首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to examine the production efficiency of Japanese Black beef calves after transfer of bovine embryos derived from an in vitro procedure. In vitro-produced (IVP) embryos were obtained from in vitro maturation and fertilization and in vitro development by co-culture with cumulus cells until 7 or 8 days after insemination. In vivo-developed (IVD) embryos from superovulated Japanese Black heifers and cows 7 days after artificial insemination were used as a control group. Bovine embryos were transferred nonsurgically to recipient cows on Day 7 +/- 1 of the estrous cycle. Pregnancy was diagnosed by palpation per rectum at Day 60 to 70 after estrus. Pregnancy, abortion, perinatal accident and birth rates were examined according to the origin of embryos (IVP or IVD), the number of transferred embryos (single or twin) and the storage status (fresh or frozen-thawed). In Experiment 1, production efficiency by twin transfer of fresh IVP embryos was examined. Higher pregnancy rates (52 1% vs 42 9%, P < 0.05) and birth rates (47.0% vs. 33.0%, P < 0.05) were obtained by twin transfer than by single transfer of fresh IVP embryos. Thus, the twin transfer of fresh IVP embryos was effective for production of calves, although the birth rates for single and twin transfers of fresh IVD embryos were still higher (55.5% and 76.1%, P < 0.05). But the abortion and perinatal accident rates for twin transfer of fresh IVP embryos were also significantly greater than those for single and twin transfer of fresh IVD embryos (P < 0.05). In Experiment 2, production efficiency by twin transfer of frozen-thawed IVP embryos was examined. Either single or twin transfer of frozen-thawed IVP embryos resulted in a similar pregnancy rate (41.3% vs. 46.7%, P > 0.05) and birth rate (34.1% vs. 41.1%, P>0.05). Thus, in combination with frozen-thawed IVP embryos, the twin transfer did not enhance production efficiency. In conclusion, Japanese Black beef calves could effectively produce calves by twin transfer to Holstein recipients when using fresh IVP embryos, and by single transfer when using frozen-thawed IVP embryos.  相似文献   

2.
The aim of this study was to evaluate the difference in birth weight and gestation length between Japanese Black calves obtained from transfer of bovine embryos produced in vitro (IVP) and those developed in vivo (IVD). An additional objective was to clarify the sire effect on birth weight and gestation length and to examine the birth rate of heavier calves. Two Japanese Black bulls breed at our experimental station were used as a semen source for production of IVP and IVD embryos. Thirty-eight Japanese Black heifers and cows of various genetic backgrounds were used as embryo donors for IVD embryos. Ovaries for IVP embryos were collected at random at a local slaughterhouse from Japanese Black cattle of various genetic backgrounds. IVP embryos were produced using co-culturing with cumulus cells in 5% CS+TCM 199. Both the IVD and IVP embryos were transferred non-surgically to Holstein recipients on day 7+/-1 of estrous cycle. In this study, the birth weights and gestation lengths of half-sib single calves for bull A and B were analyzed.The numbers of single calves born by transfer of IVP and IVD embryos for bull A and B were 133 and 121, 243 and 465, respectively. The birth weight of the IVP calves was significantly higher (P<0.01) than that of the IVD (bull A: 31.0+/-0.4 kg versus 27.2+/-0.4 kg and bull B: 29.9+/-0.6 kg versus 26.6+/-0.2 kg). Gestation length of the IVP calves for bull A was significantly longer (P<0.01) than that of the IVD (291.9+/-0.9 days versus 283.6+/-0.5 days). However, for bull B, there were no differences in gestation length between the IVP and IVD calves (285.9+/-0.7 days versus 286.2+/-0.3 days). These results clearly indicated that IVP calves had heavier birth weights than IVD calves but that the average gestation length of IVP calves was not always longer than that of IVD calves. Furthermore, the birth rate of heavier calves and the incidence of stillbirth and perinatal mortality up to 48 h post partum in IVP calves (bull A: 11.3%, bull B: 7.8%) were greater (P<0.05) than those in IVD calves from both bulls (bull A: 4.1%, bull B: 3.7%).  相似文献   

