首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
THE FINE STRUCTURAL ORGANISATION OF ROUS TUMOUR CELLS   总被引:9,自引:8,他引:1       下载免费PDF全文
  相似文献   

2.
The double centrosome in the basidium of Boletus rubinellus has been observed in three planes with the electron microscope at interphase preceding nuclear fusion, at prophase I, and at interphase I. It is composed of two components connected by a band-shaped middle part. At anaphase I a single, enlarged centrosome is found at the spindle pole, which is attached to the cell membrane. Microtubules mainly oriented parallel to the longitudinal axis of the basidium are present at prefusion, prophase I and interphase I. Cytoplasmic microtubules are absent when the spindle is present. The relationship of the centrosome in B. rubinellus to that in other organisms and the role of the cytoplasmic microtubules are discussed.  相似文献   

3.
The fine structure of a strain of Bacteroides insolitus has been studied by ultrathin sectioning and electron microscopy. Logarithmically growing cells were fixed both by osmic acid and potassium permanganate, and embedded in Epon. Thin sections were stained with uranyl acetate and examined. The periphery of the cell was composed of a wavy three-layered outer membrane (ca. 80 A), an intermediate layer (50–200 A), and three layered cytoplasmic membrane (ca. 80 A). Single or double bridges which connected the outer membrane with the cytoplasmic membrane were observed. Invagination of the cytoplasmic membrane was observed in no occasion. Independent, distinct, and uniform particles were not the main component of the cytoplasm. The cytoplasm was filled with more or less beaded reticulum-like structures. The nucleoplasm with fine fibrils was mainly dispersed continuously in rather regular cubic masses in an intermediate region between the center and the periphery of the cell. Contacts of the nucleoplasm with the cytoplasmic membrane were occasionally observed.  相似文献   

4.
The fine structure of Bacillus subtilis has been studied by observing sections fixed in KMnO(4), OsO(4), or a combination of both. The majority of examinations were made in samples fixed in 2.0 per cent KMnO(4) in tap water. Samples were embedded in butyl methacrylate for sectioning. In general, KMnO(4) fixation appeared to provide much better definition of the boundaries of various structures than did OsO(4). With either type of fixation, however, the surface structure of the cell appeared to consist of two components: cell wall and cytoplasmic membrane. Each of these, in turn, was observed to have a double aspect. The cell wall appeared to be composed of an outer part, broad and light, and an inner part, thin and dense. The cytoplasmic membrane appeared (at times, under KMnO(4) fixation) as two thin lines. In cells fixed first with OsO(4) solution, and then refixed with a mixture of KMnO(4) and OsO(4) solutions, the features revealed were more or less a mixture of those revealed by each fixation alone. A homogeneous, smooth structure, lacking a vacuole-like space, was identified as the nuclear structure in a form relatively free of artifacts. Two unidentified structures were observed in the cytoplasm when B. subtilis was fixed with KMnO(4). One a tortuous, fine filamentous element associated with a narrow light space, was often found near the ends of cells, or attached to one end of the pre-spore. The other showed a special inner structure somewhat similar to cristae mitochondriales.  相似文献   

5.
The fine structure of the spermatozoon of Tetranychus urticae is described during passage from the testis to the site of insemination in the ovary. The male sex cells differentiate from a cytoplasmic mass which is characterised by nuclei bearing tubule-like structures. Infoldings appear in peripheral membrane of the germ cells at the beginning of spermiogenesis, chromatin condenses, and the nuclear membrane is reduced. The spermatozoon is surrounded by a double membrane: the inner one is the sperm membrane and the outer one is of somatic origin. The sperm reach the glanular region of the testis where they are transformed into amoeboid cell and are next collected in the seminal vesicle.

