首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The voltage-dependent calcium channel from guinea-pig skeletal muscle T-tubules has been isolated with a rapid, two-step purification procedure. Reversible postlabelling of the channel-linked 1,4-dihydropyridine receptor and stereoselective photolabelling as a novel approach were employed to assess purity. A 135-fold purification to a specific activity of 1311 +/- 194 pmol/mg protein (determined by reversible equilibrium binding with (+)-[3H]PN200-110) was achieved. Three polypeptides of 155 kDa, 65 kDa and 32 kDa were identified in the purified preparation. The 155-kDa band is a glycoprotein. The arylazide photoaffinity probe (-)-[3H]azidopine bound with high affinity to solubilized membranes (Kd = 0.7 +/- 0.2 nM) and highly purified fractions (Kd = 3.1 +/- 2 nM), whereas the optical antipode (+)-azidopine was of much lower affinity. Irradiation of (-)-[3H]azidopine and (+)-[3H]azidopine receptor complexes with ultraviolet light led to preferential incorporation of the (-) enantiomer into the 155-kDa polypeptide in crude solubilized and purified preparations. The pharmacological profile of irreversible labelling of the 155-kDa glycoprotein by (-)-[3H]azidopine is identical to that found in reversible binding experiments. Specific photolabelling of the 155-kDa band by (-)-[3H]azidopine per milligram of protein increases 150-fold upon purification, whereas incorporation into non-specific bands in the crude solubilized material is identical for both, (-) and (+)-[3H]azidopine.  相似文献   

2.
P-glycoprotein is a 130-180-kDa integral membrane protein that is overproduced in multidrug-resistant cells. The protein appears to act as an energy-dependent drug efflux pump that has broad specificity for structurally diverse hydrophobic antitumor drugs. Many agents, such as the calcium channel blocker verapamil, reverse multidrug resistance and also interact with P-glycoprotein. The goal of this work was to determine if a common binding site participates in the transport of antitumor drugs and/or the reversal of drug resistance. This was done by comparing the peptide maps of P-glycoprotein (encoded by mdr1b) after it was labeled with a photoactive calcium channel blocker, [3H]azidopine, and a newly identified photoaffinity analog for P-glycoprotein 2-[4-(4-azido-3-[125I]iodobenzoyl) piperazin-1-yl]-4-amino-6,7-dimethoxyquinazoline [( 125I]iodoaryl azidoprazosin). [125I] Iodoaryl azidoprazosin, which classically has been used to identify the alpha 1-adrenergic receptor, bound to P-glycoprotein and was preferentially competed by vinblastine greater than actinomycin D greater than doxorubicin greater than colchicine. Peptide maps derived from P-glycoprotein labeled with [3H]azidopine or [125I]iodoaryl azidoprazosin were identical. After maximal digestion under conditions for Cleveland mapping, a single major 6-kDa fragment was obtained after digestion with V8 protease, whereas two major fragments, 6.5 and 5.5 kDa, were detected after digestion with chymotrypsin. The 6.0-kDa V8 fragment and the 6.5-kDa chymotrypsin fragment were both found when P-glycoprotein encoded by mdr1a and mdr1b was compared. Despite its specific interaction with P-glycoprotein, neither iodoaryl azidoprazosin nor prazosin markedly reversed resistance compared with verapamil or azidopine. Further, multidrug-resistant cells were 900-fold resistant to vinblastine but only 5-fold resistant to prazosin. These data demonstrate that structurally diverse reversal and/or antitumor agents are likely to have differential affinity for a small common domain of P-glycoprotein.  相似文献   

