首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The molybdenum cofactor (MoCo) is a component of aldehyde oxidase (AO EC 1.2.3.1), xanthine dehydrogenase (XDH EC 1.2.1.37) and nitrate reductase (NR, EC 1.6.6.1). The activity of AO, which catalyses the last step of the synthesis of abscisic acid (ABA), was studied in leaves and roots of barley (Hordeum vulgare L.) plants grown on nitrate or ammonia with or without salinity. The activity of AO in roots was enhanced in plants grown with ammonium while nitrate-grown plants exhibited only traces. Root AO in barley was enhanced by salinity in the presence of nitrate or ammonia in the nutrient medium while leaf AO was not significantly affected by the nitrogen source or salinity of the medium.Salinity and ammonium decreased NR activity in roots while increasing the overall MoCo content of the tissue. The highest level of AO in barley roots was observed in plants grown with ammonium and NaCl, treatments that had only a marginal effect on leaf AO. ABA concentration in leaves of plants increased with salinity and ammonium.Keywords: ABA, aldehyde oxidase, ammonium, nitrate, salinity.   相似文献   

3.
The effect of salinity and different nitrogen sources on the level of xanthine dehydrogenase (XDH) activity in roots and leaves of pea plants was investigated. Two bands of xanthine dehydrogenase activity (XDH-R2, XDH-R3) were detected in roots after native PAGE and staining with hypoxanthine as substrate. Only one band of XDH activity (XDH-L1) was detected in leaf extracts. Within leaves of three different ages the highest XDH activity was detected in young leaves both under control as well as stress conditions. Salinity did not affect significantly the activity of XDH in pea roots, however, depressed XDH activity in leaves. A significant increase of XDH activity both in roots and leaves was observed only when ammonium was applied as the sole N source. Increased concentration of ureides in the xylem sap of pea plants was observed for both ammonium and high salt treatments, although the higher content of ureides in the xylem sap of 100 mM NaCl treated plants may be rather a result of lower rate of exudation from roots than of increased root ureide biosynthesis. Thus, the changes of root and leaf XDH activity in pea plants seem to be tightly correlated with ureide synthesis that is induced by NH 4 + , the product of N fixation, and rather than by salinity. A contribution of pea XDH in increased oxygen species or uric acid production under saline conditions seems to be less than likely.  相似文献   

4.
Seedlings of Ricinus communis L. were cultivated in quartz sandand supplied with media which contained either different concentrationsof nitrate or ammonium nitrogen and were treated with a lowsalt stress. The concentration of ABA was determined in tissuesand in xylem and phloem saps. Between 41 and 51 day after sowing,abscisic acid (ABA) flows between roots and shoots were modelled.Long-distance transport of ABA was not stimulated under conditionsof nitrate deficiency (0.2 mol m–3). However, when ammoniumwas given as the only N source (1.0 mol m–3), ABA transportin both xylem and phloem was increased significantly. Mild saltstress (40 mol m–3 NaCl) increased ABA transport in nitrate-fedplants, but not in ammonium-fed plants. The leaf conductancewas lowered by salt treatment with both nitrogen sources, butit was always lower in ammonium-fed compared to nitrate-fedplants. A negative correlation of leaf conductance to ABA levelsin leaves or flow in xylem was found only in comparison of ammonium-fedto nitrate-fed plants. Key words: Abscisic acid, ammonium, Ricinus communis, phloem, xylem, transport, nitrate, nitrogen nutrition  相似文献   

5.
Plants of Lupinus albus were grown for 51 d under control (1.1mol m–3 NaCl) and saline (40 mol m–3 NaCl) conditions.Plants were harvested and changes of carbon, nitrogen and abscisicacid (ABA) contents of individual organs were determined 41d and 51 d after germination. In the period between the twoharvests xylem and phloem saps were collected and respirationand photosynthesis of individual organs were measured. Usingflows of carbon, C/ABA ratios and increments of ABA flows ofABA in phloem and xylem and rates of biosynthesis and degradationof ABA were calculated. Both under control and saline conditionsnet biosynthesis occurred in the root, the basal strata of leavesand in the inflorescence. Metabolic degradation of ABA tookplace in the stem internodes and apical leaf strata. Salt stress increased xylem transport of ABA up to 10-fold andphloem transport to the root up to 5-fold relative to that ofthe controls. A considerable amount of ABA in the xylem saporiginated from biosynthesis in the roots, i.e. 55% in salt-treatedand smaller than 28% in control plants. The remaining part ofABA in the xylem sap originated from the shoot: it was translocatedin the phloem from fully differentiated leaves towards the rootand from there it was recirculated back to the aerial partsof the plant. The data suggest that ABA may serve as a hormonalstress signal from the root system. Key words: Lupinus albus, salt stress, abscisic acid, long distance transport  相似文献   

