首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transmethylation reactions in fully grown Xenopus oocytes were analyzed following the microinjection of S-adenosyl-L-[methyl-3H]methionine (AdoMet). The size of the endogenous AdoMet pool, measured by cation exchange high pressure liquid chromatography is 5.91 pmol/oocyte. The AdoMet pool turns over with a half-time of 2 h, at a rate of 2.07 pmol/h/oocyte. Fractionation experiments indicate that approximately one-third of the AdoMet in oocytes is utilized for protein carboxylmethylation reactions and another third is metabolized into small molecules which are secreted. The remainder of the intracellular AdoMet is used primarily for protein N-methylation reactions, although some methylation of phospholipids and nucleic acids also occurs. Polyacrylamide gel electrophoresis of 3H-methylated proteins at pH 2.4 in the presence of sodium dodecyl sulfate demonstrated that methyl esters are associated with a heterogeneous group of proteins in both the nucleus and cytoplasm of oocytes, coincident with the subcellular distribution of the protein D-aspartyl, L-isoaspartyl methyl transferase (O'Connor, C. M. (1987) J. Biol. Chem. 262, 10398-10403). The protein methyl esters associated with oocyte proteins turn over rapidly, as evidenced from the presence of [3H]methanol in the medium. The calculated rate of protein carboxyl methylation, 0.7 pmol/h/oocyte, is similar to that of protein synthesis in oocytes, suggesting that the modification of derivatized aspartyl residues represents a major pathway in oocyte protein metabolism. Since the formation of protein methyl esters is unaffected by cycloheximide, it is unlikely that methyl-accepting sites on oocyte proteins arise primarily from errors in protein synthesis. Unlike protein carboxyl methylation reactions, protein N-methylation reactions are closely linked to protein synthesis, and the methyl group linkages are stable over a period of at least 4 h. Numerous protein acceptors for N-methylation reactions were identified by polyacrylamide gel electrophoresis.  相似文献   

2.
Unmethylated calmodulins have been enzymatically methylated at lysine 115, and a direct effect of this methylation on NAD kinase activation has been shown. Similar to naturally occurring calmodulins with trimethyllysine 115, the enzymatically methylated calmodulins activated an NAD kinase preparation to a maximal level that was at least 3-fold lower than the level of activation obtained with the corresponding unmethylated calmodulins. Methylation did not alter the cyclic nucleotide phosphodiesterase activator properties of these calmodulins. A genetically engineered calmodulin containing an arginine at position 115 instead of a lysine was produced by site-specific mutagenesis of a cloned synthetic calmodulin gene. The arginine derivative retained the higher maximal NAD kinase activator properties of the unmethylated calmodulins but was no longer susceptible to the effects of the methyltransferase. The data indicate that the reduction in the level of NAD kinase activation is the direct result of trimethylation of lysine 115 of calmodulin, provide a precedent for a functional effect of trimethyllysine in a protein, and raise the possibility that some of calmodulin's physiological activities may be affected by lysine methylation.  相似文献   

3.
Xenopus oocytes possess a highly conserved protein carboxyl methyltransferase postulated to function in the repair or metabolism of age-damaged protein aspartyl residues (O'Connor, C. M. (1987) J. Biol. Chem. 262, 10398-10403). Three hexapeptides of the general sequence Val-Tyr-Pro-isoAsp-X-Ala, in which isoAsp represents an L-isoaspartyl residue and X represents Gly, Ser, or Ala, are methylated with the same order of preference following their microinjection into oocytes as in a purified system containing bovine brain protein carboxyl methyltransferase and S-adenosyl-L-[methyl-3H]methionine. The affinities of the enzyme for the glycyl, seryl, and alanyl variants of the peptides in vitro are 4.25, 3.04, and 1.67 microM, respectively. A nonapeptide of the sequence Lys-Ala-Ser-Ala-isoAsp-Leu-Ala-Lys-Tyr is a higher affinity substrate for the methyltransferase in vitro, characterized by a Km of 0.88 microM, but it is modified to a lesser extent in oocytes, partially because of its reduced stability in cytoplasm. The hexapeptide Val-Tyr-Pro-Asp-Gly-Ala, which contains an aspartyl residue in the usual stereoconfiguration, is not methylated either in vitro or in intact oocytes. Microinjection of any of the four isoaspartyl-containing peptides greatly stimulates total carboxyl methylation in oocytes, with rate increases ranging from 19- to 51-fold after the injection of 30 pmol of peptide. The protein ovalbumin is also modified following its microinjection into oocytes to near its calculated methyl-accepting capacity. Each of the isoaspartyl peptides can act as a competitive inhibitor of ovalbumin methylation both in vitro and in microinjected oocytes. The inhibitory potencies of the peptides parallel their specific methyl-accepting activities. The results demonstrate that the oocyte may be a useful model for studying the significance of protein carboxyl methylation because of the large functional excess of methylation capacity and the fidelity of the reactions compared to those observed in purified systems. This excess capability may have physiological significance when structurally abnormal proteins accumulate as a result of cellular stress and or aging.  相似文献   