3.
The main objectives of this investigation were to monitor the birth weight of calves and gestation length following artificial insemination (AI) and transfer of in vivo or in vitro produced Korean native, Hanwoo embryos. Embryos produced in vivo were recovered from uterine flushings of superovulated cows 7 days after AI. Those embryos produced in vitro were co-cultured with cumulus cells for 7-8 days after in vitro fertilization. The birth weights of calves following the transfer of in vitro produced (IVP) embryos were heavier than calves from both of AI- and in vivo-derived embryo transferred calves in both sexes (29.6, 24.1 and 25.2kg, respectively, P<0.05). The IVP calves also had a longer gestation length (293.9, 285.8 and 283.8 days, respectively, P<0.05).  相似文献   

4.
Data on 944 calves from 2228 in vitro-produced (IVP) bovine preimplantation embryos were compared with data on 2787 AI calves born in the same herds in 1995. Bovine preimplantation embryos were produced in vitro following ovum pick up (OPU) from donor cows and pregnant heifers in an open nucleus breeding program. After 7 d of in vitro culture on a BRL cell monolayer in the presence of 10% FCS, frozen-thawed expanded blastocysts and fresh morulae to expanded blastocysts were transferred into recipient heifers and cows at 119 contracted farms throughout the Netherlands. The pregnancy rate, as confirmed by palpation per rectum between 90 and 150 d after transfer was 43.5% for both fresh and frozen embryos. Data on IVP and AI calves were registered by the farmers. The percentage of calves with a congenital malformation and the percentage of male calves were related to the total number of calves born. Gestation length, birth weight (measured by a balance), perinatal mortality and ease of calving were analyzed in a subdataset (699 IVP and 2543 AI calves, respectively) by a comparative analysis of variance (ANOVA). The ANOVA model included herd, month of calving, sire nested within AI or IVP, parity and breed of the inseminated cow/embryo recipient, sex of calf, type of calf (AI or IVP) and two-way interactions between type of calf and sex, parity and breed. The percentage of calves with congenital malformations was 3.2% and 0.7% for IVP and AI calves, respectively. An increased incidence of hydro-allantois and abnormal spinal cords and limbs was observed in IVP calves. The percentage of male calves was significantly different between IVP and AI, 55.5% and 48.9%, respectively (Chi-square, 1 degree of freedom, P < 0.05). On the average, IVP calves showed a significant increase of birth weight by 10% (4-5 kg), a 3-d longer gestation period, 2.4% more perinatal mortality and a more difficult calving process compared to AI calves (P < 0.05). From these results it is concluded that calves produced by IVP deviate significantly from calves produced by AI.  相似文献   

5.
One or two in vitro-produced (IVP) Japanese Black (JB) cattle embryos at 8 days after in vitro fertilization were transferred to the contralateral uterine horn of previously bred Japanese Shorthorn (JSH) or JSH-JB cross recipients, and then the occurrence of early embryonic death, abortion during mid- and late gestation, and calving loss were recorded. The survival rate of embryos, including indigenous ones, was not affected by the number of embryos transferred, and a significantly higher twinning rate (68% of pregnant recipients at 80 days after transfer) was achieved when two IVP embryos were transferred, as compared with the rate when one IVP embryo was transferred (24%). In late ET (recipients at 8.5-9.0 days after the onset of oestrus), the embryo survival rate (22%) and the pregnancy rate (42%) at 80 days after ET were significantly lower than those rates in the synchronous ET (recipients at 8.0 days after the onset of oestrus; 47 and 79%, respectively). In the early ET (recipients at 6.0-7.5 days after the onset of oestrus), no significant differences from the synchronous ET were detected in these rates. Twenty-six percent of twin pregnant recipients were aborted during mid- or late-pregnancy, and 39% of twin calves were stillborn. The mean gestation length of the twin-bearing JSH dams (276 days) was 1 week shorter than that of the single-bearing JSH dams, and it was 2 weeks shorter than that of the JB dams bearing a single JB calf derived from the IVP embryos. The longer gestation length of single JB calves derived from IVP embryos resulted in a significantly higher mean birth weight than that of in vivo control calves with the standard length of gestation. In conclusion, the number of embryos to be transferred did not affect the embryo survival rate, and the transfer of two IVP embryos to previously inseminated recipients induced a significantly higher twinning rate during early pregnancy than that of one IVP embryo transfer. The incidence of embryonic losses during early pregnancy increased when Day 8 embryos were transferred to the recipients later in the oestrous cycle (>8.0 days). The results suggested that one cause of the high rate of abortions and stillbirths in twin-bearing dams is the difference in the mean gestation length between the native JSH and JB foetuses derived from transferred IVP embryos.  相似文献   

