首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human brain and liver mitochondria contain membrane-bound monoamine oxidase of both A and B types. Monamine oxidase-A (MAO-A), either membrane-bound or in detergent-solubilized extracts from these tissues, was selectively inhibited during incubations with trypsin, chymotrypsin, thermolysin, or papain. MAO-A in solubilized, but not in membrane-bound, preparations was also very sensitive to the action of phospholipase A2, while MAO-B was unaffected. Membrane-bound MAO-A of rat brain mitochondria was more sensitive to phospholipases and less sensitive to proteases than was human brain enzyme, indicating that these agents may reveal species differences in MAO properties. Human brain and liver MAO-A, either solubilized or bound in mitochondrial membranes, apparently contains basic and aromatic peptide moieties that are available to proteases. Hydrolysis of these peptide bonds leads to rapid denaturation unless substrate molecules stabilize the active site. Phospholipase A2 may disrupt the phospholipid microenvironment of MAO-A, the integrity of which is essential for MAO-A activity, but not for MAO-B. No interconversion of the two activities was observed. After phospholipase A2 treatment, remaining MAO-A activity was recovered in low-molecular-weight regions of a gel filtration gradient, suggesting that MAO-A subunits were released. Although these experiments argue against the proposal that phospholipids may regulate the ratio of A/B activities of a single enzyme molecule, it is conceivable that endogenous phospholipases or proteases in mitochondrial membranes may influence MAO-A activity independently of MAO-B activity.  相似文献   

2.
Abstract: The kinetic constants were determined for dopamine (DA) and norepinephrine (NE) metabolism by phenolsulfotransferase (PST), type A and B monoamine oxidase (MAO), and membrane-bound and soluble catechol- O - methyltransferase (COMT) in frontal lobe preparations of human brain. PST and membrane-bound COMT were found to have the lowest K m, values for both catecholamines. By means of the appropriate rate equations and the calculated kinetic constants for each enzyme, the activity of each enzymatic pathway was determined at varying concentrations of DA and NE. Results indicate that deamination by MAO is the principal pathway for the enzymatic inactivation of DA whereas NE is largely metabolized by MAO type A and membrane-bound COMT under the in vitro assay conditions used. At concentrations less than 100 μ M , soluble COMT'contributes less than 5% to the total catabolism of either catecholamine. PST can contribute up to 15% of the total DA metabolism and 7% of NE metabolism.  相似文献   

3.
Dynamic responses of brain tissues are needed for predicting traumatic brain injury (TBI). We modified a dynamic experimental technique for characterizing high strain-rate mechanical behavior of brain tissues. Using the setup, the gray and white matters from bovine brains were characterized under compression to large strains at five different strain rates ranging from 0.01 to 3000/s. The white matter was examined both along and perpendicular to the coronal section for anisotropy characterization. The results show that both brain tissue matters are highly strain-rate sensitive. Differences between the white matter and gray matter in their mechanical responses are recorded. The white matter shows insignificant anisotropy over all strain rates. These results will lead to rate-dependent material modeling for dynamic event simulations.  相似文献   

4.
The localization of angiotensin-converting enzyme (kininase II; ACE) in bovine cerebral cortex was studied by mechanically isolating microvessels from surrounding brain parenchyma. ACE specific activity, as assayed by generation of L-histidyl-L-leucine from the synthetic substrate hippuryl-L-histidyl-L-leucine, was enriched approximately 30 times in microvessels compared to homogenates of intact cerebral cortical gray matter. The nonapeptide 9a, SQ20,881), the orally active anti-hypertensive drug, 2-D-methyl-3-mercaptopropanoyl-L-proline (SQ14,225), and the vasoactive peptides bradykinin and angiotensin II inhibited this activity in a dose-dependent fashion. Brain microvessel ACE required chloride for optimal activity, was potentiated by cobalt nitrate, and was inhibited by the chelating agents EDTA and o-phenanthroline. Enzymatic generation of histidyl-leucine also was observed with the naturally occurring decapeptide substrate angiotensin I. In addition, microvessels obtained from bovine cerebellar cortex, hippocampus and corpus striatum, as well as from the cerebral cortex of Sprague-Dawley rats, were enriched in ACE activity. The presence of angiotensin-converting enzyme in brain microvessels suggests that cellular components of the blood-brain barrier may participate in the metabolism of peptide hormones such as angiotensin I and bradykinin within the central nervous system.  相似文献   