4.
L L Lou  S Clarke 《Biochemistry》1987,26(1):52-59
Band 3, the anion transport protein of erythrocyte membranes, is a major methyl-accepting substrate of the intracellular erythrocyte protein carboxyl methyltransferase (S-adenosyl-L-methionine: protein-D-aspartate O-methyltransferase; EC 2.1.1.77) [Freitag, C., & Clarke, S. (1981) J. Biol. Chem. 256, 6102-6108]. The localization of methylation sites in intact cells by analysis of proteolytic fragments indicated that sites were present in the cytoplasmic N-terminal domain as well as the membranous C-terminal portion of the polypeptide. The amino acid residues that serve as carboxyl methylation sites of the erythrocyte anion transporter were also investigated. 3H-Methylated band 3 was purified from intact erythrocytes incubated with L-[methyl-3H]methionine and from trypsinized and lysed erythrocytes incubated with S-adenosyl-L-[methyl-3H]methionine. After proteolytic digestion with carboxypeptidase Y, D-aspartic acid beta-[3H]methyl ester was isolated in low yields (9% and 1%, respectively) from each preparation. The bulk of the radioactivity was recovered as [3H]methanol, and the amino acid residue(s) originally associated with these methyl groups could not be determined. No L-aspartic acid beta-[3H]methyl ester or glutamyl gamma-[3H]methyl ester was detected. The formation of D-aspartic acid beta-[3H]methyl esters in this protein in intact cells resulted from protein carboxyl methyltransferase activity since it was inhibited by adenosine and homocysteine thiolactone, which increases the intracellular concentration of the potent product inhibitor S-adenosylhomocysteine, and cycloleucine, which prevents the formation of the substrate S-adenosyl-L-[methyl-3H]methionine.  相似文献   

5.
A two-dimensional polyacrylamide gel electrophoresis system which is suitable for the analysis of protein methylation reactions in cells incubated with L-[methyl-3H]methionine is described. The procedure separates proteins under primarily acidic conditions by isoelectric focusing in the first dimension and by sodium dodecyl sulfate electrophoresis at pH 2.4 in the second dimension. The low pH is essential for preserving protein [3H]methyl esters, but it limits the effective separating range of this system to proteins with isoelectric points between 4 and 8. With this system, we have shown that most, if not all, erythrocyte membrane and cytosolic proteins can act as substoichiometric methyl acceptors for an intracellular S-adenosylmethionine-dependent carboxyl methyltransferase and that protein carboxyl methylation reactions may be the major methyl transfer reaction in erythrocytes. These results are most consistent with the generation of protein substrate sites for the carboxyl methyltransferase by spontaneous deamidation and racemization reactions.  相似文献   