6.
In vitro and in vivo developmental competence of fresh and cryopreserved in vitro produced (IVP) bovine embryos was evaluated up to birth. Three experiments were done. The objective in the first experiment was to develop an optimal vitrification procedure for IVP bovine embryos by determining effects of exposure time (2, 5, 10, 20 min) and temperature (4, 22, 27 degrees C) in cryoprotective agents prior to vitrification on their post-thaw viability. The best combination was used in Experiments 2 and 3. In the second experiment, the importance of post-thaw morphologic selection on pregnancy rates was determined by transferring either selected or unselected single embryos. In the third experiment, pregnancy initiation, maintenance and calving results of vitrified embryos were compared with fresh and conventionally frozen embryos. Fetal losses, birth weights, gestation lengths and frequency of dystocia in the third experiment were monitored. The interaction of exposure time and temperature on both post-thaw re-expansion and hatching rates was significant (P < 0.01). Five minute exposure at 27 degrees C was optimal. In the second experiment, post-thaw selected vitrified embryos had higher pregnancy rates than unselected embryos (P < 0.05). In the third experiment, the pregnancy rate of vitrified embryos did not differ from that of fresh embryos (P > 0.05). However, pregnancy rate of conventionally frozen embryos was lower than that of fresh or vitrified embryos (P < 0.05). Of 92 calves born, 53 were male and 39 were female. Birth weights and dystocia scores of single-born calves did not differ between sexes (P > 0.05). Twin-born calves were lighter than single-born calves (P < 0.05). Overall, the data demonstrate that the transfer of vitrified IVP bovine embryos can result in healthy, apparently normal calves similar to those derived from transfer of fresh and conventionally frozen IVP bovine embryos.  相似文献   

7.
Data on biopsied, sexed and cryopreserved in vitro produced (IVP) bovine embryos, and their in vivo developmental competence are very limited. Two preliminary studies were conducted before the primary study. In Experiment 1, post-thaw in vitro developmental competence of biopsied and vitrified IVP embryos was evaluated using re-expansion as an endpoint. In Experiment 2, the pregnancy rates of biopsied fresh, frozen or vitrified embryos following single embryo transfer were compared. Since vitrified embryos resulted in a higher pregnancy rate than frozen-thawed embryos, in the primary study (Experiment 3), all IVP embryos were vitrified following biopsy and sexing (by DNA fingerprinting). In Experiment 3, we compared pregnancy initiation and calving results of heifers in the following treatments: 1) artificial insemination (AI); 2) AI plus contralateral transfer of a single embryo (AI + SET); 3) ipsilateral transfer of single embryo (SET); or 4) bilateral transfer of two embryos (DET). Birth weights, gestation lengths and dystocia scores were recorded. In Experiment 1, post-thaw re-expansion rate of biopsied and vitrified embryos was 85% (70/82). In Experiment 2, pregnancy rates (90 d) were 44% (7/16), 23% (3/13), and 50% (7/14) for vitrified, frozen and fresh embryos, respectively (P < 0.10). In Experiment 3, pregnancy rates of AI and SET were 65% (20/31) and 40% (16/40), respectively (P < 0.05). The pregnancy rate of AI + SET was 75% (27/36) with 11 carrying twins, and the pregnancy rate of DET was 72% (26/36) with 10 carrying twins. All AI fetuses were carried to term, but only half the SET fetuses were carried to term. Similar calving rates were observed in the AI + SET and DET groups, 76 and 70%, respectively, of those pregnant at Day 40. Mean birth weight, dystocia score and gestation length of AI calves were not different from those of SET calves. Mean birth weight and dystocia score of single-born calves were greater than those of twin born calves (P < 0.05). These data demonstrate that biopsied IVP bovine embryos can be successfully cryopreserved by vitrification and following post-thaw embryo transfer, acceptable rates of offspring with normal birth weights can be obtained without major calving difficulties.  相似文献   