5.
Protein farnesyl transferase and geranylgeranyl transferase-I activities were determined in gray and white matter from various regions of bovine brain. Farnesyl transferase activity was 3–8 times greater than geranylgeranyl transferase-I activity. However, farnesyl transferase activity was about 2 times greater in the white matter than in the gray matter in all regions of the brain. Mixing experiments indicated lack of farnesyl transferase activators in white matter. This difference in farnesyl transferase activity may be due to enzyme content and may have implications in brain cell function.  相似文献   

6.
Milacemide (2-n-pentylaminoacetamide) is a secondary monoamine that in the brain is converted to glycinamide and glycine. This oxidative reaction was suspected to involve the reaction of monoamine oxidase (MAO). Using mitochondrial preparations from tissues that contain MAO-A and -B (rat brain and liver), MAO-A (human placenta), and MAO-B (human platelet and bovine adrenal chromaffin cell), it has been established that mitochondria containing MAO-B rather than MAO-A oxidize (H2O2 production and glycinamide formation) milacemide. The apparent Km (30-90 microM) for milacemide oxidation by mitochondrial MAO-B preparations is significantly lower than that for milacemide oxidation by mitochondrial MAO-A (approximately 1,300 microM). In vitro MAO-B (l-deprenyl and AGN 1135) rather than MAO-A (clorgyline) selectively inhibited the oxidation of milacemide. These in vitro data are matched by ex vivo experiments where milacemide oxidation was compared to oxidation of serotonin (MAO-A) and beta-phenylethylamine (MAO-B) by brain mitochondria prepared from rats pretreated with clorgyline (0.5-10 mg/kg) and l-deprenyl (0.5-10 mg/kg). Furthermore, in vivo experiment demonstrated that l-deprenyl selectively increased the urinary excretion of [14C]milacemide and the total radioactivity with a concomitant decrease of [14C]glycinamide. Such changes were not observed after clorgyline treatment, but were evident only at doses beyond clorgyline selectivity. The present data therefore demonstrate that milacemide is a substrate for brain MAO-B, and its conversion to glycinamide, further transformed to the inhibitory neurotransmitter, glycine, mediated by this enzyme may contribute to its pharmacological activities.  相似文献   

7.
The specific activity of adenylate cyclase was assayed in homogenates of gray matter, freshly isolated and primary cultured microvessel endothelial cells from bovine cerebral cortex. Specific activities for the tissues were 14.6±2.1, 15.6±2.7, and 8.4±1.5 pmol cAMP/mg protein/min±SD for gray matter, cultured microvessels, and freshly isolated microvessels, respectively. Adenylate cyclase associated with gray matter and cultured microvessels was sensitive to histamine and selected catecholamines. Perhaps due to metabolic deficiencies, adenylate cyclase of freshly isolated microvessels exhibited little or no response to either the catecholamines or histamine. Angiotensin II stimulated adenylate cyclase of both freshly isolated and cultured microvessels but had no effect on gray matter. Bradykinin did not stimulate cAMP generation in any of the tissues. Overall results support the role of cAMP in regulating brain microvessel functions and suggest that primary cultures of brain microvessels may be useful in examining cAMP-mediated biochemical pathways at the blood-brain barrier.  相似文献   