3.
It is believed that P-glycoprotein (P-gp) is an energy-dependent drug efflux pump responsible for decreased drug accumulation in multidrug resistant (MDR) cells. In this study, we investigated whether azidopine, a photoactive dihydropyridine calcium channel blocker, is transported by P-gp in MDR Chinese hamster lung cells, DC-3F/VCRd-5L, and whether its binding site(s) on P-gp are distinct from those of Vinca alkaloids and cyclosporins. The efflux of azidopine from MDR cells was energy-dependent and inhibited by the cytotoxic agent vinblastine (VBL). Cyclosporin A (CsA), a modulator of MDR, also increased azidopine accumulation in MDR cells by decreasing the energy-dependent efflux of azidopine. P-gp in these cells was the only protein specifically bound to [3H]azidopine in photoaffinity experiments. The specific photoaffinity labeling of P-gp by [3H]azidopine was inhibited by CsA, SDZ 33-243, nonradioactive azidopine, and VBL with median concentrations (IC50) of 0.5, 0.62, 1.7, and 25 microM, respectively. The equilibrium binding of azidopine to plasma membranes of MDR variant DC-3F/VCRd-5L cells showed a single class of specific binding sites having a dissociation constant of 1.20 microM and a maximum binding capacity of 4.47 nmol/mg of protein. Kinetic analysis indicated that the inhibitory effect of VBL and CsA on azidopine binding to plasma membranes of MDR cells was noncompetitive, indicating that azidopine binds to P-gp at a binding site(s) different from the binding site(s) of these drugs.  相似文献   

4.
We fused P-glycoprotein with beta-galactosidase at the C-terminus aiming to study the mechanism of drug binding of P-glycoprotein in reconstitution experiments. Expression of the fusion protein in NIH 3T3 cells conferred a multidrug-resistant phenotype, suggesting that beta-galactosidase fusion at the C-terminus does not affect the functions of P-glycoprotein. The fusion protein was partially purified by simple immunoprecipitation with anti-beta-galactosidase polyclonal antibody, and its [3H]azidopine binding property was investigated in the presence of various compositions of liposomes. The purified P-glycoprotein, after reconstitution into liposomes, was capable of binding [3H]azidopine. When the cholesterol content of liposomes was increased to a weight ratio of 20%, the specific binding activity of the partially purified fusion protein was stimulated, and when the cholesterol content was increased higher, the binding activity decreased. The binding was specifically decreased by competition with vinblastine. Stigmasterol was less effective, and ergosterol was the least effective in stimulating the specific binding.  相似文献   

5.
P-glycoprotein is an efflux pump for a broad spectrum of hydrophobic agents. We found that bioactive peptides including somatostatin and substance P inhibit ATP-dependent vincristine binding to P-glycoprotein-overexpressing K562/ADM membrane vesicles. Some of these bioactive peptides including somatostatin stimulate basal ATPase activity of P-glycoprotein; in contrast, other peptides including substance P inhibit it. The K562/ADM membrane vesicles showed an ATP-dependent, osmotically sensitive uptake of somatostatin and substance P, which was inhibited by valspodar, an inhibitor of P-glycoprotein. These findings suggested that certain bioactive peptides such as somatostatin and substance P directly interact with human P-glycoprotein as endogenous substrates for P-glycoprotein-mediated transport.  相似文献   

6.
A radioactive photoactive dihydropyridine calcium channel blocker, [3H]azidopine, was used to photoaffinity label plasma membranes of multidrug-resistant Chinese hamster lung cells selected for resistance to vincristine (DC-3F/VCRd-5L) or actinomycin D (DC-3F/ADX). Sodium dodecyl sulfate-polyacrylamide gel electrophoretic fluorograms revealed the presence of an intensely radiolabeled 150-180-kDa doublet in the membranes from drug-resistant but not from the drug-sensitive parental (DC-3F) cells. A similar radiolabeled doublet was barely detected in a drug-sensitive partial revertant (DC-3F/ADX-U) cell line. The 150-180-kDa doublet exhibited a specific half-maximal saturable photolabeling at 1.07 X 10(-7) M [3H]azidopine. The dihydropyridine binding specificity was established by competitive blocking of specific photolabeling with nonradioactive azidopine as well as with nonphotoactive calcium channel blockers nimodipine, nitrendipine, and nifedipine. In addition, [3H]azidopine photolabeling was blocked by verapamil and diltiazem but was stimulated by excess prenylamine and bepridil suggesting a cross-specificity for up to four different classes of calcium channel blockers. The 150-180-kDa calcium channel blocker acceptor co-electrophoresed exactly with the 150-180-kDa surface membrane glycoprotein (gp150-180 or P-glycoprotein) Vinca alkaloid acceptor from multidrug-resistant cells and was immunoprecipitated by polyclonal antibody recognizing gp150-180. [3H]Azidopine photolabeling of the 150-180-kDa component in the presence of excess vinblastine was reduced over 90%, confirming the identity or close relationship of the calcium channel blocker acceptor and the gp150-180 Vinca alkaloid acceptor. The [3H]azidopine photolabeling of gp150-180 also was reduced by excess actinomycin D, adriamycin, or colchicine, demonstrating a broad gp150-180 drug recognition capacity. The ability of gp150-180 to recognize multiple natural product cytotoxic drugs as well as calcium channel blockers suggests a direct function for gp150-180 in the multidrug resistance phenomenon and a role in the circumvention of that resistance by calcium channel blockers.  相似文献   

