首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In an attempt to optimize immunosensors operating with an immobilized antibody as binding protein and an analyte-enzyme conjugate as signal generator that is significantly larger in molecular size than the analyte, in a previous communication (Part I) (S.-H. Paek and W. Schramm (1991) Anal. Biochem. 196) we developed mathematical models for the prediction of performance characteristics. These models are compared in this contribution with experimentally obtained results. As an example, a monoclonal antibody to the steroid hormone progesterone has been used as binding protein, an 125I-progesterone derivative, and a progesterone-horseradish peroxidase derivative as tracers for signal generation. A minimum of parameters needs to be experimentally determined to calculate the performance: the amount of immobilized antibody, the diffusion coefficient of antigens, the thickness of the penetration layer, and the on- and off-rates for binding of the antigen to the antibody. We have described simple methods to obtain these data for the labeled antigen and for the unlabeled analyte that does not provide a signal per se. Kinetic binding curves for antigen-antibody complex formation obtained with the mathematical models correlated well with experimentally obtained results for antigens of different sizes. Although equilibrium of the antigen-antibody complex for the enzyme-labeled analyte conjugate requires about 4 h in the absence of free analyte, dose-response curves can be obtained after 5 min and the relative position of these curves does not change significantly after 30 min. Using a total volume of 200 microliters for the analytical procedure in microtiter wells, agitation as a means to accelerate convective diffusion during an incubation period of 30 min is not necessary with the analyte-enzyme conjugate. However, immunosensors using large analyte-enzyme conjugates as signal generators for the detection of small analytes require strict control of the incubation time if operated within short periods of time (less than 30 min).  相似文献   

2.
We have investigated the application of a modified, heterogeneous, competitive enzyme immunoassay for the continuous measurement of small analytes in a medium stream. The analytical system contains two antibodies that are immobilized on spatially separated areas, one binding the analyte (Ab1) and the other binding the enzyme (Ab2). An analyte-enzyme conjugate serves as signal generator. The analyte-enzyme conjugate functions as a heterobifunctional shuttle that can bind to either antibody. A semipermeable membrane retains the enzyme shuttle in the internal volume of the sensor but permits the passage of small analytes from the medium stream. The amount of enzyme bound to Ab1 is inversely proportional and the amount of enzyme bound to Ab2 is directly proportional to the analyte concentration. We have demonstrated that this analytical system (1) can provide a larger total signal; (2) has a sensitivity comparable with conventional competitive immunoassays; (3) does not require the separation of bound from free antigens; and (4) is therefore suitable for the continuous measurement of analytes in a medium stream. With a model system, an increase from 0 ng ml-1 to 20 ng ml-1 of the steroid hormone progesterone and the subsequent fall to 0 ng ml-1 could be monitored.  相似文献   

3.
The concept of a competitive enzyme immunoassay that utilizes simultaneously the bound and the free analyte-enzyme conjugate (heterobifunctional conjugate) for signal generation in response to varying analyte concentrations in samples has been investigated. Two antigenic sites of the heterobifunctional conjugate are used in the assay for binding to immunoglobulins: the analyte derivative binds to an immobilized antibody, Ab(1), and the enzyme component binds to a spatially separated immobilized antibody, Ab(2). The analytical system is set up such that in the absence of analyte, the conjugate is predominantly bound in the compartment that contains Ab(1). With increasing concentration of native analyte in samples, an increasing concentration of native analyte in samples, an increasing amount of conjugate migrates to the second compartment that contains Ab(2). The enzyme bound in each compartment is used for signal generation. Mathematical models have been developed to determine the optimal conditions and to predict the performance of such dual-antibody systems. The theoretical predictions are supported by experimental results. The dual-antibody system has been compared with a conventional competitive enzyme immunoassay using the same reagents.  相似文献   

