首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Translation initiation in eukaryotic cells is known to be a complex multistep process which involves numerous protein factors. Here we demonstrate that leaderless mRNAs with initiator Met-tRNA can bind directly to 80S mammalian ribosomes in the absence of initiation factors and that the complexes thus formed are fully competent for the subsequent steps of polypeptide synthesis. We show that the canonical 48S pathway of eukaryotic translation initiation has no obvious advantage over the 80S pathway of translation initiation on leaderless mRNAs and suggest that, in the presence of competing mRNAs containing a leader, the latter mechanism will be preferred. The direct binding of the leaderless mRNA to the 80S ribosome was precluded when such an mRNA was supplied with a 5' leader, irrespective of whether it was in a totally single-stranded conformation or was prone to base pairing. The striking similarity between the mechanisms of binding of leaderless mRNAs with mammalian 80S or bacterial 70S ribosomes gives support to the idea that the alternative mode of translation initiation used by leaderless mRNAs represents a relic from early steps in the evolution of the translation apparatus.  相似文献   

2.
Translation initiation in bacteria involves a stochastic binding mechanism in which the 30S ribosomal subunit first binds either to mRNA or to initiator tRNA, fMet-tRNA(f)(Met). Leaderless lambda cI mRNA did not form a binary complex with 30S ribosomes, which argues against the view that ribosomal recruitment signals other than a 5'-terminal start codon are essential for translation initiation of these mRNAs. We show that, in Escherichia coli, translation initiation factor 2 (IF2) selectively stimulates translation of lambda cI mRNA in vivo and in vitro. These experiments suggest that the start codon of leaderless mRNAs is recognized by a 30S-fMet-tRNA(f)(Met)-IF2 complex, an intermediate equivalent to that obligatorily formed during translation initiation in eukaryotes. We further show that leaderless lambda cI mRNA is faithfully translated in vitro in both archaebacterial and eukaryotic translation systems. This suggests that translation of leaderless mRNAs reflects a fundamental capability of the translational apparatus of all three domains of life and lends support to the hypothesis that the translation initiation pathway is universally conserved.  相似文献   

3.
In contrast to canonical mRNAs, translation of leaderless mRNA has been previously reported to continue in the presence of the antibiotic kasugamycin. Here, we have studied the effect of the antibiotic on determinants known to affect translation of leadered and leaderless mRNAs. Kasugamycin did not affect the Shine-Dalgarno (SD)-anti-SD (aSD) interaction or the function of translation initiation factor 3 (IF3). Thus, the preferential translation of leaderless mRNA in the presence of kasugamycin can neither be attributed to an expanding pool of 30S subunits with a "blocked" aSD nor to a lack of action of IF3, which has been shown to discriminate against translation initiation at 5'-terminal start codons. Using toeprinting, we observed that on leaderless mRNA 70S in contrast to 30S translation initiation complexes are comparatively resistant to the antibiotic. These results taken together with the known preference of 70S ribosomes for 5'-terminal AUGs lend support to the hypothesis that translation of leaderless mRNAs may as well proceed via an alternative initiation pathway accomplished by intact 70S ribosomes.  相似文献   

4.
It has previously been proposed that Escherichia coli ribosomal protein S1 is required for the translation of highly structured mRNAs. In this study, we have examined the influence of structural features at or near the start codon of different mRNAs. The requirement for ribosomal protein S1 for translation initiation was determined when (i) the ribosome-binding site (RBS) was either preceded by a 5' non-translated leader sequence; (ii) the RBS was located 5' proximal to a mRNA start codon; and (iii) the start codon was the 5' terminal codon as exemplified by leaderless mRNAs. In vitro translation studies revealed that the leaderless lambda cl mRNA is translated with Bacillus stearothermophilusribosomes, naturally lacking a ribosomal protein S1 homologue, whereas ompA mRNA containing a 5' leader is not. These studies have been verified by toeprinting with E. coli ribosomes depleted for S1. We have shown that S1 is required for ternary complex formation on ompA mRNA but not for leaderless mRNAs or for mRNAs in which the RBS is close to the 5' end.  相似文献   

5.
It is generally accepted that translation in bacteria is initiated by 30S ribosomal subunits. In contrast, several lines of rather indirect in vitro evidence suggest that 70S monosomes are capable of initiating translation of leaderless mRNAs, starting with the A of the initiation codon. In this study, we demonstrate the proficiency of dedicated 70S ribosomes in in vitro translation of leaderless mRNAs. In support, we show that a natural leaderless mRNA can be translated with crosslinked 70S wild-type ribosomes. Moreover, we report that leaderless mRNA translation continues under conditions where the prevalence of 70S ribosomes is created in vivo, and where translation of bulk mRNA ceases. These studies provide in vivo as well as direct in vitro evidence for a 70S initiation pathway of a naturally occurring leaderless mRNA, and are discussed in light of their significance for bacterial growth under adverse conditions and their evolutionary implications for translation.  相似文献   