7.
It is known that triphenylethylene anti-oestrogens such as tamoxifen bind to specific high-affinity anti-oestrogen-binding sites, which are distinct from oestrogen receptors. These binding sites are widely distributed in human and animal tissues, but their function and endogenous ligands are unknown. By using [3H]tamoxifen and a rat liver microsomal fraction, a radio-ligand-binding assay was developed in an attempt to identify endogenous ligands for the anti-oestrogen-binding sites in the rat. An ether extract of rat serum inhibited [3H]tamoxifen binding to rat liver binding sites in a dose-dependent manner. Identification of the active serum constituents that inhibited [3H]tamoxifen binding was achieved by g.l.c.-mass spectrometry after preliminary purification of a rat serum extract by silica-gel t.l.c. Three unsaturated fatty acids (oleic, linoleic and arachidonic) accounted for about 50% of the total inhibiting activity of the serum extract. The concentrations of these fatty acids required to inhibit [3H]tamoxifen binding were in the range of 10-100 microM, comparable with those found in the rat circulation under physiological conditions. Saturated fatty acids present in rat serum (palmitic and stearic) did not inhibit [3H]tamoxifen binding. A survey of other fatty acids revealed that, in general, unsaturated fatty acids were far more potent than saturated fatty acids in inhibiting [3H]tamoxifen binding. These studies demonstrate that unsaturated fatty acids are quantitatively the most important circulating inhibitors of [3H]tamoxifen binding to the anti-oestrogen-binding sites. The biological significance of their interaction with these sites, however, remains to be clarified.  相似文献   

8.
'Peripheral' binding sites for benzodiazepines are under neural or homonal control in the pineal gland, olfactory bulb, and kidney. These observations prompted a search for an endogenous substance which could modulate these sites under physiological conditions. Acidified methanol extracts from several tissues (e.g. stomach, kidney, lung) were found to inhibit the binding of [3H]Ro 5-4864 to 'peripheral' binding sites, but did not significantly affect the binding of [3H]diazepam to 'brain' benzodiazepine receptors. Fractionation of a crude extract prepared from antral stomach by either ultrafiltration or gel filtration chromatography yielded high (Mr greater than 10 000) and low (Mr less than 1000) Mr fractions which competitively inhibited [3H]Ro 5-4864 binding to 'peripheral' sites. These observations suggest the presence of endogenous substances in several rat tissues which may represent physiologically important ligands for 'peripheral' binding sites for benzodiazepines.  相似文献   

9.
Reduced cyclosporin accumulation in multidrug-resistant cells   总被引:4,自引:0,他引:4  
Cyclosporin accumulation was reduced by 50% or more in multidrug- resistant CHRC5 CHO cells with high levels of P-glycoprotein expression compared to drug sensitive AuxB1 CHO cells. This difference could be overcome by verapamil which is known to interact with P-glycoprotein and reverse multidrug resistance. The difference in cyclosporin accumulation between sensitive and resistant cells decreased with increasing cyclosporin concentrations suggesting that cyclosporine itself regulated its own accumulation through interaction with P-glycoprotein. Indeed, cyclosporin also reversed differences in vinblastine accumulation between resistant and sensitive cell lines. Since P-glycoprotein is highly expressed in the kidney which is also a target for cyclosporin toxicity, the effects of verapamil on cyclosporin accumulation were studied in two renal cell lines, rat mesangial cells and LLCPK1, cells. Verapamil increased cyclosporin accumulation by approximately 70%. These results suggest that cellular cyclosporine accumulation is regulated at least in part by its interaction with P-glycoprotein.  相似文献   