After copulation, the sperm can be observed in the lumen of the receptaculum seminis of the female from which they soon enter the epithelial cells. Still surrounded by a double membrane, the sperm, which are now packed in clusters, develop microtubules immediately beneath the inner membrane and enlarge by decondensation of chromatin and by infiltration of cytoplasmic material. Insemination takes place in the vitellogenic region of the ovary just before the eggs close their pores; the sperm have now reached ten times their original size.  相似文献   

6.
The three-dimensional organization of the cytoplasm of randomly migrating neutrophils was studied by stereo high-voltage electron microscopy. Examination of whole-mount preparations reveals with unusual clarity the structure of the cytoplasmic ground substance and cytoskeletal organization; similar clarity is not observed in conventional sections. An extensive three-dimensional network of fine filaments (microtrabeculae) approximately 7 to 17 nm in diameter extends throughout the cytoplasm and between the two cell cortices; it also comprises the membrane ruffles and filopodia. The granules are dispersed within the lattice and are surrounded by microtrabeculae. The lattice appears to include dense foci from which the microtrabeculae emerge. Triton X-100 dissolves the plasma membrane, most of the granules, and many of the microtrabecular strands and leaves as a more stable structure a cytoskeletal network composed of various filaments and microtubules. Heavy meromyosin-subfragment 1 (S1) decoration discloses actin filaments as the major filamentous component present in membrane ruffles and filopodia. Actin filaments, extending from the leading edge of the cells, are of uniform polarity, with arrowheads pointing towards the cell body. Likewise, the filaments forming the core of filopodia have the barbed end distal. End-to-side associations of actin filaments as well as fine filaments (2--3 nm) which are not decorated with S1 and link actin filaments are observed. The ventral cell cortex includes numerous substrate-associated dense foci with actin filaments radiating from the dense center. Virtually all the microtubules extend from the centrosome. An average of 35 +/- 7 microtubules originate near the pair of centrioles and radiate towards the cell periphery; microtubule fragments are rare. Intermediate filaments form an open network of single filaments in the perinuclear space. Comparison of Triton-extracted and unextracted cells suggest that many of the filamentous strands seen in unextracted cells have as a core a stable actin filament.  相似文献   

7.
Fine Structure of Bacillus subtilis : I. Fixation   总被引:10,自引:8,他引:2       下载免费PDF全文
The fine structure of Bacillus subtilis has been studied by observing sections fixed in KMnO4, OsO4, or a combination of both. The majority of examinations were made in samples fixed in 2.0 per cent KMnO4 in tap water. Samples were embedded in butyl methacrylate for sectioning. In general, KMnO4 fixation appeared to provide much better definition of the boundaries of various structures than did OsO4. With either type of fixation, however, the surface structure of the cell appeared to consist of two components: cell wall and cytoplasmic membrane. Each of these, in turn, was observed to have a double aspect. The cell wall appeared to be composed of an outer part, broad and light, and an inner part, thin and dense. The cytoplasmic membrane appeared (at times, under KMnO4 fixation) as two thin lines. In cells fixed first with OsO4 solution, and then refixed with a mixture of KMnO4 and OsO4 solutions, the features revealed were more or less a mixture of those revealed by each fixation alone. A homogeneous, smooth structure, lacking a vacuole-like space, was identified as the nuclear structure in a form relatively free of artifacts. Two unidentified structures were observed in the cytoplasm when B. subtilis was fixed with KMnO4. One a tortuous, fine filamentous element associated with a narrow light space, was often found near the ends of cells, or attached to one end of the pre-spore. The other showed a special inner structure somewhat similar to cristae mitochondriales.  相似文献   

8.
The fine structure of the ovary in the serpulid Spirorbis borealis has been described. The ovarian wall consists of from one to several layers of peritoneal cells. Peritoneal cell processes extend deep into the ovary and may be seen between developing oocytes. Although young oocytes may also be in close apposition to one another, intercellular bridges have not been observed. When primary oocytes at the surface of the ovary reach a diameter of about 20 μ, they start to erupt into the coelom. Ovulation results from a simple separation of overlying peritoneal cells which lack specialized cell-to-cell contacts. Once a free surface of an ovulating oocyte is exposed to the coelom, microvilli and primary coat develop. Previtellogenic coelomic oocytes are often observed in close proximity to putative neoblasts (perivasal cells), which suggests a possible functional relationship. The confusion that extists between germ cells, peritoneal cells, and so-called neoblasts in polychaetes is discussed.  相似文献   