8.
Earlier reports indicate that calves derived from in vitro produced (IVP) embryos are more susceptible to neonatal disease than calves produced after artificial insemination (AI) or natural mating. The aims of the present study were to investigate whether calves born after IVP embryos show an altered macromolecule absorption (immunoglobulin G (IgG) and porcine serum albumin (PSA)) compared with AI calves and whether the macromolecule absorption could be related to the degree of acidosis or to the cortisol secretion around birth. Hence, IgG and PSA absorption in control AI calves (n=7) was compared with that in two groups of IVP calves (IVP-defined: SOFaa embryo culture with polyvinyl alcohol, n=6; IVP-serum: SOFaa embryo culture with serum and co-culture, n=8). The calves were fed colostrum (40ml/kg) at 2, 6 and 12h after birth. At 24h after birth, both AI and IVP calves had achieved a level of plasma IgG sufficient to provide passive immunization (>15mg/ml). When the values were adjusted for the varying colostral IgG contents and the degree of acidosis, the IVP-defined calves had significantly lower peak plasma IgG concentrations than the AI calves at 18-24h after birth (P<0.04). However, when the macromolecule marker (PSA), was fed to all calves at 2 and 12h after birth the resulting plasma PSA levels were significantly lower in the AI calves compared with the IVP calves during the whole observation period (P<0.0001). Calves with a moderate neonatal acidosis (mean pH<7.2 during the first 30min after birth) had reduced peak plasma IgG concentration at 18-24h after birth (P<0.02) compared to calves without acidosis. The basal and ACTH-stimulated cortisol levels were lower in the newborn IVP-defined calves than in the AI calves (P<0.05) and the IVP-serum calves (P<0.002). Cortisol levels shortly after birth correlated positively with birth weight (r=0.60, P<0.0001) and with gestation length (r=0.34, P<0.04). Since, the IVP calves absorbed sufficient amounts of IgG from colostrum to acquire sufficient passive immunity, we conclude that the lower viability described in IVP offspring probably is not caused by an impaired passive immunization. IVP-defined calves had significantly lower absorption efficiency of IgG compared with AI calves, whereas absorption of a non-Ig macromolecule (PSA) was higher for IVP than AI calves. This might indicate a more selective absorption in AI calves in favor of IgG. Acidosis around birth affected immunoglobulin absorption negatively. IVP-defined calves had significantly lower cortisol levels the first 3h after birth and during an ACTH-challenge and a lower IgG absorption efficiency, which might indicate a mild degree of organ dysmaturity in these calves.  相似文献   

9.
Since the introduction of in vitro production (IVP) of bovine and sheep pre-implantation embryos, increased birth weights and other deviations of IVP calves and lambs compared with AI or MOET offspring have been reported. Study 1 of the present paper, a comparison between AI, MOET and IVP (co-culture/serum) calves with respect to calf and calving characteristics in large-scale field conditions, confirms these reports. In addition, it is shown that MOET calves tend towards higher birth weights and have significantly longer gestations and more difficult calvings than AI calves. It is presently unknown if the effect of IVP is also observed later in life. In this paper, data on reproduction characteristics of bovine IVP co-culture/serum offspring are presented. Semen production--and non return data of one year old IVP bulls and superovulation-, AI- and OPU/IVP results of one year old IVP heifers are compared with those of one year old AI and MOET animals producing semen or embryos in the same time period. So far, there are no indications that the use of IVP is reflected in deviate reproduction characteristics of bovine IVP offspring. It has been suggested that use of co-culture cells and serum during in vitro culture of bovine (and sheep) embryos may partially explain the increased birth weights and other deviations of bovine and sheep IVP offspring. Deletion of these factors in semi-defined culture media, e.g. Synthetic Oviductal Fluid (SOF), could result in more normal offspring. Study 2 investigates this hypothesis in both field conditions (Study 2a, comparing AI, IVP co-culture/serum and IVP SOF calves) and in semi-standardized conditions (Study 2b, comparing MOET, IVP co-culture/serum and IVP SOF calves at one herd). In Study 2a, although IVP SOF calves showed (non-significant) shorter gestations, easier calvings and lower percentages of perinatal mortality and congenital malformations than IVP co-culture calves, birth weights were not decreased. In Study 2b however, the difference between IVP co-culture and IVP SOF calves in birth weight and ease of calving was significant (P < 0.05), IVP SOF calves resembling MOET calves more. IVP calves differed significantly from MOET calves with respect to several physiological parameters, such as blood oxygen saturation level, heart beat frequency and some measures of the heart. In addition, in Study 2b, recipients receiving an IVP SOF embryo showed a more regular return to estrus than those receiving an IVP co-culture embryo. From Study 2 it can be concluded that using a semi-defined medium for in vitro culture (SOF) may improve characteristics of IVP calves born.  相似文献   