6.
A primer extension inhibition (toeprint) assay was developed using ribosomes and ribosomal subunits from Streptomyces lividans. This assay allowed the study of ribosome binding to streptomycete leaderless and leadered mRNA. Purified 30S subunits were unable to form a ternary complex on aph leaderless mRNA, whereas 70S ribosomes could form ternary complexes on this mRNA. 30S subunits formed ternary complexes on leadered aph and malE mRNA. The translation initiation factors (IF1, IF2, and IF3) from S. lividans were isolated and included in toeprint and filter binding assays with leadered and leaderless mRNA. Generally, the IFs reduced the toeprint signal on leadered mRNA; however, incubation of IF1 and IF2 with 30S subunits that had been washed under high-salt conditions promoted the formation of a ternary complex on aph leaderless mRNA. Our data suggest that, as reported for Escherichia coli, initiation complexes with leaderless mRNAs might use a novel pathway involving 70S ribosomes or 30S subunits bound by IF1 and IF2 but not IF3. Some mRNA-ribosome-initiator tRNA reactions that yielded weak or no toeprint signals still formed complexes in filter binding assays, suggesting the occurrence of interactions that are not stable in the toeprint assay.  相似文献   

7.
Similar features in the mechanisms of mRNA translation initiation on prokaryotic and eukaryotic ribosomes are discussed with examples from mRNAs with nonstandard 5′-untranslated regions (5′-UTRs) and mRNAs lacking 5′-UTR (leaderless mRNAs).  相似文献   

8.
In eubacteria, the dissociation of the 70 S ribosome into the 30 S and 50 S subunits is the essential first step for the translation initiation of canonical mRNAs that possess 5'-leader sequences. However, a number of leaderless mRNAs that start with the initiation codon have been identified in some eubacteria. These have been shown to be translated efficiently in vivo. Here we investigated the process by which leaderless mRNA translation is initiated by using a highly reconstituted cell-free translation system from Escherichia coli. We found that leaderless mRNAs bind preferentially to 70 S ribosomes and that the leaderless mRNA.70 S.fMet-tRNA complex can transit from the initiation to the elongation phase even in the absence of initiation factors (IFs). Moreover, leaderless mRNA translation proceeds more efficiently if the intact 70 S ribosome is involved compared with the 30 S subunit. Furthermore, excess amounts of IF3 inhibit leaderless mRNA translation, probably because it promotes the disassembly of the 70 S ribosome into subunits. Finally, excess amounts of fMet-tRNA facilitate the IF-independent translation of leaderless mRNA. These observations strongly suggest that leaderless mRNA translation is initiated by the assembled 70 S ribosome and thereby bypasses the dissociation process.  相似文献   

9.
Leaderless mRNAs are translated in the absence of upstream signals that normally contribute to ribosome binding and translation efficiency. In order to identify ribosomal components that interact with leaderless mRNA, a fragment of leaderless cI mRNA from bacteriophage λ, with a 4-thiouridine (4S-U) substituted at the +2 position of the AUG start codon, was used to form cross-links to Escherichia coli ribosomes during binary (mRNA+ribosome) and ternary (mRNA+ribosome+initiator tRNA) complex formation. Ribosome binding assays (i.e., toeprints) demonstrated tRNA-dependent binding of leaderless mRNA to ribosomes; however, cross-links between the start codon and 30S subunit rRNA and r-proteins formed independent of initiator tRNA. Toeprints revealed that a leaderless mRNA's 5′-AUG is required for stable binding. Furthermore, the addition of a 5′-terminal AUG triplet to a random RNA fragment can make it both competent and competitive for ribosome binding, suggesting that a leaderless mRNA's start codon is a major feature for ribosome interaction. Cross-linking assays indicate that a subset of 30S subunit r-proteins, located at either end of the mRNA tunnel, contribute to tRNA-independent contacts and/or interactions with a leaderless mRNA's start codon. The interaction of leaderless mRNA with ribosomes may reveal features of mRNA binding and AUG recognition that are distinct from known signals but are important for translation initiation of all mRNAs.  相似文献   

10.
IRES-mediated pathways to polysomes: nuclear versus cytoplasmic routes   总被引:3,自引:0,他引:3  
Eukaryotic mRNA initiates translation by cap-dependent scanning, ribosome shunting and cap-independent internal ribosome entry. Internal ribosome entry was first discovered for cytoplasmic RNA viruses but has also been identified for DNA viruses and cellular mRNAs. An internal ribosome entry site (IRES) directs internal binding of ribosomes and nucleates the formation of a translation initiation complex. Current research is aimed at identifying interactions between IRES elements and RNA-binding proteins known as ITAFs (IRES trans-acting factors). Here we compare IRES elements from cytoplasmic RNA viruses with those of cellular mRNAs and DNA viruses with nuclear mRNA synthesis, and suggest that ITAF composition and IRES function directly reflect the site of synthesis of mRNA and the history of its pathway to polysomes.  相似文献   