4.
Factors that control the performance of a reversible immunosensor with an analyte (progesterone)-enzyme (horseradish peroxidase) conjugate as signal generator have been investigated. The conjugate is used in conjunction with two antibodies, which are specific to progesterone and to horseradish peroxidase, immobilized on two spatially separated polypropylene mesh discs. The conjugate and two antibodies are confined to an internal compartment of a microdialyzer by a semipermeable membrane. The small analyte from an external medium permeates across the membrane into the internal compartment where the analyte concentration determines the relative amounts of the bound conjugate on the two solid surfaces. By measuring two signals from the conjugate bound at two separate sites, we experimentally obtained time-response curves to a concentration pulse of the external analyte. A mathematical (kinetic) model describing the sensor system was developed and used for the determination of rate-limiting factors. In semicontinuous monitoring of the analyte concentrations, operation of the immunosensor with the enzyme conjugate as signal generator required special attention to (a) enzyme stability, (b) analyte permeation (dependence on medium components), and (c) kinetics related to the different accessibility to the same antibody of the small analyte (to be measured) vs. the larger counterpart on the enzyme conjugate (for signal generation). (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 221-231, 1997.  相似文献   

5.
Development of rapid one-step immunochromatographic assay   总被引:15,自引:0,他引:15  
An analytical system for a one-step immunoassay has been constructed using the concept of immunochromatography. The system employed two different antibodies that bound distinct epitopes of an analyte molecule: an antibody labeled with a signal generator (e.g., colloidal gold), which was placed in the dry state at a predetermined site on a glass-fiber membrane, and another antibody immobilized on the surface of a nitrocellulose membrane. Three membranes, one with the tracer, one with immobilized antibody, and a cellulose membrane as the absorbent of medium (in a sequence from the bottom), were attached to a plastic film and cut into strips. Aqueous medium containing analyte absorbed from the bottom end of the immunostrip dissolved the labeled antibody, and the antigen-antibody binding complex formed was transported into the next nitrocellulose membrane by the flow caused by capillary action. The complex subsequently reacted with the immobilized antibody, which generated a signal in proportion to the analyte concentration. The convective mass transfer of the immunoreactant to the binding partner allowed the assay to be performed with no handling of reagents. The reaction, however, was carried out under nonequilibrium conditions, which resulted in decreased sensitivity as compared with assays performed in an equilibrium mode (e.g., ELISA). To minimize such sacrifice, major factors that control system performance were identified and the system was then devised under optimal conditions.  相似文献   

6.
We have investigated the complex formation between an immobilized monoclonal antibody and antigens that differ in size about 50-fold. As a model system, we used an iodinated progesterone derivative and a progesterone-horseradish peroxidase conjugate as tracer and a monoclonal antibody as binding protein. The antibody was immobilized by four different methods: physical adsorption, chemical binding, and binding via protein G in the absence or presence of a protective protein (gelatin). These investigations have shown that the performance of competitive immunoassays is determined by a combination of factors: (a) the relative size of the analyte and the tracer, (b) the antibody density on the solid matrix, (c) the method of immobilization of the antibody, and (d) the binding constants between antibody-analyte and antibody-tracer. All of these interactions have to be considered in designing an optimal immunoassay. The smaller antigen can form a 3- to 35-fold higher maximal complex density than the larger antigen. Dose-response curves are less affected by the size of the tracer than by the binding constant with the antibody. A large enzyme tracer with a relatively low binding constant can, therefore, provide a more sensitive assay. On the other hand, the increase in complex density achieved with a smaller tracer yields a higher signal that in turn can provide a better signal-to-noise ratio in highly sensitive competitive solid-phase immunoassays. We have suggested a model for antibody immobilization that accounts for the interdependence of tracer size, complex formation, and antibody density. The methods described can be used to design and optimize immunoassays of predefined performance characteristics. The results are particularly useful for converting radioimmunoassays to enzyme immunoassays.  相似文献   