9.
HeLa cells infected with herpes simplex virus have been examined in thin sections by electron microscopy after cytochemical staining for the presence of surface enzymes splitting adenosine triphosphate. As with uninfected HeLa cultures (18), the opaque enzyme reaction product was localized at the plasma membranes of about half the cells, tending to be present where there were microvilli and absent on smooth surfaces. Where mature extracellular herpes particles were found in association with cell membranes showing the enzyme activity, they were invariably likewise stained, and conversely, those mature particles which lay close against cells without reaction product at the surface were themselves free of it. Particles found budding into cytoplasmic vacuoles were also always without opaque deposit since this was never seen at vacuolar membranes, even in cells having the activity at the surface. The enzyme reaction product thus provided a marker indicating the manner in which the particles escape from cells and mature by budding out through cellular membranes, carrying, in the process, a portion of the latter on to themselves to form the outer viral limiting membrane. In some instances, virus particles were observed with more opaque material covering them than was present at the cell membrane with which they were associated. This finding has been taken as evidence for a physiological waxing and waning of surface enzyme activity of adenosine triphosphatase type. The fine structure of the mature extracellular virus as prepared here, using glutaraldehyde fixation, is also recorded. The observations and interpretations are discussed in full.  相似文献   

10.
We used double immunofluorescence and electron microscopy to study the spatial relationships between Weibel--Palade bodies (WPBs) and cytoskeletal elements in endothelial cells treated with thrombin or cytoskeleton-damaging agents. We have found that some WPBs undergo translocation towards the centrosome in 5 min in the cells treated with thrombin, cytochalasin B or calyculin A. The cells treated with thrombin or cytochalasin exhibit depletion of WPBs, whereas WPBs found at the cell periphery were colocalized with intermediate filaments. There was a precise colocalization observed between the WPBs and microtubules in the calyculin-treated cells in which all WPBs undergo centrosome-directed translocation within 15 min after the agent addition. When vimentin filaments were induced to collapse by demecolcine, intermediate filaments and WPBs both translocated to the perinuclear region. The data provide the first direct evidence that secretory granules utilize microtubules to move in retrograde direction, i.e., away from the plasma membrane, towards the centrosome. We suggest that anterograde movement of WPBs is dependent on their interaction with vimentin filaments.  相似文献   

11.
1. Electron micrographs of thin sections of material fixed with buffered osmium tetroxide have been used for comparison of the fine structure of isolated cytoplasmic particles from silver beet petioles and roots of germinating wheat with that of the cytoplasm of the intact cells. 2. Mitochondria of wheat roots have an external double membrane and poorly oriented internal double membranes. As compared with the structures seen in situ, the isolated mitochondria showed evidence of some disorganisation of the fine internal structure, probably due to osmotic effects. The possible influence of such changes on the enzymic properties of the isolated mitochondria is discussed. 3. The isolated plant microsomes are mainly spherical vesicular structures consisting of (a) an outer membrane enclosing (b) either an homogeneous slightly dense material (wheat root microsomes) or some granular dense material (silver beet microsomes) and (c) small dense particles, mostly associated with the vesicle membranes. 4. The cytoplasm of the wheat root cells does not contain any structures similar to the isolated microsomes but has a very dense reticular network, consisting of membranes with associated small dense particles, here called the endoplasmic reticulum. The observations indicate that the isolated microsomes arise mainly by rupture and transformation of the membranes of this structure. The effects of such extensive changes in the lipoprotein membranes on the enzymic activities of the endoplasmic reticulum, as studied in isolated microsomes, is discussed. 5. Meristematic wheat root cells contain structures which consist of smooth membranes with associated vacuoles and are similar to the Golgi zones of animal cells. The membranes of these zones probably contribute to the microsomal fraction under the conditions of preparation used for the enzymic and chemical studies previously reported.  相似文献   

12.
Adult chameleon myelinated peripheral nerve fibers have been studied with the electron microscope in thin sections. The outer lamella of the myelin sheath has been found to be connected as a double membrane to the surface of the Schwann cell. The inner lamella is connected as a similar double membrane with the double axon-Schwann membrane. The relations of these double connecting membranes suggest that the layered myelin structure is composed of a double membrane which is closely wound about the axon as a helix. These findings support the new theory of myelinogenesis proposed recently by Geren. The possible significance of these results with respect to cell surface membranes and cytoplasmic double membranes is discussed.  相似文献   