6.
The roles of O-acetylserine (thiol) lyase (OASTL, EC 4.2.99.8) and abscisic (ABA) acid in stress responses to NaCl and cadmium treatments were investigated in Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steudel plants. OASTL activity increased under stress (25-300 microM Cd, 100mM NaCl, 1 microM ABA) in both Typha and Phragmites mainly in roots, contributing substantially to satisfy the higher demand of cysteine for adaptation and protection. The earliest significant responses in intact roots were recorded after 12-24 h of Cd treatments, but different levels of stimulation were also observed after 3 and 7 days of exposure. The OASTL activity responses of Phragmites to salinity (100mM NaCl) were higher than those of Typha. Cysteine synthesis in Typha is much higher than in Phragmites, which supports the efficiency of the thiol-metabolism-based protection shown in Typha. Exogenous ABA increased OASTL activity in both species. Cd treatments led to increased ABA levels in roots. Phragmites showed higher ABA levels compared to Typha. The increase of ABA content indicates the involvement of this phytohormone in early stress responses, while the stimulation of OASTL following the ABA application suggests that ABA has a role in an OASTL activation pathway.  相似文献   

7.
8.
In Hordeum vulgare L. plants, NaCl stress imposed through the root medium for a period of 8 days decreased the rate of CO2 assimilation, the chlorophyll and protein leaf content, and the activity of ribulose-1,5-bisphosphate carboxylase. The activity of phosphoenolpyruvate carboxylase was twofold over the control. Pretreatment with abscisic acid (ABA) for 3 days before salinization diminished the inhibitory effect of NaCl on the rate of CO2 fixation. The leaf Na+ and Cl content decreased in ABA-pretreated plants. Both ABA and NaCl treatments led to an increase in the endogenous level of ABA in the plant leaves. Patterns of total proteins extracted from the leaves of control or ABA- and salt-treated plants were compared. Both ABA and NaCl induced marked quantitative and qualitative changes in the polypeptide profiles concerning mainly the proteins with approximately equal mobility. The results are discussed in terms of a possible role of ABA in increasing the salt tolerance when ABA is applied to the plants for a short period before exposure to salinity stress, thus improving the invulnerability to unfavorable conditions.Abbreviations RuBPC ribulose-1,5-bisphosphate carboxylase - PSII photosystem II - ABA abscisic acid - PEPC phosphoenolpyruvate carboxylase - DTTr dithiothreitol - BSA bovine serum albumin - ELISA enzyme-linked immunosorbent assay - SDS sodium dodecyl sulfate - PAGEr polyacrylamide gel electrophoresis  相似文献   

9.
The xylem of first internode of runner bean and of previously etiolated maize mesocotyl segments was perfused with media containing abscisic acid (ABA) or abscisic acid glucose ester (ABA-GE) in concentrations as they occur under stress conditions. ABA-GE passed through the internode and mesocotyl segments unchanged. Within 10 min the concentration of ABA-GE(xyl) rose to a level similar to that in the external perfusion medium. By contrast, 30-40 min passed before the concentration of free ABA in the xylem sap [ABA(xyl)] reached the level in the external medium. When ABA-free media were used, ABA was released from the xylem parenchyma to the xylem vessels resulting in an [ABA(xyl)] of 13-23 nM (runner bean internode) or 1-6 nM (maize mesocotyl). The total perimeter and, hence surface area, of the xylem elements was measured microscopically and from these measurements it was estimated that, in both bean internodes and maize hpyocotyls, the flux of ABA to the xylem was 1 pmol m(-2) s(-1). The ABA efflux from the stem and mesocotyl parenchyma into the xylem could be increased when the tissues were treated with tetcyclacis, an inhibitor of ABA degradation, but also by changing the pH from its normal value of about pH 5.8 to pH 7.0 and by adding 100 mM NaCl to the perfusion medium. If 100 nM ABA was added to the perfusion medium the above treatments had only small effects on the release of ABA from the tissues into the xylem.  相似文献   