7.
A concept based on the Peroxidase-chip (P-chip), antibody co-immobilization, competitive and enzyme-channeling principle was exploited to develop an integrated flow-through amperometric biosensor for detection of environmental pollutants such as s-triazine herbicides. In this concept, recombinant peroxidase is immobilized on the gold electrode (P-chip) in such a way that direct electron transfer is achieved. The recognition and quantitation the target analyte is realized through the competition between the simazine-glucose oxidase (GOD) conjugate and free simazine for the binding sites of the monoclonal antibody co-immobilized with peroxidase on the gold electrode. The arrangement allows to generate a specific signal in the presence of glucose through the channeling of H2O2 produced by GOD conjugate bound to the antibody. The immunosensor exhibited 50% signal decrease (IC50 value) at approximately 0.02 microg l(-1). A concentration of 0.1 ng l(-1) gave a signal clearly distinguishable from the blank whereas the ELISA using the same antibody had a typical detection limit of about 1 microg l(-1), which is four orders of magnitude higher compared to the presented biosensor system. The results demonstrated that gene engineering biomolecules, in this case recombinant peroxidase, might be attractive reagents for the development of electrochemical immunosensors.  相似文献   

8.
The green fluorescent protein (GFP) and its mutants have been extensively used to study various cellular processes and, more recently, as labels in binding assays. We have employed a mutant of GFP, an enhanced GFP (EGFP), in the development of homogeneous assays for biotin and cortisol. To demonstrate the feasibility of using EGFP as a label with different kinds of binders in the development of homogeneous assays, we employed the biotin-avidin and an antigen-antibody as the binding pairs. Biotin and cortisol were chemically conjugated to EGFP. A quenching of fluorescence intensity of EGFP was observed upon binding of avidin to the EGFP-biotin conjugate. The percentage fluorescence quenching observed decreased as the concentration of free biotin in the sample increased due to the fewer binding sites on avidin available for binding to the EGFP-biotin conjugate. A dose-response curve for biotin was generated by relating percentage fluorescence quenched with free biotin in the sample. To determine whether EGFP can undergo a similar type of homogeneous change when used as a label for antigen-antibody type of binding, cortisol was selected as a model analyte. In the presence of an anti-cortisol antibody the fluorescence signal of the EGFP-cortisol conjugate was quenched. A dose-response curve for cortisol was generated by relating the quenching in the fluorescence signal with varying amounts of free cortisol in the sample. This is the first time that GFP or one of its mutants has been employed as a label in homogeneous assays, thus enhancing the versatility of employing GFP or its mutants in a number of bioanalytical applications, such as clinical analysis and high-throughput screening systems.  相似文献   

9.
A surface plasmon resonance (SPR)-immunosensor for detection of benzo[a]pyrene (BaP) is developed by using a model BaP-hapten compound, BaP-bovine serum albumin conjugate (BaP-BSA), and an anti-BaP-BSA monoclonal antibody. BaP-BSA conjugate is immobilized on a gold thin-film sensor chip by means of simple physical adsorption. The number of BaP-hapten units in BaP-BSA conjugate is estimated to be 28 from the difference in molecular weight (MW) between BaP-BSA conjugate and BSA based on the results of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) measurement. Anti-BaP-BSA antibody on contact with the BaP-BSA conjugate immobilized sensor chip causes an increase in the incident angle of the sensor chip. Binding of anti-BaP-BSA antibody with surface-immobilized BaP-BSA conjugate is inhibited by the presence of BaP in analyte solution, because of the inhibition effect of BaP. The SPR immunosensor for BaP functioning with the indirect competitive immunoreaction of anti-BaP-BSA antibody between the analyte (BaP) in testing solution and the BaP-BSA conjugate immobilized on the sensor chip provides a rapid determination (response time: ca. 15 min) of BaP in the concentration range of 0.01-1000 ppb. The antibody anchored to the sensor chip by antigen-antibody binding is removed on treatment with a pepsin solution (pH 2.0) for few minutes. The SPR sensor chip is found to be reusable for more than 20 times with a little decrease (<7%) in the sensor response. Detection of BaP by direct competitive immunoreactions is also carried out by enzyme-linked immunosorbent assay (ELISA). The concentration of BaP could be determined as low as 0.01 ppb and 2 ppb using the SPR sensor and the ELISA method, respectively. The SPR sensor is found to detect BaP selectively in the presence of 2-hydroxybiphenyl (HBP); the incident angle shift of the SPR sensor for BaP is found to be same irrespective to the presence or the absence of a same concentration (as much as 30 ppb) of HBP together.  相似文献   