6.
Carboxyl methylation of platelet ras-related proteins, known as rap proteins, was investigated in this study. Platelet membrane proteins of Mr 23,000 incorporated radioactivity in the presence of S-[methyl-3H]adenosylmethionine and platelet cytosol. About 97% of the radioactivity present in the Mr 23,000 proteins was liberated as volatile methanol under basic (1 M sodium hydroxide) conditions. Cycloheximide, an inhibitor of protein synthesis, inhibited incorporation of S-[methyl-3H]adenosylmethionine by 25%. These results suggest that at least 75% of the radioactivity present in the Mr 23,000 proteins is due to carboxyl methylation and not due to the incorporation of S-[methyl-3H]adenosylmethionine into proteins or due to the incorporation of base-stable methyl groups into side chains of arginine, histidine, or lysine residues. Protein methylation did not occur if membranes or cytosol alone was incubated with S-[methyl-3H]adenosylmethionine. Guanosine 5'(3-O-thio)triphosphate increased methylation of the Mr 23,000 proteins in a time- and concentration-dependent manner. Acetyl-farnesylcysteine, a synthetic substrate for carboxyl methyltransferases, completely blocked methylation of the Mr 23,000 membrane proteins. On the basis of one- and two-dimensional Western blots using rap-specific antisera, the Mr 23,000 methylated proteins were identified as rap1 proteins. The existence of the carboxyl-terminal CAAX motif in rap1 proteins, similar to the CAAX motif present in p21ras as well as in the yeast mating factors, leads us to suggest that methylation of rap1 proteins possibly occurs at the alpha-carboxyl-terminal cysteine.  相似文献   

7.
Protein methylation reactions can play important roles in cell physiology. After labeling intact Saccharomyces cerevisiae cells with S-adenosyl-l-[methyl-(3)H]methionine, we identified a major methylated 49-kDa polypeptide containing [(3)H]methyl groups in two distinct types of linkages. Peptide sequence analysis of the purified methylated protein revealed that it is eukaryotic elongation factor 1A (eEF1A, formerly EF-1alpha), the protein that forms a complex with GTP and aminoacyl-tRNAs for binding to the ribosomal A site during protein translation. Previous studies have shown that eEF1A is methylated on several internal lysine residues to give mono-, di-, and tri-N-epsilon-methyl-lysine derivatives. We confirm this finding but also detect methylation that is released as volatile methyl groups after base hydrolysis, characteristic of ester linkages. In cycloheximide-treated cells, methyl esterified eEF1A was detected largely in the ribosome and polysome fractions; little or no methylated protein was found in the soluble fraction. Because the base-labile, volatile [methyl-(3)H]radioactivity of eEF1A could be released by trypsin treatment but not by carboxypeptidase Y or chymotrypsin treatment, we suggest that the methyl ester is present on the alpha-carboxyl group of its C-terminal lysine residue. From the results of pulse-chase experiments using radiolabeled intact yeast cells, we find that the N-methylated lysine residues of eEF1A are stable over 4 h, whereas the eEF1A carboxyl methyl ester has a half-life of less than 10 min. The rapid turnover of the methyl ester suggests that the methylation/demethylation of eEF1A at the C-terminal carboxyl group may represent a novel mode of regulation of the activity of this protein in yeast.  相似文献   

8.
Intact human erythrocytes incubated with L-[methyl-3H]methionine incorporated radioactivity into base-labile linkages with membrane and cytosolic proteins which are characteristic of protein methyl esters. Kinetic analysis of the methylation reactions in intact cells shows that individual erythrocytes contain approximately 38,000 and 115,000 protein methyl esters with biological half-lives of 150 min or less in the membrane and cytosolic protein fractions, respectively. Fractionation of the methylated cytosolic species by gel filtration chromatography at pH 6.5 followed by sodium dodecyl sulfate-gel electrophoresis at pH 2.4 reveals that many different cytosolic proteins serve as methyl acceptors and that the degree of modification varies widely for individual proteins. For example, hemoglobin is modified to the extent of 3 methyl groups/10(6) polypeptide chains, while carbonic anhydrase contains 1 methyl group/approximately 16,500 polypeptide chains at steady state. Aspartic acid beta-[3H]methyl ester (Asp beta-[3H]Me) can be isolated from carboxypeptidase Y digests of cytosol proteins. By synthesizing and separating diastereomeric L-Leu-L-Asp beta Me and L-Leu-D-Asp beta Me dipeptides, we show that all of the Asp beta-[3H]Me recovered from cytosolic proteins is in the D-stereoconfiguration. Based on these data and on previous observations that erythrocytes contain a single methyltransferase which also methylates red cell membrane proteins at D-aspartyl residues both in vivo (McFadden, P. N., and Clarke, S. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 2460-2464) and in vitro (O'Connor, C. M., and Clarke, S. (1983) J. Biol. Chem. 258, 8485-8492), we propose that protein carboxyl methylation is part of a generalized mechanism for metabolizing damaged proteins. The infrequent and spontaneous occurrence of D-aspartyl residues in proteins adequately explains the broad substrate specificity and limited stoichiometries of protein carboxyl methylation reactions.  相似文献   

