首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Lyon CJ  Evans CJ  Bill BR  Otsuka AJ  Aguilera RJ 《Gene》2000,252(1-2):147-154
The Caenorhabditis elegans nuc-1 gene has previously been implicated in programmed cell death due to the presence of persistent undegraded apoptotic DNA in nuc-1 mutant animals. In this report, we describe the cloning and characterization of nuc-1, which encodes an acidic nuclease with significant sequence similarity to mammalian DNase II. Database searches performed with human DNase II protein sequence revealed a significant similarity with the predicted C. elegans C07B5.5 ORF. Subsequent analysis of crude C. elegans protein extracts revealed that wild-type animals contained a potent endonuclease activity with a cleavage preference similar to DNase II, while nuc-1 mutant worms demonstrated a marked reduction in this nuclease activity. Sequence analysis of C07B5.5 DNA and mRNA also revealed that nuc-1(e1392), but not wild-type animals contained a nonsense mutation within the CO7B5.5 coding region. Furthermore, nuc-1 transgenic lines carrying the wild-type C07B5.5 locus demonstrated a complete complementation of the nuc-1 mutant phenotype. Our results therefore provide compelling evidence that the C07B5.5 gene encodes the NUC-1 apoptotic nuclease and that this nuclease is related in sequence and activity to DNase II.  相似文献   

4.
5.
Several mutant forms of staphylococcal nuclease with one or two defined amino acid substitutions have been purified, and the effects of the altered amino acid sequence on the stability of the folded conformation have been analyzed by guanidine hydrochloride denaturation. Two nuc- mutations, which greatly reduced the level of enzyme activity accumulated in E coli colonies carrying a recombinant plasmid with the mutant nuc gene (ie, a NUC- phenotype), both result in protein unfolding at significantly lower guanidine hydrochloride concentrations than the wild-type protein, whereas three sup mutations isolated on the basis of their ability to suppress partially the NUC- phenotype of the above two mutations result in unfolding at significantly higher guanidine hydrochloride concentrations. Characterization of nuclease molecules with two different amino acid substitutions, either nuc- + sup pairs or sup + sup pairs, suggests that the effect of an amino acid substitution on the stability of the native conformation, as measured by the value of delta delta GD, may not be a constant, but rather a variable that is sensitive to the presence of other substitutions at distant sites in the same molecule. Surprisingly, the slopes of the log Kapp vs guanidine hydrochloride concentration plots vary by as much as 35% among the different proteins.  相似文献   

6.
7.
8.
In Neurospora crassa, the phosphate-metabolizing enzymes are made during phosphate starvation, but not under phosphate sufficiency. The synthesis of these enzymes is controlled by three regulatory genes: pcon-nuc-2, preg and nuc-1, pcon-nuc-2 and preg are closely linked. A model of the hierarchical relationships among these regulatory genes is presented. Studies of double mutants and revertants confirm several predictions of the model. It has been found that nuc-2 (null) and pcon-c (constitutive) mutations reside in the same cistron. preg-c (constitutive) mutations are epistatic to nuc-2 mutations. nuc-1 (null) mutations are epistatic to all others.  相似文献   

9.
DNase II enzymes are acidic endonucleases that have been implicated in mediating apoptotic DNA degradation, a critical cell death execution event. C. elegans genome contains three DNase II homologues, NUC-1, CRN-6, and CRN-7, but their expression patterns, acting sites, and roles in apoptotic DNA degradation and development are unclear. We have conducted a comprehensive analysis of three C. elegans DNase II genes and found that nuc-1 plays a major role, crn-6 plays an auxiliary role, and crn-7 plays a negligible role in resolving 3′ OH DNA breaks generated in apoptotic cells. Promoter swapping experiments suggest that crn-6 but not crn-7 can partially substitute for nuc-1 in mediating apoptotic DNA degradation and both fail to replace nuc-1 in degrading bacterial DNA in intestine. Despite of their restricted and largely non-overlapping expression patterns, both CRN-6 and NUC-1 can mediate apoptotic DNA degradation in many cells, suggesting that they are likely secreted nucleases that are retaken up by other cells to exert DNA degradation functions. Removal or disruption of NUC-1 secretion signal eliminates NUC-1''s ability to mediate DNA degradation across its expression border. Furthermore, blocking cell corpse engulfment does not affect apoptotic DNA degradation mediated by nuc-1, suggesting that NUC-1 acts in apoptotic cells rather than in phagocytes to resolve 3′ OH DNA breaks. Our study illustrates how multiple DNase II nucleases play differential roles in apoptotic DNA degradation and development and reveals an unexpected mode of DNase II action in mediating DNA degradation.  相似文献   