11.
Translation initiation on poliovirus and encephalomyocarditis virus (EMCV) mRNAs occurs by a cap-independent mechanism utilizing an internal ribosomal entry site (IRES). However, no unifying mechanism for AUG initiation site selection has been proposed. Analysis of initiation of mRNAs translated in vitro has suggested that initiation of poliovirus mRNA translation likely involves both internal binding of ribosomes and scanning to the first AUG which is in a favorable context for initiation. In contrast, internal initiation on EMCV mRNA may not utilize scanning, since ribosomes bind directly or very close to the initiation codon AUG-11. We have studied in vivo the sequence requirements for internal initiation around the EMCV initiation codon, both in monocistronic and in dicistronic mRNAs. Our studies show that the upstream AUG-10 is normally not used and that there is no specific sequence requirement for nucleotides between AUG-10 and AUG-11. However, the sequence context of AUG-11 does influence the efficiency of initiation at AUG-11. Efficient IRES-mediated internal initiation at AUG-11 exhibits a requirement for an adenine in the -3 position, similar to cap-dependent initiation. These results support a model for internal initiation on EMCV mRNA in which scanning starts at or near AUG-11. Although initiation primarily occurs at AUG-11, initiation at multiple downstream AUG codons can be detected. In addition, a poor sequence context around AUG-11 results in increased initiation at one or more downstream AUG codons, indicative of leaky scanning or jumping by the ribosome from AUG-11 mediated by the EMCV IRES.  相似文献   

12.
In this study, we have examined the influence of initiation factors on translation initiation of leaderless mRNAs whose 5'-terminal residues are the A of the AUG initiating codon. A 1:1 ratio of initiation factors to ribosomes abolished ternary complex formation at the authentic start codon of different leaderless mRNAs. Supporting this observation, in vitro translation assays using limiting ribosome concentrations with competing leaderless λ c I and Escherichia coli ompA mRNAs, the latter containing a canonical ribosome binding site, revealed reduced cI synthesis relative to OmpA in the presence of added initiation factors. Using in vitro toeprinting and in vitro translation assays, we show that this effect can be attributed to IF3. Moreover, in vivo studies revealed that the translational efficiency of a leaderless reporter gene is decreased with increased IF3 levels. These studies are corroborated by the observed increased translational efficiency of a leaderless reporter construct in an infC mutant strain unable to discriminate against non-standard start codons. These results suggest that, in the absence of a leader or a Shine–Dalgarno sequence, the function(s) of IF3 limits stable 30S ternary complex formation.  相似文献   

13.
A putative implication 3′-terminal 18S rRNA segment in the cap-independent initiation of translation on plant ribosomes was studied. It was shown that 3′-terminal segment (nucleotides 1777–1811) of 18S rRNA including the last hairpin 45 was accessible for complementary interactions within 40S ribosomal subunits. Oligonucleotides complementary to this segment of rRNA, when added to wheat germ cell-free protein synthesizing system, specifically inhibited translation of uncapped reporter mRNA encoding β-glucuronidase. In the 5′-untranslated region (UTR), the reporter mRNA contained a leader sequence of potato virus Y (PVY) genomic RNA with fragments complementary to the region 1777–1811. A sequence corresponding to nucleotides 291–316 of PVY, which was complementary to most of the 3′-terminal 18S rRNA segment 1777–1808, was shown to enhance translational efficiency of the reporter mRNAs when placed into 5′-UTR. The obtained results suggest that complementary interactions between 5′-UTR of mRNA and 3′-terminal segment of 18S rRNA can take place during cap-independent translation initiation.  相似文献   

14.
15.
Chloroplast ribosome-binding sites were identified on the plastidrbcL andpsbA mRNAs using toeprint analysis. TherbcL translation initiation domain is highly conserved and contains a prokaryotic Shine-Dalgarno (SD) sequence (GGAGG) located 4 to 12 nucleotides upstream of the initiator AUG. Toeprint analysis ofrbcL mRNA associated with plastid polysomes revealed strong toeprint signals 15 nucleotides downstream from the AUG indicating ribosome binding at the translation initiation site.Escherichia coli 30S ribosomes generated similar toeprint signals when mixed withrbcL mRNA in the presence of initiator tRNA. These results indicate that plastid SD sequences are functional in chloroplast translation initiation. ThepsbA initiator region lacks a SD sequence within 12 nucleotides of the initiator AUG. However, toeprint analysis of soluble and membrane polysome-associatedpsbA mRNA revealed ribosomes bound to the initiator region.E. coli 30S ribosomes did not associate with thepsbA translation initiation region.E. coli and chloroplast ribosomes bind to an upstream region which contains a conserved SD-like sequence. Therefore, translation initiation onpsbA mRNA may involve the transient binding of chloroplast ribosomes to this upstream SD-like sequence followed by scanning to localize the initiator AUG. Illumination 8-day-old dark-grown barley seedlings caused an increase in polysome-associatedpsbA mRNA and the abundance of initiation complexes bound topsbA mRNA. These results demonstrate that light modulates D1 translation initiation in plastids of older dark-grown barley seedlings.  相似文献   