10.
Metabolism of high density lipoprotein (HDL) cholesteryl ester (CE) by cultured rat adrenal cells was studied. Addition of [3H]CE-HDL to cells pretreated with adrenocorticotrophin in lipoprotein poor media resulted in a time- and concentration-dependent accumulation of [3H]cholesteryl ester and production of [3H]cholesterol and [3H]corticosterone. HDL-CE metabolism could be described as the sum of a high affinity ([ HDL-cholesterol]1/2 max = 16 micrograms/ml) and low affinity ([ HDL-cholesterol]1/2 max greater than 70 micrograms/ml) process. [3H]Cholesterol was found both intracellularly and in the media. Accumulation of [3H]cholesteryl ester could not be attributed to uptake and re-esterification of unesterified cholesterol since addition of Sandoz 58-035, an inhibitor of acyl coenzyme A:cholesterol acyltransferase, did not prevent ester accumulation. Moreover, addition of chloroquine did not inhibit cholesteryl ester hydrolysis indicating that hydrolysis was not lysosomally mediated. Aminoglutethimide prevented conversion of [3H]CE-HDL to steroid hormones but did not inhibit [3H]cholesteryl ester uptake. Cellular accumulation of [3H] cholesteryl ester exceeded accumulation of 125I-apoproteins 5-fold at 1 h and 35-fold at 24 h indicating selective uptake of cholesteryl ester moiety. We conclude that rat adrenal cells possess a mechanism for selective uptake of HDL cholesteryl esters which provides substrate for steroidogenesis. These results constitute the first direct demonstration that cholesteryl esters in HDL can be used as steroidogenic substrate by the rat adrenal cortex.  相似文献   

11.
The brush border membrane of the proximal tubule contains two efflux pathways for organic cations from the cell to the tubular fluid: a P-glycoprotein and an organic cation/H+ exchanger. There is evidence that they transport many of the same substrates. Their structural relatedness is unknown and is the subject of this report. The experimental approach was to identify the exchanger with photoaffinity labeling reagents. The rationale was that if the P-glycoprotein and the organic cation/H+ exchanger transport many of the same substrates, then they might be photoaffinity labeled by the same reagents. [125I]Iodoarylazidoprazosin and [3H]azidopine are two reagents, which have been used, to photoaffinity label the P-glycoprotein. We found that several polypeptides were photolabeled in a time- and concentration-dependent manner. The photoincorporation into only two of these polypeptides (41 and 28 kDa) was blocked extensively by the presence of known substrates for the exchanger. The photoaffinity labeling of only the 41-kDa polypeptide was affected by treatment with the chemical reagents, N-ethylmaleimide and dithiothreitol, which are known to affect the exchanger reaction. The findings are consistent with the interpretation that a 41-kDa polypeptide is, or is a component of, the exchanger.  相似文献   

12.
The stereoenantimers D-[3H]adenosine and L-[3H]adenosine were used to study adenosine accumulation in rat cerebral cortical synaptoneurosomes. L-Adenosine very weakly inhibited rat brain adenosine deaminase (ADA) activity with a Ki value of 385 microM. It did not inhibit rat brain adenosine kinase (AK) activity, nor was it utilized as a substrate for either ADA or AK. The rate constants (fmol/mg of protein/s) for L-[3H]adenosine accumulation measured in assays where transport was stopped either with inhibitor-stop centrifugation or with rapid filtration methods were 82 +/- 14 and 75 +/- 10, respectively. Using the filtration method, the rates of L-[3H]adenosine accumulation were not significantly different from the value of 105 +/- 15 fmol/mg of protein/s measured for D-[3H]adenosine transport. Unlabeled D-adenosine and nitrobenzylthiolnosine, both at a concentration of 100 microM, reduced the levels and rates of L-[3H]adenosine accumulation by greater than 44%. These findings suggest that L-adenosine, a metabolically stable enantiomeric analog, and the naturally occurring D-adenosine are both taken up by rat brain synaptoneurosomes by similar processes, and as such L-adenosine may represent an important new probe with which adenosine uptake may be studied.  相似文献   