10.
Intact plants and stem-girdled plants of Phaseolus vulgaris grown hydroponically were exposed to 5 degrees C for up to 4 d; stem girdling was used to inhibit the phloem transport from the leaves to the roots. After initial water stress, stomatal closure and an amelioration of root water transport properties allowed the plants to rehydrate and regain turgor. Chilling augmented the concentration of abscisic acid (ABA) content in leaves, roots and xylem sap. In intact plants stomatal closure and leaf ABA accumulation were preceded by a slight alkalinization of xylem sap, but they occurred earlier than any increase in xylem ABA concentration could be detected. Stem girdling did not affect the influence of chilling on plant water relations and leaf ABA content, but it reduced slightly the alkalinization of xylem sap and, principally, prevented the massive ABA accumulation in root tissues and the associated transport in the xylem that was observed in non-girdled plants. When the plants were defoliated just prior to chilling or after 10 h at 5 degrees C, root and xylem sap ABA concentration remained unchanged throughout the whole stress period. When the plants were chilled under conditions preventing the occurrence of leaf water deficit (i.e. at 100% relative humidity), there were no significant variations in endogenous ABA levels. The increase in root hydraulic conductance in chilled plants was a response neither to root ABA accretion, nor to some leaf-borne chemical signal transported downwards in the phloem, nor to low temperature per se, as indicated by the results of the experiments with defoliated or girdled plants and with plants chilled at 100% relative humidity. It was concluded that the root system contributed substantially to the bean's ability to cope with chilling-induced water stress, but not in an ABA-dependent manner.  相似文献   

11.
Indole-3-acetic acid (IAA) was measured in leaves and roots of tomato (Lycopersicon esculentum) genotypes subjected to salt stress. An abscisic acid (ABA)-deficient mutant of tomato (sitiens), the genetic parent (Rheinlands Ruhm, RR), and a commercial variety (Large Cherry Red, LCR) of tomato were treated with 50 to 300 mM NaCl in nutrient culture. Both LCR and RR had significantly higher levels of IAA in the roots compared with that in sitiens prior to treatment. The initial levels of IAA in the roots of LCR and RR declined by nearly 75% after exposure to NaCl, whereas those in roots from the sitiens mutant remained unchanged. IAA levels in the leaves of all genotypes remained unchanged or increased slightly in response to NaCl. ABA was highest in leaves from the normal genotypes after exposure to NaCl. ABA levels in the roots of sitiens were similar to the levels in the normal genotypes, whereas levels in the leaves were only 10% of the levels found in normal genotypes regardless of the salt treatment. Treatment of LCR and sitiens with exogenous ABA increased the ABA levels in leaves and roots, but there were no measurable changes in endogenous IAA. Therefore, the reduction in IAA appears to result from an ABA-independent effect of NaCl on IAA metabolism in the roots of stressed plants.  相似文献   

12.
Addition of either abscisic acid (ABA) or kinetin at 10−6 M to salinized media (20–120mM NaCl) induced remarkable effects on growth ofPhaseolus vulgaris plants. Whereas ABA inhibited the plant growth and the rate of transpiration, kinetin induced stimulation of both parameters. Moreover, ABA increased proline and phosphorus concentrations in the salinized plants whilst kinetin decreased them. ABA induced stimulation of the transport of K, Ca and Cl from root to shoot, accumulation of K, Na and Cl in root cells and inhibits the transport of Na and accumulation of Ca. Kinetin appeared to inhibit the transport and accumulation of Na and Cl, transport of K, and stimulates the accumulation of K and Ca as well as the transport of Ca. The highest influence of both ABA and kinetin was mostly observed when these hormones were used in combination with the highest concentration of NaCl (120 mM) in the medium.  相似文献   