9.
It has previously been shown that incubation of mammalian cell cytosolic extracts with the protein kinase inhibitor tyrphostin A25 results in enhanced transfer of methyl groups from S-adenosyl-[methyl-3H]methionine to proteins. These findings were interpreted as demonstrating tyrphostin stimulation of a novel type of protein carboxyl methyltransferase. We find here, however, that tyrphostin A25 addition to mouse heart cytosol incubated with S-adenosyl-[methyl-3H]methionine or S-adenosyl-[methyl-14C]methionine stimulates the labeling of small molecules in addition to proteins. Base treatment of both protein and small molecule fractions releases volatile radioactivity, suggesting labile ester-like linkages of the labeled methyl group. Production of both the base-volatile product and labeled protein occurs with tyrphostins A25, A47, and A51, but not with thirteen other tyrphostin family members. These active tyrphostins all contain a catechol moiety and are good substrates for recombinant and endogenous catechol-O-methyltransferase. Inhibition of catechol-O-methyltransferase activity with tyrphostin AG1288 prevents both base-volatile product formation and protein labeling from methyl-labeled S-adenosylmethionine in heart, kidney, and liver, but not in testes or brain extracts. These results suggest that the incorporation of methyl groups into protein follows a complex pathway initiated by the methylation of select tyrphostins by endogenous catechol-O-methyltransferase. We suggest that the methylated tyrphostins are further modified in the cell extract and covalently attached to cellular proteins. The presence of endogenous catechols in cells suggests that similar reactions can also occur in vivo.  相似文献   

10.
Prolonged incubation of native bovine brain calmodulin with S-adenosyl-L-[methyl-3H]methionine and protein carboxyl methyltransferase results in maximal methylation of only 1-2% of the calmodulin molecules. In contrast, calmodulin which has been subjected to a prior alkaline treatment (0.1 M NH4OH, 37 degrees C for 3 h) can be methylated to a level of 30-50%. This treatment is known to be effective in deamidating certain asparagine residues which lie in unstable sequences, particularly -Asn-Gly- sequences. Bovine brain calmodulin has three such sequences (Watterson, D. M., Sharief, F., and Vanaman, T. C. (1980) J. Biol. Chem. 255, 962-975). The enhancement of methylation by alkaline treatment is substantially reduced if calmodulin is first reacted with bis-(I,I-trifluoroacetoxy)iodobenzene, a reagent which converts the carboxamide group of asparagine and glutamine residues to the corresponding primary amines. Thus, protein carboxyl methyltransferase selectively modifies an abnormal form of calmodulin that is probably deamidated. These findings suggest that protein carboxyl methylation may play a role in the disposition of abnormal proteins which contain atypical, isomerized aspartyl residues arising via spontaneous deamidation of unstable asparagines.  相似文献   

11.
Calmodulin N-methyltransferase. Partial purification and characterization   总被引:7,自引:0,他引:7  
The distribution, properties, and substrate specificity of S-adenosylmethionine:calmodulin (lysine) N-methyltransferse (EC 2.1.1.60, calmodulin N-methyltransferase) of the rat have been studied. This enzyme is cytosolic and is found at high levels in tissues with high levels of calmodulin and at low levels in tissues with little calmodulin. In liver, heart, and skeletal muscle, which have low levels of calmodulin and very low calmodulin N-methyltransferase activity (a low ratio of calmodulin N-methyltransferase to calmodulin), calmodulin was found to be incompletely methylated, as judged by its ability to act as a substrate for purified calmodulin N-methyltransferase. Calmodulin N-methyltransferase was purified 470-fold with a 33% yield from rat testis cytosol, using ammonium sulfate precipitation and chromatography on DEAE-cellulose, CM-Sepharose, and Sephadex G-100. At pH 7.4, calmodulin N-methyltransferase did not bind to DEAE-cellulose, but bound strongly to CM-Sepharose. The enzyme eluted from Sephadex G-100 with an apparent molecular weight of 55,000. Purified calmodulin N-methyltransferase was incubated with extracts of rat tissues, and [methyl-3H]AdoMet and methylated proteins were resolved by electrophoresis in an attempt to discover substances other than calmodulin, but this enzyme only catalyzed the methylation of calmodulin, indicating a high degree of substrate specificity. Conditions were established for the in vitro preparative methylation of des(methyl)-calmodulin from Dictyostelium discoideum. Three moles of methyl/mol of calmodulin were incorporated into lysine 115 of des(methyl)calmodulin, resulting in the formation of 1 mol of trimethyllysine at the site normally methylated in calmodulins from most species. Activation of cyclic nucleotide phosphodiesterase by des(methyl)calmodulin was indistinguishable from activation by in vitro methylated or sham methylated Dictyostelium calmodulin, indicating that methylation does not affect the ability of calmodulin to activate this enzyme.  相似文献   