13.
A Grossman 《Life sciences》1984,35(22):2275-2279
N-benzoyl-L-arginyl-p-nitroanilide (BAN), a synthetic substrate for trypsin-like proteolytic enzymes, is a potent activator of [3H]estradiol-binding to a protein present in rat pancreas. When partially purified, this protein is almost devoid of [3H]estradiol-binding activity in the absence of an endogenous accessory factor. BAN can mimic the natural coligand in this steroid binding reaction. The effect of BAN is specific since a number of derivatives of this substance are inactive or may even inhibit steroid binding. It is unlikely that BAN exerts this stimulatory action indirectly, possibly by preventing proteolytic inactivation of the [3H]estradiol-binding protein, since preincubation of the protein in the absence of BAN resulted neither in reduced rate, nor extent, of steroid binding following BAN addition. Also, a number of protease inhibitors had no effect on the binding reaction. Of those inhibitors tested, only antipain significantly enhanced binding of [3H]estradiol, but only about 20 percent as effectively as BAN.  相似文献   

14.
Photoaffinity labelling of Ca2+ channels with [3H]azidopine   总被引:7,自引:0,他引:7  
A 1,4-dihydroypyridine arylazide photoaffinity ligand, [3H]azidopine (50.6 Ci/mmol), has been synthesized. [3H]Azidopine binds reversibly with a Kd of 350 pM to guinea-pig skeletal muscle membranes in the absence of ultraviolet light. The reversible [3H]azidopine binding is inhibited steroselectively by 1,4-dihydropyridines, phenylalkylamine Ca2+ channel blockers and La3+. Covalent incorporation into membrane proteins after photolysis was investigated by sodium dodecyl sulfate polyacrylamide slab gel electrophoresis. [3H]Azidopine is photoincorporated specifically into a protein of Mr approximately 145 000. The covalent labelling of the Mr approximately 145 000 band is inhibited stereoselectively by drugs and cations which block the reversible [3H]azidopine binding. It is suggested that [3H]azidopine is photoincorporated into a subunit of the putative Ca2+ channel.  相似文献   

15.
P-glycoprotein is an energy-dependent drug efflux pump with broad specificity for hydrophobic antitumor agents such as vinblastine, doxorubicin, and taxol. We have previously shown that [3H]azidopine and [125I] iodoaryl azidoprazosin, which are photoaffinity probes for the alpha 1-subunit of the L-type calcium channel and alpha 1-adrenergic receptor, respectively, specifically interact with P-glycoprotein, partially reverse multidrug resistance, and bind to a 6-kDa common domain in the 140-kDa P-glycoprotein molecule (Greenberger, L., Yang, C.-P. H., Gindin, E., and Horwitz, S. B. (1990) J. Biol. Chem. 265, 4394-4401). An immunological approach was used to identify the position of photoaffinity drug-binding domains in P-glycoprotein. Analysis was done with a series of site-specific rabbit polyclonal antibodies to peptides that mimic domains in the mouse mdr1b gene product. The antibodies were made against amino acid residues 269-284, 356-373, 665-682, 740-750, 907-924, and 1203-1222. Upon trypsin digestion, cleavage products of 95 and 55 kDa were obtained, which after further digestion migrated at 60 and 40 kDa, respectively. The 40-kDa fragment was recognized by the antibodies to residues 1203-1222 and 919-1276, while the 55-kDa fragment was recognized by these antibodies plus antibodies to residues 740-750 and 907-924. In contrast, the 95- and 60-kDa trypsin fragments were recognized only by the antibody to residues 269-284. The 55- and 40-kDa fragments, as well as the 95- and 60-kDa fragments, were major photolabeled species after digestion of P-glycoprotein. The previously identified 6-kDa photo-labeled P-glycoprotein fragment was within the 40-kDa trypsin fragment. These data suggest that there are two photoaffinity drug-binding domains in P-glycoprotein encoded by mouse mdr1b. The C-terminal site most likely resides within or in close proximity to putative transmembrane domains 11-12.  相似文献   

16.
P-glycoprotein plays a key role in multidrug resistance of tumor cells. In order to elucidate the possible quarternary structure/function relationship of P-glycoprotein, we treated multidrug-resistant human leukemia K562/ADM cells with the crosslinking reagent, disuccinimidyl suberate. In addition to 180K P-glycoprotein, a 340K protein was immunoprecipitated with an anti-P-glycoprotein monoclonal antibody, MRK-16. The 340K protein is most probably a dimeric P-glycoprotein, since only the 180K P-glycoprotein was immunoprecipitated with MRK-16 when K562/ADM cells were treated with the cleavable crosslinking reagent, dithiobis(succinimidylpropionate), and analysed under reduced conditions. The dimeric P-glycoprotein was photolabeled with [3H]azidopine like the 180K monomeric P-glycoprotein and the photolabeling was inhibited by excess amount of vincristine and verapamil. The dimeric P-glycoprotein could be a functionally active form of the protein involved in the transport of antitumor agents.  相似文献   