13.
14.
In this study, the promoter activity for three types of Euonymus-related lectins (EUL) from rice, further referred to as OrysaEULS2, OrysaEULS3, and OrysaEULD1A was analyzed. In silico promoter analyses showed that the EUL promoters from rice contain next to the typical promoter elements some motifs that are considered to be stress-responsive elements. Furthermore, Arabidopsis thaliana plants were transformed with a promoter::β-glucuronidase (GUS) construct for each of the proteins under study. Subsequently, one-insertion homozygous lines were selected and analyzed for GUS activity. Experiments were performed under normal growth conditions or after application of different stress conditions, in particular treatments with 150 mM NaCl, 100 mM mannitol, and 100 μM abscisic acid (ABA) for 24 h. GUS activity was detected with the OrysaEULS3 and OrysaEULD1A promoters especially in the cotyledons and the young true leaves, respectively, but not with the OrysaEULS2 promoter. The activity of OrysaEULS3 and OrysaEULD1A promoters was increased after ABA and mannitol treatments but decreased after NaCl treatment. We hypothesize that the Euonymus-related rice proteins have a role in sensing and responding to external stresses as well as in the growth of the plant.  相似文献   

15.
This paper describes the physiological effects of abscisic acid (ABA) and 100 mM NaCl on citrus plants. Water potential, leaf abscission, ethylene production, photosynthetic rate, stomatal conductance, and chloride accumulation in roots and leaves were measured in plants of Salustiana scion [Citrus sinensis (L) Osbeck] grafted onto Carrizo citrange (Citrus sinensis [L.] Osbeck × Poncirus trifoliata [L.] Raf) rootstock. Plants under salt stress accumulated high amounts of chloride, increased ethylene production, and induced leaf abscission. Stomatal conductance and photosynthetic rates rapidly dropped after salinization. The addition of 10 mM ABA to the nutrient solution 10 days before the exposure to salt stress reduced ethylene release and leaf abscission. These effects were probably due to a decrease in the accumulation of toxic Cl- ions in leaves. In non-salinized plants, ABA reduced stomatal conductance and CO2 assimilation, whereas in salinized plants the treatment slightly increased these two parameters. The results suggest a protective role for ABA in citrus under salinity.  相似文献   

16.
When intact plants of Xanthium strumarium L. were water stressed, the youngest leaves accumulated the highest levels of abscisic acid (ABA). On the other hand, when leaves of different ages were detached and then stressed, the capacity to produce ABA was highest in the mature leaves. Radioactive ABA was transported from mature leaves to the shoot tips and young leaves, as well as to the roots, as evidenced by the presence of radioactive ABA and phaseic acid in the xylem exudate coming from the roots. Thus, ABA was recirculated in the plant, moving down the stem in the phloem and back up in the transpiration stream to the mature leaves. Phloem exudate collected by the use of the EDTA technique had a high concentration of ABA and phaseic acid which increased several-fold after water stress. The high ABA levels in immature leaves and apical buds are, therefore, mainly due to import from older leaves, rather than to in situ synthesis.  相似文献   

17.
G. V. Hoad 《Planta》1975,124(1):25-29
Summary Addition of an osmoticum (-12 bars) to the rooting medium of sunflowers (Helianthus annuus L.) caused an increase in the level of abscisic acid (ABA) present in xylem exudate subsequently collected from cut shoots. Using tall and dwarf plants it was shown that there was a time lag in the appearance of increased levels of ABA in tall plants when compared with dwarf plants. The results indicate that the leaves, rather than the roots are the site of synthesis of ABA present in the xylem sap of osmotically stressed sunflower plants.Abbreviation ABA abscisic acid  相似文献   