12.
Oh SH  Roberts DM 《Plant physiology》1990,93(3):880-887
A specific calmodulin-N-methyltransferase was used in a radiometric assay to analyze the degree of methylation of lysine-115 in pea (Pisum sativum) plants. Calmodulin was isolated from dissected segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by incubation with the calmodulin methyltransferase in the presence of [3H]methyl-S-adenosylmethionine. By this approach, the presence of unmethylated calmodulins were demonstrated in pea tissues, and the levels of methylation varied depending on the developmental state of the tissue tested. Calmodulin methylation levels were lower in apical root segments of both etiolated and green plants, and in the young lateral roots compared with the mature, differentiated root tissues. The incorporation of methyl groups into these calmodulin samples appears to be specific for position 115 since site-directed mutants of calmodulin with substitutions at this position competitively inhibited methyl group incorporation. The present findings, combined with previous data showing differences in the ability of methylated and unmethylated calmodulins to activate pea NAD kinase (DM Roberts et al. [1986] J Biol Chem 261: 1491-1494) raise the possibility that posttranslational methylation of calmodulin could be another mechanism for regulating calmodulin activity.  相似文献   

13.
The level of carboxyl methylation of membrane proteins has been measured in intact human erythrocyte populations of different ages separated by density gradient centrifugation. Age separation was confirmed by measurement of cytosolic pyruvate kinase specific activity in each fraction. When cells of different ages were incubated with L-[methyl-3H]methionine, the steady state level of 3H radioactivity covalently bound to membrane proteins is observed to be at least 3-fold higher in older erythrocytes. Because the specific radioactivity of the methyl group donor S-adenosyl-L-[methyl-3H]methionine was identical in all age fractions, this represents an increase in the extent of modification of membrane proteins by carboxyl methylation. Of the three major methylated erythrocyte membrane proteins, this increase in carboxyl methylation with age is 4 to 7-fold for bands 2.1 and 3, while the increase in band 4.1 is 3 to 4-fold. This increase in the steady state level of methylation with age cannot be explained by changes in either the intrinsic rate of methyl transfer or by changes in the rate constant of methyl turnover. We, therefore, propose that the age-dependent change in carboxyl methylation is due to an increase in the number of available acceptor sites as the erythrocyte ages in vivo. Since methylation of acidic residues on erythrocyte membrane proteins has been detected exclusively on D-aspartic acid residues (McFadden, P. N., and Clarke, S. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 2460-2464), these results are consistent with an accumulation of D-aspartic acid in membrane protein due to spontaneous racemization a the cell ages. The relationship of these observations to possible functions of erythrocyte membrane protein carboxyl methylation is discussed.  相似文献   

14.
We show that both the lipopolysaccharide (LPS)-induced activation of NF-kappa DNA binding and kappa gene expression are blocked by treating murine pre-B lymphocyte 70Z/3 cells with 5'-methylthioadenosine (MTA), an inhibitor of several S-adenosylmethionine-dependent methylation reactions. We further show that the LPS-induced incorporation of radioactivity from [methyl-3H]methionine into methyl ester-like linkages on a group of membrane polypeptides is also inhibited by MTA treatment, suggesting the involvement of protein methylation reactions in the LPS signal transduction pathway. We also find that NF-kappa B and kappa gene activation in LPS-treated 70Z/3 cells is blocked by mevinolin, an inhibitor that prevents protein isoprenylation. Interestingly, mevinolin-treated cells also exhibited a marked reduction in the methylation of membrane proteins. Neither MTA nor mevinolin significantly inhibited NF-kappa B activation by phorbol myristate acetate, suggesting that these agents act early in signal transduction. These results provide the first evidence that carboxyl methylated and/or isoprenylated proteins play an essential role in the LPS-signaling pathway.  相似文献   