10.
Body dimensions, birth and organ weights of calves derived from embryos produced in 2 in vitro culture systems (modified SOFaa with 20% cattle serum and co-cultured with oviduct-epithelium cells [IVPserum, n=8], and modified SOFaa with 3 mg/mL PVA [IVPdefined, n=6]) were compared with calves originating from artificial insemination (AI, n=85). Three additional IVP calves were included which had been vitrified as mature oocytes by the open pulled straw (OPS) method, warmed, fertilized and cultured to the blastocyst stage in modified SOFaa with 5% cattle serum, then again OPS-vitrified and warmed prior to transfer (IVPops, n=3). At birth, gestation length and birth weights were registered for all calves. At 1 wk of age all 17 IVP and 7 of the AI calves were killed, and their body dimensions and organ weights recorded. Birth weight was higher for the IVPserum and IVPops calves than for AI control calves (kg +/- SEM: IVPserum 46.9+/-1.8, IVPops 50.6+/-2.4, AI 41.8+/-0.8; P < 0.002). There was no difference between IVP and AI calves regarding gestation length and no effect of culture conditions on body dimensions or organ weights, except for longer hind legs in IVPdefined calves compared with AI calves (cm +/- SEM: IVPdefined 93+/-2, AI 87+/-2; P < 0.04). The IVPops calves had an increased liver weight compared with AI and the other IVP calves (g +/- SEM: IVPops 1.457+/-59; AI 1,117+/-37; IVPserum 1,159+/-34, IVPdefined 1,073+/-39; P < 0.0003). It is concluded that in vitro culture of bovine embryos in the presence of serum and oviduct epithelium cells increased birth weight but not organ weight and body dimension in 1-wk-old calves. However, vitrification of the ova as oocyte and again as blastocysts increased birth weight and liver size. This possible effect of cryopreservation of oocytes on subsequent fetal development awaits further investigation.  相似文献   

11.
Blood chemistry (pH, pCO2, pO2, glucose, lactate) as well as plasma insulin and growth hormone of calves derived from embryos produced under 2 different in vitro culture systems (modified SOFaa with 20% serum and co-culture with bovine oviduct epithelial cells [IVP serum, n=8] or with 3 mg/mL PVA [IVPdefined, n=6]) were compared with those of calves derived from AI (n=5). Calvings were classified according to the ease (unassisted, light traction, heavy traction). Blood samples were taken from the jugular vein of calves at 5, 15, 30 and 60 min, and at 2, 3, 6, 12, 18 and 24 h after delivery, then daily for 6 d. At the second day of life after 4 feedings and a 4-h fasting period, a glucose tolerance test was performed to evaluate glucose metabolism and insulin secretion. Calves in the IVP serum group had higher birth weights than AI calves (LS mean +/- SEM, IVP serum: 45.2 +/- 1.4 kg vs AI: 40.4 +/- 1.7 kg; P < 0.05), while the birth weights of calves in the IVP defined group were in between (IVPdefined: 41.9 +/- 1.6 kg). More IVP serum calves (75%) needed assistance than IVP defined (33%) or AI (40%) calves. The effect of ease of calving vs the effect of embryo culture was compared in relation to blood parameters at birth. There was an effect of ease of calving but not of embryo culture conditions on blood pH, lactate and PCO2. Calves requiring heavy traction had lower pH during the first 3 h after calving, a higher lactate during the first 60 min after calving and a higher pCO2 the first 2 h after calving than calves born unassisted. Calves requiring heavy traction also had lower pH the first 2 h and higher lactate the first 3 h after calving than calves born by light traction. IVP defined calves had lower lactate than IVP serum calves the first 60 min after calving. At 6 h after delivery, all blood parameters had stabilized. There was no effect of either embryo culture or ease of calving on basal insulin and growth hormone level, or the ability of the calves to handle glucose postnatally and during a glucose tolerance test.  相似文献   