16.
Using as examples non-canonical features of translation initiation for some bacterial and mammalian mRNAs with unusual 5'- untranslated regions (5'-UTR) or lacking these regions (leaderless mRNAs), the authors of this review discuss similarities in mechanisms of translation initiation on prokaryotic and eukaryotic ribosomes.  相似文献   

17.
18.
We determined the in vivo translational efficiency of 'unleadered' lacZ compared with a conventionally leadered lacZ with and without a Shine–Dalgarno (SD) sequence in Escherichia coli and found that changing the SD sequence of leadered lacZ from the consensus 5'-AGGA-3' to 5'-UUUU-3' results in a 15-fold reduction in translational efficiency; however, removing the leader altogether results in only a twofold reduction. An increase in translation coincident with the removal of the leader lacking a SD sequence suggests the existence of stronger or novel translational signals within the coding sequence in the absence of the leader. We examined, therefore, a change in the translational signals provided by altering the AUG initiation codon to other naturally occurring initiation codons (GUG, UUG, CUG) in the presence and absence of a leader and find that mRNAs lacking leader sequences are dependent upon an AUG initiation codon, whereas leadered mRNAs are not. This suggests that mRNAs lacking leader sequences are either more dependent on perfect codon–anticodon complementarity or require an AUG initiation codon in a sequence-specific manner to form productive initiation complexes. A mutant initiator tRNA with compensating anticodon mutations restored expression of leadered, but not unleadered, mRNAs with UAG start codons, indicating that codon–anticodon complementarity was insufficient for the translation of mRNA lacking leader sequences. These data suggest that a cognate AUG initiation codon specifically serves as a stronger and different translational signal in the absence of an untranslated leader.  相似文献   

19.
S A Sedman  P J Good    J E Mertz 《Journal of virology》1989,63(9):3884-3893
Numerous viral and cellular RNAs are polycistronic, including several of the late mRNA species encoded by simian virus 40 (SV40). The functionally bicistronic major late 16S and functionally tricistronic major late 19S mRNA species of SV40 contain the leader-encoded open reading frames (ORFs) LP1, located upstream of the sequence encoding the virion protein VP1, and LP1*, located upstream of the sequence encoding the virion proteins VP2 and VP3. To determine how these leader ORFs affect synthesis of the virion proteins, monkey cells were transfected with viral mutants in which either the leader-encoded translation initiation signal was mutated or the length and overlap of the leader ORF relative to the ORFs encoding the virion proteins were altered. The levels of initiation at and leaky scanning past each initiation signal were determined directly by quantitative analysis of the viral proteins synthesized in cells transfected with these mutants. Novel findings from these experiments included the following. (i) At least one-third of ribosomes bypass the leader-encoded translation initiation signal, GCCAUGG, on the SV40 major late 16S mRNA. (ii) At least 20% of ribosomes bypass even the consensus translation initiation signal, ACCAUGG, when it is situated 10 bases from the 5' end on the major late 16S mRNA. (iii)O The presence of the leader ORF on the bicistronic 16S mRNA species reduces VP1 synthesis threefold relative to synthesis from a similar RNA that lacks it. (iv) At least half and possibly all VP1 synthesized from the bicistronic 16S mRNA species is made by a leaky scanning mechanism. (v) LP1 and VP1 are synthesized from the bicistronic 16S mRNA species at approximately equal molar ratios. (vi) Approximately half of the VP1 synthesized in SV40-infected cells is synthesized from the minor, monocistronic 16S mRNA even though it accounts for only 20% of the 16S mRNA present. (vii) The presence and site of termination of translation of the leader ORF on the late 19S mRNAs affect the relative as well as absolute rates of synthesis of VP2 and VP3.  相似文献   

20.
By primer extension inhibition assays, 70S ribosomes bound with higher affinity, or stability, than did 30S subunits to leaderless mRNAs containing AUG or GUG start codons. Addition of translation initiation factors affected ribosome binding to leaderless mRNAs. Our results suggest that translation of leaderless mRNAs might initiate through a pathway involving 70S ribosomes or 30S subunits lacking IF3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号