15.
Calmodulin purified from bacteria which express a cloned chicken calmodulin gene can be selectively conjugated with ubiquitin, using enzymes present in reticulocyte extracts. Analyses of peptide products generated from limited proteolytic digestion of the calmodulin conjugate containing a single ubiquitin indicate that lysine 115 on calmodulin is the site of linkage. This linkage site is identical to that previously reported for calmodulin purified from Dictyostelium discoideum. Substrate-dependent ATP hydrolysis by a partially purified ubiquitin conjugation enzyme system from reticulocyte extracts was used to determine the enzyme affinity to calmodulin. Km values of 7 and 9 microM were determined for dictyostelium and the bacterially expressed calmodulin, respectively. The bacterially expressed calmodulin, unlike the Dictyostelium protein, can also form conjugates containing a 2-5 molar ratio of ubiquitin but at a slower rate than that observed for conjugation at lysine 115. Results from these studies further support our hypothesis that the post-translational methylation of lysine 115 found in most forms of calmodulin serves the important function of protecting calmodulin from ubiquitination and from degradation by the cytoplasmic ubiquitin-dependent proteolytic pathway. The capability of the bacterially expressed calmodulin to form conjugates with a high molar ratio of ubiquitin suggests that the post-translational acetylation of the N terminus of calmodulin may serve a similar function.  相似文献   

16.
In vitro stimulation of intact rat posterior pituitary by either veratridine or K+ depolarization results in the concomitant release of neurophysins and in a decrease (70-80%) in their carboxyl methylation as measured either with L-[methyl-3H]methionine in the intact lobes after stimulation or in their homogenates with [methyl-3H]S-adenosyl-L-methionine and purified protein carboxyl methyltransferase. A similar reduction in neurophysin methylation (60%) was observed when the arrival of newly synthesized neurophysins at the posterior pituitary was blocked by colchicine. Experimental data indicate that the reduction in neurophysin content of the lobes after 12 h of colchicine treatment (less than 7%) or after in vitro stimulation (about 10%) cannot account for the marked reduction in neurophysin methylation. The results suggest that the granule pool characterized by rapid turnover of neurophysins probably represents the major source of methyl acceptor proteins in the lobe. In spite of the marked reduction in neurophysin methyl accepting capacity observed after stimulation, there was no parallel increase in methyl accepting capacity of the released neurophysins. We propose that a neurophysin subfraction that might be associated with the membrane of releasable granules participates in the methylation reaction in situ.  相似文献   

17.
The enzymatic carboxyl methyl esterification of erythrocyte membrane proteins has been investigated in three different age-related fractions of human erythrocytes. When erythrocytes of different mean age, separated by density gradient centrifugation, were incubated under physiological conditions (pH 7.4, 37 degrees C) in the presence of L-[methyl-3H]methionine, the precursor in vivo of the methyl donor S-adenosylmethionine, a fourfold increase in membrane-protein carboxyl methylation was observed in the oldest cells compared with the youngest ones. The identification of methylated species, based on comigration of radioactivity with proteins stained with Coomassie blue, analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, shows, in all cell fractions, a pattern similar to that reported for unfractionated erythrocytes. However in the membrane of the oldest erythrocytes the increase in methylation of the cytoskeletal proteins, bands 2.1 and 4.1, appears to be significantly more marked compared with that observed in the other methylated polypeptides. Furthermore the turnover rate of incorporated [3H]methyl groups in the membrane proteins of the oldest cells markedly increases during cell ageing. Particularly in band 4.1 the age-related increase in methyl esterification is accompanied by a significant reduction of the half-life of methyl esters. The activity of cytoplasmic protein methylase II does not change during cell ageing, while the isolated ghosts from erythrocytes of different age show an age-related increased ability to act as methyl-accepting substrates, when incubated in presence of purified protein methylase II and methyl-labelled S-adenosylmethionine, therefore the relevance of membrane structure in determining membrane protein methylation levels can be postulated. Finally the possible correlation of this posttranslational protein modification with erythrocyte ageing is discussed.  相似文献   