12.
The objective was to assess the potential of Day-7, IVP zona pellucida-intact blastocysts to transmit bovine viral diarrhea virus (BVDV) to embryo recipients. Embryos were exposed (1h) to two non-cytopathic (NCP) biotypes, either NY-1 (type 1) or two concentrations of PA-131 (type 2), washed 10 times, and transferred into recipients (two embryos/recipient) free of BVDV and its antibody. Six (30.0%) of the 20 pregnancies were lost after 30 d following transfer of the embryos exposed to the type 1 strain; none of the recipients or their 18 full term offspring seroconverted. Conversely, following exposure to the type 2 strain, 16 (51.6%) of the 31 pregnancies were lost >30 d after embryo transfer. Furthermore, 18 (51.4%) of 35 recipients receiving embryos exposed to type 2 seroconverted; 11 of those were pregnant at 30 d, but only 2 went to full term and gave birth to noninfected (seronegative) calves. Virus isolation tests were performed on single, virus-exposed, washed embryos (not transferred); 3 of 12 (25%) and 17 of 61 (28%) exposed to type 1 and type 2, respectively, were positive for live BVDV. Embryos exposed to type 2 virus had from 0 to 34 viral copies. In conclusion, a large proportion of recipients that received embryos exposed to BVDV, especially those exposed to a high concentration of type 2 virus, became infected after ET, and their pregnancies failed. However, term pregnancies resulted in calves free of both virus and antibody. Therefore, additional disinfection procedures are recommended prior to transferring potentially infected IVP embryos.  相似文献   

13.
The objective was to explore the use of sexed sperm and OPU-derived oocytes in an IVP system to produce sex-preselected bubaline embryos. Oocytes were recovered from 20 fertile Murrah and Nili-Ravi buffalo cows by repeated (twice weekly) ultrasound-guided transvaginal ovum pick up (OPU), or by aspiration of abbatoir-derived bubaline ovaries, and subjected to IVF, using frozen-thawed sexed or unsexed bubaline semen. On average, 4.6 oocytes were retrieved per buffalo per session (70.9% were Grades A or B). Following IVF with sexed sperm, oocytes derived from OPU had similar developmental competence as those from abattoir-derived ovaries, in terms of cleavage rate (57.6 vs. 50.4%, P=0.357) and blastocyst development rate (16.0 vs. 23.9%, P=0.237). Furthermore, using frozen-thawed sexed versus unsexed semen did not affect rates of cleavage (50.5 vs. 50.9%, P=0.978) or blastocyst development (15.3 vs. 19.1%, P=0.291) after IVF using OPU-derived oocytes. Of the embryos produced in an OPU-IVP system, 9 of 34 sexed fresh embryos (26.5%) and 5 of 43 sexed frozen embryos (11.6%) transferred to recipients established pregnancies, whereas 7 of 26 unsexed fresh embryos (26.9%) and 6 out of 39 unsexed frozen embryos (15.4%) transferred to recipients established pregnancies. Eleven sex-preselected buffalo calves (10 females and one male) and 10 sexed buffalo calves (six females and four males) were born following embryo transfer. In the present study, OPU, sperm sexing technology, IVP, and embryo transfer, were used to produce sex-preselected buffalo calves. This study provided proof of concept for further research and wider field application of these technologies in buffalo.  相似文献   

14.
Calves derived from IVP embryos may suffer from the large offspring syndrome that has been related to effects of in vitro culture on the intrinsic quality of the embryo. Limited information is available on the role of the placenta in such cases. In this study, bovine pregnancy-associated glycoprotein (bPAG) was used as a marker to test whether placental function is influenced by the route of embryo production. Therefore, from day 7 until day 119 of ongoing gestations, resulting from transfer of MOET (n = 53), IVP-co-culture (n = 21) and IVP-SOF (n = 38) embryos, bPAG levels were compared in peripheral plasma of recipients. Plasma progesterone levels were compared as well. From day 25 of gestation onwards, bPAG could be detected in all recipients and the levels were significantly influenced by the day of gestation. Although IVP calves were significantly heavier than the in vivo produced calves, this difference was not reflected in the bPAG profiles of the embryo production groups. Yet, the mean bPAG level of the three last sampling moments (days 105-119) tended to be positively related to the birth weight of the calves, irrespective of the embryo production technique. Progesterone concentrations were not influenced by route of embryo production, but were significantly affected by parity of the recipient and day of gestation.  相似文献   