17.
The predicted cytoplasmic orientation and two-domain structure of the multidrug efflux pump P-glycoprotein were demonstrated with sequence-specific antibodies. We synthesized peptides corresponding to amino acid residues, Glu393-Lys408 (anti-P) and Leu1206-Thr1226 (anti-C) in P-glycoprotein from human mdr1 cDNA and used these peptides to produce polyclonal antibodies. From the primary structure of P-glycoprotein, and anti-C antibody is expected to recognize another position, Leu561-Thr581, in the duplicate structure of P-glycoprotein, but anti-P recognizes only one site. These antibodies bind to multidrug-resistant cells (KB-C2) with permeabilized plasma membrane but do not bind to nonpermeabilized KB-C2 cells or parental KB cells, supporting the predicted cytoplasmic orientation of these sequences. With immunoblotting of the membrane fractions from KB-C2 cells, a major 140-kDa polypeptide of the P-glycoprotein was detected with both anti-P and anti-C. Two minor polypeptides with molecular mass of 95 and 55 kDa were also detected. When membrane vesicles were digested mildly with trypsin, the amount of these two polypeptides increased. Anti-P detected only the 95-kDa polypeptide, and anti-C detected both 95- and 55-kDa polypeptides. Achromobacter lyticus protease I (lysyl endopeptidase) and Staphylococcus aureus V8 protease also produced two polypeptides with similar molecular weights. Absorption into lectin-agarose beads and labeling with [3H]glucosamine indicated that the 95-kDa polypeptide was glycosylated but that the 55-kDa polypeptide was not. These two polypeptides as well as P-glycoprotein were photoaffinity-labeled with a calcium channel blocker, [3H]azidopine, but most of the label was found in the 55-kDa polypeptide. The yield of labeled fragments from membrane vesicles photolabeled after digestion with trypsin was similar to that from membrane vesicles digested with trypsin after photolabeling. These data indicate 1) that the 95-kDa polypeptide is the fragment corresponding to the amino-terminal half of P-glycoprotein containing sugar chains; 2) that the 55-kDa polypeptide is the carboxyl-terminal half which was mainly labeled with [3H]azidopine; and 3) that P-glycoprotein has a relatively rigid structure with a small number of protease-sensitive sites and its global structure is not destroyed by tryptic cleavage.  相似文献   

18.
19.
To determine the number of drug binding sites that exist on the multidrug transporter, P-glycoprotein, we used azidopine, a dihydropyridine photoaffinity compound that reverses multidrug resistance and labels P-glycoprotein. Azidopine labels P-glycoprotein in two distinct locations: one labeled site is within the amino half of P-glycoprotein between amino acid residues 198 and 440, and the other site is within the carboxy half of the protein. Vinblastine is a cytotoxic drug that is used in cancer chemotherapy and is a substrate for transport by P-glycoprotein. We found that vinblastine inhibits azidopine labeling to approximately the same extent at each labeled site on P-glycoprotein. Because several studies have shown that amino acid residue 185 of P-glycoprotein plays a critical role in some aspects of drug binding and transport, we also studied the effect that amino acid residue 185 has on azidopine labeling. These studies show that azidopine labels both sites equivalently in both wild-type (G185) and mutant (V185) P-glycoproteins. We conclude from our results that the two halves of P-glycoprotein approach each other to form a single binding site for these drugs.  相似文献   

20.
M Taki  H Nakayama  Y Kanaoka 《FEBS letters》1991,283(2):259-262
A new 1,4-dihydropyridine photoaffinity ligand, [3H]diazipine, has been assessed by binding and photolabeling, and compared with a currently used [3H]azidopine. [3H]Diazipine reversibly binds to skeletal muscle Ca2+ channels with a similar affinity to [3H]azidopine, but [3H]diazipine labels the channel two times more efficiently and no release of the incorported amount is observed after dithiothreitol treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号