18.
Four hexapeptides of sequence L-Val-L-Tyr-L-Pro-(Asp)-Gly-L-Ala containing D- or L-aspartyl residues in normal or isopeptide linkages have been synthesized by the Merrifield solid-phase method as potential substrates of the erythrocyte protein carboxyl methyltransferase. This enzyme has been shown to catalyze the methylation of D-aspartyl residues in proteins in red blood cell membranes and cytosol. Using a new vapor-phase methanol diffusion assay, we have found that the normal hexapeptides containing either D- or L-aspartyl residues were not substrates for the human erythrocyte methyltransferase. On the other hand, the L-aspartyl isopeptide, in which the glycyl residue was linked in a peptide bond to the beta-carboxyl group of the aspartyl residue, was a substrate for the enzyme with a Km of 6.3 microM and was methylated with a maximal velocity equal to that observed when ovalbumin was used as a methyl acceptor. The enzyme catalyzed the transfer of up to 0.8 mol of methyl groups/mol of this peptide. Of the four synthetic peptides, only the L-isohexapeptide competitively inhibits the methylation of ovalbumin by the erythrocyte enzyme. This peptide also acts as a substrate for both of the purified protein carboxyl methyltransferases I and II which have been previously isolated from bovine brain (Aswad, D. W., and Deight, E. A. (1983) J. Neurochem. 40, 1718-1726). The L-isoaspartyl hexapeptide represents the first defined synthetic substrate for a eucaryotic protein carboxyl methyltransferase. These results demonstrate that these enzymes can not only catalyze the formation of methyl esters at the beta-carboxyl groups of D-aspartyl residues but can also form esters at the alpha-carboxyl groups of isomerized L-aspartyl residues. The implications of these findings for the metabolism of modified proteins are discussed.  相似文献   

19.
An amino acid sequence for a Chlamydomonas calmodulin has been elucidated with emphasis on the characterization of differences that are unique to Chlamydomonas and Dictyostelium calmodulin. While the concentration of calmodulin required for half-maximal activation of plant NAD kinase varies among vertebrate, higher plant, algal, and slime mold calmodulins, only calmodulins from the unicellular alga Chlamydomonas and the slime mold Dictyostelium show increased maximal activation of NAD kinase (Roberts, Burgess, Watterson 1984 Plant Physiol 75: 796-798; Marshak, Clarke, Roberts, Watterson 1984 Biochemistry 23: 2891-2899). The same preparations of calmodulin do not show major differences in phosphodiesterase or myosin light chain kinase activator activity.

We report here that a Chlamydomonas calmodulin has four primary structural features similar to Dictyostelium that are not found in other calmodulins characterized to date: an altered carboxy terminus including a novel 11-residue extension for Chlamydomonas calmodulin, unique residues at positions 81 and 118, and an unmethylated lysine at position 115. The only amino acid sequence identity unique to Chlamydomonas and Dictyostelium calmodulin is the presence of a lysine at position 115 instead of a trimethyllysine. These studies indicate that the methylation state of lysine 115 may be important in the maximal NAD kinase activator activity of calmodulin and support the concept that calmodulin has multiple functional domains in addition to multiple structural domains.

  相似文献   

20.
The alpha- and beta-chains of hemoglobin (Hb) are methylated in intact erythrocytes and in cellular extracts by a protein D-aspartate methyltransferase (EC 2.1.1.77) specific for D-aspartyl and L-isoaspartyl residues. During an 18-h incubation of intact erythrocytes with L-[methyl-3H]methionine, the subfraction of Hb molecules associated with the membrane becomes progressively enriched with methyl esters, reaching a specific activity 10-fold that of cytosolic Hb. The enhanced methylation of membrane Hb in intact cells appears not to result from its methylation at sites with inherently greater stability, since salt-extracted membrane Hb 3H-methyl esters and cytosolic Hb 3H-methyl esters are hydrolyzed at similar rates at pH 8.4 in vitro. Oxidative treatment of column-purified Hb with acetylphenylhydrazine produces an immediate 4-fold increase in its specific methyl-accepting activity coincident with the production of hemichrome forms known to possess a higher affinity for membrane binding sites. Together, the results suggest that the methyltransferase preferentially recognizes partially denatured Hb molecules which possess a higher affinity for membrane binding sites, similar to Hb forms observed in senescent erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号