13.
Changes in the structure of the digestive gland cells of Venus's-flytrap during the digestive process have been studied with light and electron microscopy. Large vacuolar lipid-protein inclusions break up and become smaller; however, they never completely disappear during the entire 7-10-day cycle. Dictyosomes in the resting digestive gland are associated with small, inconspicuous vesicles, whereas during the digestive cycle two types of prominent vesicles are observed on the peripheral tubules. Changes in plastid fine structure are complex and involve the disappearance of lipid globules and the tubular complex, followed by the formation of microtubules on the thylakoids and cisternae on the outer plastid membrane. Mitochondrial fine structure changes from the small cristae and light matrix of the resting state to large cristae and a very dense matrix representative of a change to a state where phosphorylation is tightly coupled to electron transport. Pronounced changes which occur in the cell envelope (cell wall and membrane taken together) are apparently associated with secretion of the digestive fluid. Numerous other changes are observed such as polysome formation, multivesicular body formation, mitochondria division, and changes which can be attributed in general to elevated cell activity.  相似文献   

14.
THE FINE STRUCTURE OF THE RENAL GLOMERULUS OF THE MOUSE   总被引:43,自引:14,他引:29       下载免费PDF全文
  相似文献   

15.
The fine structure of a series of stalked bacteria belonging to the genera Caulobacter and Asticcacaulis has been examined in thin sections. The cell wall has the multilayered structure typical of many Gram-negative bacteria, and continues without interruption throughout the length of the stalk. The core of the stalk, continuous with the cytoplasmic region of the cell, is enclosed in an extension of the cell membrane, and contains a system of internal membranes: it is devoid of ribosomes and nucleoplasm. A membranous organelle occupies the juncture of stalk and cell, separating the ribosomal region from the core of the stalk. Typical mesosomes also occur in the cell, being particularly frequent at the plane of division. The secreted holdfast is located at the tip of the stalk in Caulobacter, and at the pole of the cell adjacent to the stalk in Asticcacaulis.  相似文献   

16.
An electron microscopic study has been made of the three respiratory organs of climbing perch. The gill structure is similar to that of the other telcosts but the thickness of the water/blood barrier is much greater, being as great as 20 μm in some specimens. The increased thickness is due to a multilayered epithelium which is thinner (3.5–7 μm) over the marginal channel of the secondary lamellae. The other two main layers, basement membrane and pillar cell flange, are relatively thin (about 1 μm).
The pillar cells have a typical structure, but in certain regions they are contiguous with one another and line well-defined blood channels. Some of the columns of basement membrane material in such regions may be common to adjacent pillar cells.
The air-breathing organs are (a) the lining of the suprabranchial chambers , and (b) the labyrinthine plates attached to the dorsal region of branchial arches. Electron microscopy showed that their structure is well adapted for gas exchange, the air/blood barriers being only 0.12–0.3 μm, comprising an epithelial layer, basement membrane, and thin capillary endothelium. The many parallel blood channels of the respiratory islets of both organs are separated by pillar-like structures which differ from the pillar cells of the secondary lamellae. Thus the hypothesis that the air-breathing organs represent modified gills is not supported by this study.
The fine structure of the non-respiratory region of the air-breathing organs is similar to that of the skin, and includes chemoreceptor-like cells. Evidence concerning the possible homology of pillar cells with plain muscle cells is discussed.  相似文献   

17.
The locomotor apparatus of the spermatozoid of Zamia integrifolia consists of numerous flagella having the typical 9 + 2 substructure connected through basal bodies to a spiral band of complex structure. Basal bodies have a fine structure somewhat resembling that found in algae, mosses, and ferns, but they are much longer. They are composed of a circle of 9 double fibers just beneath the plasma membrane, changing to 9 doublets interconnected by fibrils in a star-pattern, giving over to a centriolar type of 9 triplet fibers embedded in an electron-dense layer of the spiral band, and ending in a “cartwheel” configuration. A system of microtubules arranged in a spiral, secondary to the flagellated spiral, is thought to underlie the plasma membrane in flagellated regions. It is suggested that this system accounts for “euglenoid” movements of the sperm. Other details of cellular fine structure are described.  相似文献   

