell》2006,126(5):881-892
Bacterial replicative DNA polymerases such as Polymerase III (Pol III) share no sequence similarity with other polymerases. The crystal structure, determined at 2.3 A resolution, of a large fragment of Pol III (residues 1-917), reveals a unique chain fold with localized similarity in the catalytic domain to DNA polymerase beta and related nucleotidyltransferases. The structure of Pol III is strikingly different from those of members of the canonical DNA polymerase families, which include eukaryotic replicative polymerases, suggesting that the DNA replication machinery in bacteria arose independently. A structural element near the active site in Pol III that is not present in nucleotidyltransferases but which resembles an element at the active sites of some canonical DNA polymerases suggests that, at a more distant level, all DNA polymerases may share a common ancestor. The structure also suggests a model for interaction of Pol III with the sliding clamp and DNA.  相似文献   

19.
20.
Sidorova JM 《DNA Repair》2008,7(11):1776-1786
Congenital deficiency in the WRN protein, a member of the human RecQ helicase family, gives rise to Werner syndrome, a genetic instability and cancer predisposition disorder with features of premature aging. Cellular roles of WRN are not fully elucidated. WRN has been implicated in telomere maintenance, homologous recombination, DNA repair, and other processes. Here I review the available data that directly address the role of WRN in preserving DNA integrity during replication and propose that WRN can function in coordinating replication fork progression with replication stress-induced fork remodeling. I further discuss this role of WRN within the contexts of damage tolerance group of regulatory pathways, and redundancy and cooperation with other RecQ helicases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号