15.
Although healthy animals are born after nuclear transfer with somatic cells nuclei, the success of this procedure is generally poor (2%-10%) with high perinatal losses. Apparently normal surviving animals may have undiagnosed pathologies that could develop later in life. The gross pathology of 16 abnormal bovine fetuses produced by nuclear transfer (NT) and the clinical, endocrinologic (insulin-like growth factors I and II [IGF-I and IGF-II], IGF binding proteins, post-ACTH stimulation cortisol, leptin, glucose, and insulin levels), and biochemical characteristics of a group of 21 apparently normal cloned calves were compared with those of in vitro-produced (IVP) controls and controls resulting from artificial insemination. Oocytes used for NT or IVP were matured in vitro. NT to enucleated oocytes was performed using cultured adult or fetal skin cells. After culture, Day 7, grade 1-2 embryos were transferred (one per recipient). All placentas and fetuses from clones undergoing an abnormal pregnancy showed some degree of edema due to hydrops. Mean placentome number was lower and mean placentome weight was higher in clones than in controls (69.9 +/- 9.2 placentomes with a mean weight of 144.3 +/- 21.4 g in clones vs. 99 and 137 placentomes with a mean individual weight of 34.8 and 32.4 g in two IVP controls). Erythrocyte mean cell volume was higher at birth (P < 0.01), and body temperature and plasma leptin concentrations were higher and T4 levels were lower during the first 50 days and the first week (P < 0.05), respectively, in clones. Plasma IGF-II concentrations were higher at birth and lower at Day 15 in clones (P < 0.05). Therefore, apparently healthy cloned calves cannot be considered as physiologically normal animals until at least 50 days of age.  相似文献   

16.
The objective of this study was to enhance procedures for producing piglets derived from in vitro-produced (IVP) pig embryos by non-surgical embryo transfer (ET). The effects of insertion length for the catheter, asynchrony between the age of donor IVP blastocysts and the recipient estrous cycle, and volume of transfer medium were investigated. The IVP blastocysts at 5 days after in vitro fertilization were placed into porcine zygote medium (PZM)-5 supplemented with 10% (v/v) fetal bovine serum (PZM+FBS) in a 0.25 mL plastic straw (21-40 blastocysts per straw) and then transferred into one uterine horn of recipients using the Takumi(?) catheter for deep intrauterine insertion. Successful production of piglets derived from IVP embryos was achieved following non-surgical ET when the catheter was inserted at more than 30 cm anterior to the spiral guide spirette. The efficiency of piglet production (percentage number of piglet(s) born based on the number of embryos transferred) was greater (P<0.05) in recipients whose estrous cycle was asynchronous to that of donors with a 1-day delay (8.3%) than in those with a 2-day (1.5%) or 3-day (0.9%) delay, while pregnancy and farrowing rates (10-40%) did not differ among treatments. When blastocysts were transferred into recipients with 1.0 or 2.5 mL PZM+FBS, there were no significant differences in farrowing rate (30-40%) or average litter size (4.5-6.7) between treatments. The results of the present study indicate that the insertion length of the deep intrauterine catheter and the degree of asynchrony between donor embryos and recipient estrous cycle influenced on pregnancy and birth outcome following non-surgical transfer of IVP blastocysts.  相似文献   

17.
Effects of enucleation timing on enucleation rates, development and methylation levels of reconstructed bovine embryos were investigated. However, the enucleation rate of reconstructed embryos produced by the enucleation before fusion and activation (EBFA) was higher than that by the enucleation after fusion and activation (EAFA) procedure (80.7% vs. 59.1%, P<0.05). The blastocyst rate of reconstructed embryos cloned with ear fibroblasts in EBFA group was reduced (P<0.05) in comparison with that of EAFA group (24.6% vs. 34.4%). Two out of 11 recipients were pregnant and gave birth to two viable calves after transfer of 20 reconstructed EBFA embryos. Two out of seven recipients were pregnant and also gave birth to two calves, with one surviving, after transfer of 12 reconstructed embryos produced by EAFA procedure. Finally, the methylation level of satellite I gene of donor cells (69.8%) and reconstructed embryos in EBFA group (64.7%) were similar, which were both higher (P<0.05) than that of the reconstructed embryos in EAFA group (44.4%). The methylation level of satellite I gene of the reconstructed embryos in the IVF embryos (31.9%) was lower (P<0.05) than those in all other treatments. In conclusion, the reconstructed bovine embryos produced by the EAFA procedure revealed a better developmental competence with a lower methylation rate of satellite I gene than those produced by the EBFA procedure.  相似文献   