18.
The fine structure of the trophozoite of Acanthamoeba palestinensis with a special emphasis on the Golgi complex, microbodies, and mitochondria has been examined. Golgi complexes are distributed throughout the cytoplasm but are most abundant in the perinuclear region. Usually two Goigi complexes are found in the same plane on opposite sides of the nucleus. One of them appears to be in an intimate association with the nuclear membrane. The region of contact contains compact cisternae, vesicles of various sizes, as well as granular and amorphous electron-dense material. Structural changes in the nuclear envelope are also observed in this area. A structure consisting of a Golgi complex and electron-dense microtubule organizing center, comparable to the centrosphere of other Acanthamoeba species, has been observed. Microbodies, surrounded by a single unit membrane and containing a granular matrix and tubular inclusions, are scattered throughout the cytoplasm. These organelles, circular (~1 μm in diameter) or ovoidal (~1 μm in length and ~0.5 μm in width) in section, have often an irregular outline. These microbodies are probably the morphological equivalent of peroxisomes and glyoxysomes. Most mitochondria show a typical structure including tubular cristae and intracristal inclusions. Occasionally mitochondria with two apposed double membranes running through the midline are found. Such atypical cristae have never been reported in small amoebae before.  相似文献   

19.
Observations on the fine structure of KMnO4-fixed testes of small mammals (guinea pig, rat, and mouse) reveal certain morphological differences between the spermatogenic and Sertoli cells which have not been demonstrated in the same tissue fixed with OsO4. Aggregates of minute circular profiles, much smaller than the spherical Golgi vesicles, are described in close association with the Golgi complex of developing spermatids. Groups of dense flattened vesicles, individually surrounded by a membrane of different dimensions than that which bounds most of the other cell organelles, appear dispersed within the cytoplasm of some spermatogenic cells. Flattened vesicles of greater density than those belonging to the Golgi complex are reported confined to the inner Golgi zone of developing guinea pig spermatids between the Golgi cisternae and the head cap. The profiles of endoplasmic reticulum within spermatocytes appear shorter, wider, and more tortuous than those of Sertoli cells. Minute cytoplasmic particles approximately 300 A in diameter and of high electron opacity appear randomly disposed in some Sertoli cells. Groups of irregular-shaped ovoid bodies within the developing spermatids are described as resembling portions of cytoplasm from closely adjacent spermatids. Interpretation is presented regarding the fine structure of KMnO4-fixed testes in view of what has already been reported for mammalian testes fixed in OsO4.  相似文献   

20.
THE FINE STRUCTURE OF THE GALL BLADDER EPITHELIUM OF THE MOUSE   总被引:50,自引:20,他引:30       下载免费PDF全文
Sections of mouse gall bladder epithelium fixed by perfusion with buffered osmium tetroxide have been studied in the electron microscope as an example of simple columnar epithelium. The free surface presents many microvilli, each presenting a dense tip, the capitulum, and displaying a radiating corona of delicate filaments, the antennulae microvillares. Very small pit-like depressions, representing caveolae intracellulares, are encountered along the cell membrane of the microvilli. The free cell surface between microvilli shows larger cave-like depressions, likewise representing caveolae intracellulares, containing a dense material. The lateral cell borders are extensively folded into pleats, which do not interdigitate extensively with corresponding folds of the adjacent cell membrane. The terminal bars are shown to consist of thickened densities of the cell membrane itself in the region of insertion of the lateral cell wall with the free cell surface. This thickening is associated with an accumulation of dense cytoplasmic material in the immediate vicinity. The terminal bar is thus largely a cytoplasmic and cell membrane structure, rather than being primarily intercellular in nature. The basal cell membrane is relatively straight except for a conical eminence near the center of the cell, projecting slightly into the underlying tunica propria. The basal cell membrane itself is overlain by a delicate limiting membrane, which does not follow the lateral contours of the cell. Unmyelinated intercellular nerve terminals with synaptic vesicles have been encountered between the lateral walls of epithelial cells. A division of the gall bladder epithelial cell into five zones according to Ferner has been found to be convenient for this study. The following cytoplasmic components have been noted, and their distribution and appearance described: dense absorption granules, mitochondria, Golgi or agranular membranes, endoplasmic reticulum or ergastoplasm, ring figures, and irregular dense bodies, perhaps lipoid in nature. The nucleus of these cells is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号