18.
We designed two experiments to investigate the osmotic stress and ion-specific effects on xylem abscisic acid (ABA) and the relevance to salinity tolerance in one-year-old seedlings of Populus euphratica Oliv. (a salt-resistant genotype) and one-year-old rooted cuttings of P. 'popularis 35-44' (P. popularis) (a salt-sensitive genotype). Net photosynthetic rates (Pn) and unit transpiration rates (TRN) of the two genotypes were significantly decreased upon osmotic shock caused by PEG 6000 (osmotic potential = -0.24 MPa) or iso-NaCl (50 mM). Shoot xylem ABA concentrations in both genotypes increased rapidly after the onset of PEG stress, resulting from a decreased water flow. NaCl-treated trees of P. euphratica maintained considerably greater concentrations of ABA than PEG-treated plants in a longer term, whereas salinized P. popularis exhibited a transient accumulation of ABA in the shoot. TRN was greatly enhanced in both genotypes when pressure (0.24 MPa) was applied to counteract the osmotic suction of 50 mM NaCl. Pressurizing of root systems diluted solutes in the root xylem, but the dilution effect was more pronounced in P. popularis. Root xylem ABA concentrations in P. euphratica steadily increased with salt stress although pressurization lowered its levels. In contrast, there were no observed changes in ABA response to salinity in pressured P. popularis. Therefore, we concluded that the salt-tolerant P. euphratica had a greater capacity to synthesize ABA under saline conditions, which may partially result from specific salt effects. In addition, P. euphratica exhibited a higher capacity for salt (Na+ and Cl-) transport control under salt stress, compared with P. popularis. The possible association between ABA and salt transport limitation, and the relevance to salinity tolerance were discussed.  相似文献   

19.
We designed two experiments to investigate the osmotic stress and ion-specific effects on xylem abscisic acid (ABA) and the relevance to salinity tolerance in one-year-old seedlings of Populus euphratica Oliv. (a salt-resistant genotype) and one-year-old rooted cuttings of P. 'popularis 35-44' (P. popularis) (a salt-sensitive genotype). Net photosynthetic rates (Pn) and unit transpiration rates (TRN) of the two genotypes were significantly decreased upon osmotic shock caused by PEG 6000 (osmotic potential = -0.24 MPa) or iso-NaCl (50 mM). Shoot xylem ABA concentrations in both genotypes increased rapidly after the onset of PEG stress, resulting from a decreased water flow. NaCl-treated trees of P. euphratica maintained considerably greater concentrations of ABA than PEG-treated plants in a longer term, whereas salinized P. popularis exhibited a transient accumulation of ABA in the shoot. TRN was greatly enhanced in both genotypes when pressure (0.24 MPa) was applied to counteract the osmotic suction of 50 mM NaCl. Pressurizing of root systems diluted solutes in the root xylem, but the dilution effect was more pronounced in P. popularis. Root xylem ABA concentrations in P. euphratica steadily increased with salt stress although pressurization lowered its levels. In contrast, there were no observed changes in ABA response to salinity in pressured P. popularis. Therefore, we concluded that the salt-tolerant P. euphratica had a greater capacity to synthesize ABA under saline conditions, which may partially result from specific salt effects. In addition, P. euphratica exhibited a higher capacity for salt (Na+ and Cl-) transport control under salt stress, compared with P. popularis. The possible association between ABA and salt transport limitation, and the relevance to salinity tolerance were discussed.  相似文献   

20.
In this work we investigated the function of abscisic acid (ABA) as a long-distance chemical signal communicating water shortage from the root to the shoot in citrus plants. Experiments indicated that stomatal conductance, transpiration rates, and leaf water potential decline progressively with drought. ABA content in roots, leaves, and xylem sap was also increased by the drought stress treatment three- to sevenfold. The addition of norflurazon, an inhibitor of ABA biosynthesis, significantly decreased the intensity of the responses and reduced ABA content in roots and xylem fluid, but not in leaves. Polyethylene glycol (PEG)-induced osmotic stress caused similar effects and, in general, was counteracted only by norflurazon at the lowest concentration (10%). Partial defoliation was able to diminish only leaf ABA content (22.5%) at the highest PEG concentration (30%), probably through a reduction of the active sites of biosynthesis. At least under moderate drought (3–6 days without irrigation), mechanisms other than leaf ABA concentration were required to explain stomatal closure in response to limited soil water supply. Measurements of xylem sap pH revealed a progressive alkalinization through the drought condition (6.4 vs. 7.1), that was not counteracted with the addition of norflurazon. Moreover, in vitro treatment of detached leaves with buffers iso-osmotically adjusted at pH 7.1 significantly decreased stomatal conductance (more than 30%) as much as 70% when supplemented with ABA. Taken together, our results suggest that increased pH generated in drought-stressed roots is transmitted by the xylem sap to the leaves, triggering reductions in shoot water loss. The parallel rise in ABA concentration may act synergistically with pH alkalinization in xylem sap, with an initial response generated from the roots and further promotion by the stressed leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号