10.
A capacitive biosensor with polyclonal antibodies raised against human serum albumin (HSA) immobilized on a gold transducer has been developed for continuous measurement of HSA in the muM-range. A mathematical model has been refined to describe integral HSA-binding curves assuming that (i) binding is essentially irreversible under the conditions used, (ii) the signal is scaled as the number of non-occupied binding sites and (iii) the rate of disappearance of available binding sites is scaled as the number of available binding sites and analyte concentration in solution. Deconvolution of the curves using the mathematical model indicates clearly that it is possible to retrieve concentration profiles (isocratic, linearly or exponentially increasing gradients) of the analyte in the continuous sample flow from the normalized integral binding (NIB) curves. The data presented constitutes the theoretical background and the first step towards the development of an analytical system allowing on-line detection of the concentration profile of the analyte from NIB-curves. Since the system can be used for extended time periods between regeneration steps, a low frequency of regeneration steps can be expected.  相似文献   

11.
An immunochromatographic assay system was devised that can express the concentration ranges of analyte (e.g., urinary human serum albumin) as distinct numbers of the ladder bar (bar coding) for semiquantitation. We constructed a model system consisting of five membrane pad strips partially superimposed in a length. Upon wicking of sample from the bottom, the medium dissolved two different biotinylated species, antibody to the analyte and conjugates of the antibody with colloidal gold, and antigen-antibody reactions took place in the hollow space of the glass fiber membrane. After eliminating unreacted biotinylated molecules at the next strip with an immobilized albumin, the immune complexes were transferred to the pad with streptavidin immobilized in a ladder bar pattern. Analytical conditions here were set for competition between the two biotinylated species for the streptavidin binding sites. The degree of such competition was proportional to the analyte concentration and, consequently, the bar signal number was elevated as the concentration increased. Under optimal conditions for sensitivity, the analytical system responded to the analyte doses at between 30 and 120 mg/dL by producing different bar codes within 5 min.  相似文献   

12.
An electrochemical biosensor for cow's milk progesterone has been developed and used in a competitive immunoassay under thin-layer, continuous-flow conditions. Single-use biosensors were fabricated by depositing anti-progesterone monoclonal antibody (mAb) onto screen-printed carbon electrodes (SPCEs). Three operational steps could be identified: (1) Competitive binding of sample/conjugate (alkaline-phosphatase-labelled progesterone, AP-prog) mixture, (2) establishment of a steady-state amperometric baseline current and (3), measurement of an amperometric signal in the presence of enzyme substrate (1-naphthyl phosphate, 1-NP). In the thin-layer cell, the enzyme product, 1-naphthol, showed electrochemical behaviour consistent with bulk conditions and gave a linear amperometric response under continuous-flow conditions (Eapp=+0.3 V vs. Ag/AgCl) over the range 0.1–1.0 μg/ml. After pre-incubating biosensors with progesterone standards, signal generation within the cell (substrate CONCENTRATION=5 mM) was recorded amperometrically as rate (nA/s) or maximum current (imax, nA). Response values for milk standards were approximately 50% of those prepared in buffer. In both cases, calibration plots over the range 0–50 ng/ml progesterone were obtained. By conducting sample binding under flowing conditions, only 7% of the previous response was obtained, even at a substrate concentration of 50 mM, resulting in low signal:noise ratio. Using a stop-flow arrangement (i.e. quiescent sample binding, followed by continuous flow), low-noise amperograms were obtained at [1-NP]=5 mM. Calibration plots were obtained over the range 0–25 ng/ml, with a coefficient of variation of 12.5% for five replicate real milk samples.  相似文献   