10.
11.
Generation of DNA fragments is a hallmark of cell apoptosis and is executed within the dying cells (autonomous) or in the engulfing cells (non-autonomous). The TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labelling) method is used as an in situ assay of apoptosis by labelling DNA fragments generated by caspase-associated DNase (CAD), but not those by the downstream DNase II. In the present study, we report a method of ToLFP (topoisomerase ligation fluorescence probes) for directly visualizing DNA fragments generated by DNase II in Caenorhabditis elegans embryos. ToLFP analysis provided the first demonstration of a cell autonomous mode of DNase II activity in dying cells in ced-1 embryos, which are defective in engulfing apoptotic bodies. Compared with the number of ToLFP signals between ced-1 and wild-type (N2) embryos, a 30% increase in N2 embryos was found, suggesting that the ratio of non-autonomous and autonomous modes of DNase II was ~3–7. Among three DNase II mutant embryos (nuc-1, crn-6 and crn-7), nuc-1 embryos exhibited the least number of ToLFP. The ToLFP results confirmed the previous findings that NUC-1 is the major DNase II for degrading apoptotic DNA. To further elucidate NUC-1′s mode of action, nuc-1-rescuing transgenic worms that ectopically express free or membrane-bound forms of NUC-1 fusion proteins were utilized. ToLFP analyses revealed that anteriorly expressed NUC-1 digests apoptotic DNA in posterior blastomeres in a non-autonomous and secretion-dependent manner. Collectively, we demonstrate that the ToLFP method can be used to differentiate the locations of blastomeres where DNase II acts autonomously or non-autonomously in degrading apoptotic DNA.  相似文献   

12.
13.
14.
植物对磷酸盐的吸收与利用主要依靠磷转运蛋白,其中PHT2家族编码的低亲和磷转运蛋白主要负责植物在正常供磷条件下磷酸盐的吸收、转运与再利用。为了探究低亲和磷转运蛋白基因NtPHT2;1在烟草转运磷酸盐中的作用和表达模式,本研究以普通烟草K326的cDNA为模板,克隆得到NtPHT2;1,对该基因进行生物信息学分析和蛋白质的亚细胞定位,并通过荧光定量PCR技术对该基因在低磷等非生物胁迫下的基因表达模式进行分析。结果表明:(1)NtPHT2;1基因的全长为1 764 bp,编码587个氨基酸。(2)亚细胞定位结果表明,NtPHT2;1蛋白定位于叶绿体上。(3)同源性比对发现,NtPHT2;1蛋白与辣椒CaPHT2;1蛋白的同源性最高达到91.00%。(4)启动子分析表明,NtPHT2;1启动子含有参与调控植物衰老、逆境胁迫相关的顺式作用元件。(5)组织表达模式分析表明,NtPHT2;1在叶片中的表达量最高,新叶中的表达量比老叶中的高;在低磷诱导条件下,该基因的表达量与正常条件相比差异不显著。(6)不同非生物胁迫下的表达模式表明,在盐胁迫和干旱胁迫下,该基因的表达量显著降低。研究认为,NtPHT2;1基因主要是负责烟株正常生长发育条件下磷酸盐的转运与利用。  相似文献   

15.
Summary When N. crassa is starved for phosphate the rate of synthesis of total RNA, as measured by the incorporation of uridine, rapidly dclines, attaining a value of 2% of the control after 4 h. Synthesis of ribosomal RNA (rRNA), measured by direct hybridization to ribosomal DNA covalently coupled to diazobenzyloxymethyl (DBM) paper, also declines to a value 3%–4% that of the control after 4 h of phosphate starvation. Measurement of rRNA synthesis in regulatory mutant strains expressing phosphorus-family enzymes indicates that two of these mutant strains, pgov c12 and nuc-1, respond differently to phosphate starvation from the response in wild-type or the other five mutant strains. The results suggest that the wild-type products of the regulatory loci, pgov + and nuc-1 + may have a role in regulating rRNA synthesis as well as phosphorus family enzymes.  相似文献   

16.
Carbamoyl phosphate synthetase II encodes the first enzymic step of de novo pyrimidine biosynthesis. Carbamoyl phosphate synthetase II is essential for Toxoplasma gondii replication and virulence. In this study, we characterised the primary structure of a 28kb gene encoding Toxoplasma gondii carbamoyl phosphate synthetase II. The carbamoyl phosphate synthetase II gene was interrupted by 36 introns. The predicted protein encoded by the 37 carbamoyl phosphate synthetase II exons was a 1,687 amino acid polypeptide with an N-terminal glutamine amidotransferase domain fused with C-terminal carbamoyl phosphate synthetase domains. This bifunctional organisation of carbamoyl phosphate synthetase II is unique, so far, to protozoan parasites from the phylum Apicomplexa (Plasmodium, Babesia, Toxoplasma) or zoomastigina (Trypanosoma, Leishmania). Apicomplexan parasites possessed the largest carbamoyl phosphate synthetase II enzymes due to insertions in the glutamine amidotransferase and carbamoyl phosphate synthetase domains that were not present in the corresponding gene segments from bacteria, plants, fungi and mammals. The C-terminal allosteric regulatory domain, the carbamoyl phosphate synthetase linker domain and the oligomerisation domain were also distinct from the corresponding domains in other species. The novel C-terminal regulatory domain may explain the lack of activation of Toxoplasma gondii carbamoyl phosphate synthetase II by the allosteric effector 5-phosphoribosyl 1-pyrophosphate. Toxoplasma gondii growth in vitro was markedly inhibited by the glutamine antagonist acivicin, an inhibitor of glutamine amidotransferase activity typically associated with carbamoyl phosphate synthetase II, guanosine monophosphate synthetase, or CTP synthetase.  相似文献   