18.
Techniques for in vitro production (IVP) of viable embryos have been thoroughly developed in several domestic species in view to improve breeding efficiency. When applied to wild life, these techniques may also help the maintenance of biodiversity through amplification of sparse animals offspring and facilitation of genetic material exchange. During the successive steps of IVP, i.e. oocyte in vitro maturation (IVM), fertilization (IVF) and early embryo development (IVD) to the blastocyst stage, gametes and embryos are faced with unusual environment, including oxidative stress, known to be detrimental to their survival. In the present study, starting from methods developed in domestic species, we have adapted IVP to produce viable red deer embryos. In a first experiment, cumulus cells were removed from in vitro matured oocytes either before or after IVF. The presence of cumulus cells during IVF did not affect final cleavage or development rates. In a second experiment, in vitro matured oocytes were fertilized in the presence of cumulus cells and cultured in SOFaaBSA medium alone or in the presence of ovine oviduct epithelial cell (oOEC) monolayer. Whereas, oviduct cells did not improve the cleavage rate, they significantly increased the rate of embryos reaching the blastocyst stage (from 3 to 25% of total oocytes). Ten blastocysts from oOEC coculture were transferred after freezing and thawing to five recipient hinds and gave rise to three pregnancies. The three pregnant hinds gave birth to three live and normal calves.  相似文献   

19.
To examine the possible link between endocrine status and perinatal problems related to cattle cloning, plasma concentrations of cortisol, adrenocorticotropic hormone (ACTH) and components of the insulin-like growth factor (IGF) system were compared between 13 somatic cell cloned and seven control Japanese Black calves (five produced by artificial insemination [AI] and two produced from in vitro fertilized embryos [IVP]) immediately after birth. Five cloned calves required delivery by cesarean section (C-section), while all of control calves were delivered by spontaneous vaginal delivery. The C-section delivered clones were heavier at birth, followed by vaginally delivered clones and IVP controls, and AI controls were the lightest. The neonatal mortality (death within the 1st week) of C-section delivered clones was also high (4/5) compared to that of vaginally delivered clones (1/8) or controls (0/7). Plasma concentrations of cortisol and IGF-I were lower in the clones than control calves although the plasma ACTH level was not different between the groups. A striking difference was observed in plasma IGF binding protein (IGFBP) profile in which cloned calves had a greater relative abundance of IGFBP-2 compared with controls. Observed differences suggest that insufficient prepartum rise in plasma cortisol of cloned calves failed to initiate the switch to an adult mode of the IGF system during late gestation and therefore parturition was not spontaneous. Inappropriate developmental changes in endocrine system may be partly responsible for the fetal overgrowth and perinatal complications associated with the cloning technology.  相似文献   

20.
This study evaluates the effect of coculture with goat oviduct epithelial cells (GOEC) on the pregnancy rate, embryo survival rate and offspring development after direct transfer of vitrified/thawed caprine in vitro produced (IVP) embryos. Oocytes were recovered from slaughterhouse goat ovaries, matured and inseminated with frozen/thawed capacitated semen, and presumptive zygotes were randomly cultured in synthetic oviduct fluid (SOF) (n=352) or GOEC (n=314). The percentage of cleaved embryos reaching the blastocyst stage was 28% and 20% in SOF and GOEC, respectively (P<0.05). Overall, 26 blastocysts of SOF were transferred freshly in pairs to recipient goats, whereas 58 of SOF and 36 of GOEC were vitrified and transferred directly in pairs to recipient goats after thawing without removal of cryoprotectants or morphological evaluation. The kidding rate was 92% for SOF fresh, 14% for SOF vitrified (P<0.001) and 56% for GOEC vitrified (P<0.05); the difference was also significant between vitrified groups (P<0.01). The embryo survival rate was 62% for SOF fresh, 9% for SOF vitrified (P<0.001) and 33% for GOEC vitrified (P<0.05) with a significant difference between vitrified groups (P<0.01). The results showed that the coculture of IVP goat embryos with GOEC significantly improves the pregnancy and embryo survival rates and leads to the birth of healthy offspring. However, further research using more defined GOEC coculture is required to confirm its capacity to increase the success rate of IVP embryo technology in goat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号