13.
This study evaluated construction of a highly affinitive quartz crystal microbalance (QCM) immunosensor using anti-C-reactive protein (CRP) antibody and its fragments for CRP detection. Three types of antibody were immobilized on the surface of a QCM via covalent-bounding. Then affinity was evaluated through antigen-antibody binding between CRP and its antibody. Affinity between antigen-antibody was shown to be highest when anti-CRP F(ab')2-IgG antibody (70 microg/mL) was immobilized on the QCM. In case of anti-CRP F(ab')2-IgG antibody, affinity which was attributable to antigen-antibody binding was almost twice that of anti-CRP IgG antibody, which is used conventionally for QCM immunosensors. In addition, when it was treated with 2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate, so-called MPC polymer, highly affinitive and selective immunosensing for CRP was achieved without non-specific binding from plasma proteins in human serum. When anti-CRP F(ab')2-IgG antibody was immobilized on the QCM, the detection limit and the linearity of CRP calibration curve were achieved at concentrations from 0.001 to 100 microg/dL even during investigation in serum samples. Experimental results verified the successful construction of a highly affinitive and selective QCM-immunosensor which was modified with anti-CRP F(ab')2-IgG antibody and MPC polymer.  相似文献   

14.
The challenges in developing practical immunosensors lie in converting (without added reagents) the binding event into an electrical or optical signal, and in creating fully reversible systems capable of monitoring both increases and decreases in analyte concentration. Numerous approaches are under investigation, some of which should lead to commercial products within a couple of years; their strengths and limitations are reviewed.  相似文献   

15.
A disposable and mediatorless immunosensor based on a conducting polymer (5,2':5'2"-terthiophene-3'-carboxylic acid) coated screen-printed carbon electrode has been developed using a separation-free homogeneous technique for the detection of rabbit IgG as a model analyte. Horseradish peroxidase (HRP) and streptavidin were covalently bonded with the polymer on the electrode and biotinylated antibody was immobilized on the electrode surface using avidin-biotin coupling. This sensor was based on the competitive assay between free and labeled antigen for the available binding sites of antibody. Glucose oxidase was used as a label and in the presence of glucose, H(2)O(2) formed by the analyte-enzyme conjugate was reduced by the enzyme channeling via HRP bonded on the electrode. The catalytic current was monitored amperometrically at -0.35 V vs. Ag/AgCl and this method showed a linear range of RIgG concentrations from 0.5 to 2 microg/ml with standard deviation +/-0.0145 (n=4). Detection limit was determined to be 0.33 microg/ml.  相似文献   

16.
To achieve a high efficiency of analyte capture by a capture antibody attached to an electrochemical immunosensor, we have immobilised an analyte-specific antibody on a self-assembled layer of recombinant Protein G that was thiolated with succinimidyl-6-[3'-(2-pyridyldithio)-propionamido] hexanoate (LC-SPDP). Then two techniques were employed for conjugating a second antigen-specific antibody to alkaline phosphatase (mAb2-AP) using either LC-SPDP or the biotin-streptavidin interaction as the mode of cross-linking the antibody and enzyme. After characterising the two mAb2-AP preparations (mAb2-(LC-SPDP)-AP and mAb2-(Biotin-SA)-AP), they were each used as the signal antibody for immunosensors formatted for two-site immunoassays where the capture antibody was attached to a Protein G-(LC-SPDP) scaffold on gold electrodes. The antibodies and assays were specific for the clinically important hormone, human chorionic gonadotrophin (hCG). Protein G-(LC-SPDP) provided a stable scaffold, while mAb2-(LC-SPDP)-AP and mAb2-(Biotin-SA)-AP performed well as the signal antibodies. Immunosensors with mAb2-(Biotin-SA)-AP were characterised by a limit of detection of 216 I UL(-1) for hCG and a linear response up to approximately 2000 I UL(-1). Conversely, immunosensors with mAb2-(LC-SPDP)-AP exhibited a limit of detection of 240 I UL(-1) and a linear response up to 4000 I UL(-1).  相似文献   