17.
18.
Evans CJ  Merriam JR  Aguilera RJ 《Gene》2002,295(1):61-70
Mammalian DNase II enzymes and the Caenorhabditis elegans homolog NUC-1 have recently been shown to be critically important during engulfment-mediated clearance of DNA. In this report, we describe the cloning and characterization of the gene encoding Drosophila DNase II. Database queries using the C. elegans NUC-1 protein sequence identified a highly homologous open reading frame in Drosophila (CG7780) that could encode a similar enzyme. Analysis of crude protein extracts revealed that wild-type Drosophila contain a potent acid endonuclease activity with cleavage preferences similar to DNase II/NUC1, while the same activity was markedly reduced in an acid DNase hypomorphic mutant line. Furthermore, the pattern of cleavage products generated from an end-labeled substrate by hypomorphic-line extracts was significantly altered in comparison to the pattern generated by wild-type extracts. Sequence analysis of CG7780 DNA and mRNA revealed that the hypomorphic line contains a missense mutation within the coding region of this gene. Additionally, Northern analysis demonstrated that CG7780 expression is normal in the mutant line, which in combination with the lowered/altered enzymatic activity and sequencing data suggested a defect in the CG7780 protein. To conclusively determine if CG7780 encoded the Drosophila equivalent of DNase II/NUC-1, transgenic lines expressing wild-type CG7780 in the mutant background were generated and subsequently shown to complement the mutant phenotype. Our results, therefore, provide compelling evidence that the predicted gene CG7780 encodes Drosophila DNase II (dDNase II), an enzyme related in sequence and activity to mammalian DNase II. Interestingly, overexpression of CG7780 both ubiquitously and in specific tissues failed to elicit any discernable phenotype.  相似文献   

19.
The fission yeast Schizosaccharomyces pombe [corrected] temperature sensitivity cut8-563 mutation causes chromosome overcondensation and short spindle formation in the absence of sister chromatid separation. The cut8-563 mutation allows cytokinesis before the completion of anaphase, thus producing cells with a cut phenotype. The cut8+ gene product may be required for normal progression of anaphase. Diploidization occurs at the restrictive temperature, and 60 to 70% of the cells surviving after two generations are diploid. These phenotypes are reminiscent of those of budding yeast (Saccharomyces cerevisiae) ctf13 and ctf14 (ndc10) mutations. The cut8+ gene, isolated by complementation of the mutant, predicts a 262-amino-acid protein; the amino and carboxy domains are hydrophilic, while the central domain contains several hydrophobic stretches. It has a weak overall similarity to the budding yeast DBF8 gene product. DBF8 is an essential gene whose mutations result in delay in mitotic progression and chromosome instability. Anti-cut8 antibodies detect a 33-kDa polypeptide. Two multicopy suppressor genes for cut8-563 are identified. They are the cut1+ gene essential for nuclear division, and a new gene (designated cek1+) which encodes a novel protein kinase. The cek1+ gene product is unusually large (1,309 amino acids) and has a 112-amino-acid additional sequence in the kinase domain. The cek1+ gene is not an essential gene. Protein phosphorylation by cek1 may facilitate the progression of anaphase through direct or indirect interaction with the cut8 protein.  相似文献   

20.
W E Courchesne  R Kunisawa  J Thorner 《Cell》1989,58(6):1107-1119
MATa cells carrying an sst2 mutation are unable to recover from the G1-specific cell cycle arrest induced by the mating pheromone alpha factor. The KSS1 gene, when overexpressed, suppresses this adaptation defect. KSS1 overexpression also suppresses the recovery defect manifested by cells expressing an alpha factor receptor lacking its 136 amino acid cytoplasmic tail. Because SST2 product and the receptor tail contribute independently to events that allow recovery from pheromone-induced growth arrest, KSS1 function defines a third independent process that promotes desensitization. The KSS1 gene encodes an apparent protein kinase homologous to the CDC28 (S. cerevisiae) and cdc2+ (S. pombe) gene products. The recovery-promoting activity of the KSS1 gene requires a functional WHI1 gene, which encodes a yeast homolog to animal cyclins, suggesting that the KSS1 and WHI1 proteins act in the same growth control pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号