17.
Homogeneous assays are attractive because they are performed in only one phase, namely, the liquid phase, and thus, they do not require separation of phases as their heterogeneous counterparts do. As opposed to heterogeneous assays, the signal generation in a homogeneous assay is a direct result of analyte binding, which allows the multiple washing and incubation steps required in an indirect heterogeneous assay format to be eliminated. Moreover, homogeneous assays are usually fast and amenable to miniaturization and automation. In this article, we describe the development of a homogeneous assay for the hormone cortisol using the bioluminescent photoprotein aequorin as a reporter molecule. A cortisol derivative was chemically conjugated to the lysine residues of a genetically modified aequorin in order to prepare an aequorin-cortisol conjugate capable of binding anticortisol antibodies. The binding of anticortisol antibodies to the aequorin-cortisol conjugate resulted in a linear response reflected in the emission of bioluminescence by aequorin. A competitive binding assay was developed by simultaneously incubating the aequorin-cortisol conjugate, the anticortisol antibodies, and the sample containing free cortisol. Dose-response curves were generated relating the intensity of the bioluminescence signal with the concentration of free cortisol in the sample. The optimized homogeneous immunoassay produced a detection limit of 1 x 10 (-10) M of free cortisol, with a linear dynamic range spanning from 1 x 10 (-5) to 1 x 10 (-9) M. Both serum and salivary levels of cortisol fall well within this assay's linear range (3.0 x 10 (-7) M to 7.5 x 10 (-7) M and 1.0 x 10 (-8) M to 2.5 x 10 (-8) M, respectively), thereby making this assay attractive for the analysis of this hormone in biological samples. To that end, it was demonstrated that the assay can be reliably used to measure the concentration of free cortisol in saliva without significant pretreatment of the sample.  相似文献   

18.
A study of antibody immobilisation techniques on quartz and fibre optic surfaces for immunosensors has been carried out. Methods of covalent antibody immobilisation which have not previously been applied to optical fibres were investigated, and compared with classical methods found in the literature. Preliminary experiments on covalent immobilisation methods on planar quartz surfaces were conducted to enable us to choose the most suitable protein immobilisation technique for sensor applications. The immobilisation studies were directed in particular towards obtaining a high density of binding sites for the analyte of interest. Two of the most promising methods, antibody immobilisation on surfaces coated with dextran based hydrogel and F(ab')-SH fragments bound to silanised glass, which resulted in surface densities of active sites of above 0.45 pmol/cm2, were selected for further experiments on a fibre optic total internal reflection fluorescence immunosensor and gave satisfactory responses to changes in analyte concentrations of the order of 10(-8) M. The efficiency of polar organic solvents, such as dimethylsulfoxide, in dissociating the antigen-antibody complex and hence to regenerate the immunosensor surface was also evaluated.  相似文献   

19.
A modified procedure has been worked out for preparing a conjugate of porcine insulin with E. coli beta-galactosidase employing a heterobifunctional reagent, N-hydroxysuccinimidyl m-maleimidobenzoate. Optimal conditions for insulin acylation and subsequent coupling with beta-galactosidase were selected that afforded the conjugate in a high yield. The ability of the modified antigen to react with antibody was evaluated in the reaction of conjugate binding with immobilized monoclonal antibody to insulin. The conjugate almost completely retained the enzymatic activity and reacted with high specificity with the antibody to insulin. The conjugate can be used in competitive ELISA of insulin.  相似文献   

20.
An electrochemical biosensor for progesterone in cow's milk was developed and used in a competitive immunoassay by Hart et al. (1977, Studies towards a disposable screenprinted amperometric biosensor for progesterone, Biosens. Bioelectron. 12, 1113-1121). The sensor was fabricated by depositing anti-progesterone monoclonal antibody (mAb) onto screen-printed carbon electrodes (SPCEs) which were coated with rabbit anti-sheep IgG (rIgG). This sensor was operated following the steps of competitive binding between sample and conjugate (alkaline-phosphatase-labelled progesterone) for the immobilised mAb sites and measurements of an amperometric signal in the presence of p-nitrophenylphosphate using either colorimetric assays or cyclic voltammetry. The hook effect of the progesterone biosensor was found in the concentration range of milk progesterone between 0 and 5 ng/ml when the sensor was fabricated using a loading of 25 ng rIgG per electrode of a diameter of 3 mm and a 1/50 dilution of mAb. A computer model has been developed in this study to simulate the operation of this progesterone biosensor with consideration of the fabrication processes. This paper presents the results of validating the computer model and the model has predicted the hook effect as observed in tests. The model thus reveals that the hook effect is determined by the total number of binding sites available and the rates of labelled and unlabelled progesterone diffusing towards the sensor surface and the binding rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号