8.
Phenol sulfotransferase in humans: properties, regulation, and function   总被引:3,自引:0,他引:3  
Phenol sulfotransferase (PST) catalyzes the sulfate conjugation of phenolic and catechol drugs and neurotransmitters. All human tissues that have been studied in detail contain at least two forms of PST. One form is thermolabile (TL), catalyzes the sulfate conjugation of micromolar concentrations of dopamine and other phenolic monoamines, and is relatively resistant to inhibition by 2,6-dichloro-4-nitrophenol (DCNP). The other form is thermostable (TS), catalyzes the sulfate conjugation of micromolar concentrations of simple phenols such as p-nitrophenol, and is relatively sensitive to DCNP inhibition. These two forms of PST have been physically separated and partially purified from several human tissues, including an easily accessible tissue, the blood platelet. The biochemical properties of platelet PST are very similar to those of PST in human brain, liver, and small intestine. Individual differences in the basal activity of TS PST in the platelet are correlated with individual variations in the activity of this form of the enzyme in human cerebral cortex (r = .94, n = 15, P less than 0.001). In addition, both platelet TS and TL PST activities are correlated significantly with the extent of sulfate conjugation of orally administered drugs such as acetaminophen and methyldopa. These latter observations are compatible with the conclusions that platelet PST activity may reflect the activity of the enzyme at sites of drug metabolism, and that variation in PST activity is one factor responsible for individual differences in the sulfate conjugation of orally administered drugs.  相似文献   

9.
The relationship between phenolsulfotransferase (PST) and catechol-O-methyltransferase (COMT) in the metabolism of free 3,4-dihydroxyphenylethylamine (DA, dopamine) in the rat brain was studied. In rats not pretreated with a monoamine oxidase (MAO) inhibitor a huge increase of free DA in the brain, following an intraperitoneal injection of L-3,4-dihydroxyphenylalanine (L-DOPA) or an intraventricular injection of free DA, did not lead to any noticeable change in DA sulfate or 3-methoxytyramine (3-MT), which remained undetectable by the present HPLC method. However, in rats previously treated with the MAO inhibitors pargyline or tranylcypromine, the same L-DOPA or free DA treatment resulted in significant increases in both 3-MT and DA sulfate in the hypothalamus, brainstem, and striatum. This response of COMT and PST was not affected by prior treatment of the rats with 6-hydroxydopamine, which suggests that O-methylation and sulfoconjugation occur outside adrenergic neurons not destroyed by the neurotoxin. Inhibition of COMT activity did not lead to any increase in DA sulfate, which showed that despite their common mode of action (both enzymes react preferentially at the same hydroxyl group in the DA molecule), the two enzymes are not competitive. After MAO inhibition there were strong correlations between an increase in DA sulfate and 3-MT on the one hand, and between free DA and 3-MT on the other. Because 3-MT is a marker of central DA release, these data suggest that inhibition of MAO activity not only affects DA metabolism by this enzyme but also influences DA release in the rat brain.  相似文献   

10.
Human Phenol Sulfotransferase: Correlation of Brain and Platelet Activities   总被引:3,自引:0,他引:3  
Phenol sulfotransferase (PST; EC 2.8.2.1) catalyzes the sulfate conjugation of phenolic and catechol neurotransmitters and drugs. The human blood platelet has been the most thoroughly studied source of PST because of the possibility that the regulation of the enzyme in this easily accessible tissue might reflect the regulation of PST in the CNS. The human brain and platelet contain at least two forms of PST, forms designated as thermostable (TS) and thermolabile (TL) PST. TS PST catalyzes the sulfate conjugation of micromolar concentrations of phenol and p-nitrophenol and TL PST catalyzes the sulfate conjugation of dopamine and other monoamines. This study was performed to determine whether individual variations in the activities of human platelet TS and TL PST reflect individual variations in cerebral cortical PST activities. PST activities were measured in platelets and in cerebral cortical tissue obtained from 15 patients with epilepsy during clinically indicated neurosurgery. There was a highly significant correlation between the activities of the TS form of PST in cerebral cortex and platelets of these patients (r = 0.940, p less than 0.001), but there was not a significant correlation between activities of the TL form of PST in the two tissues (r = 0.396, p greater than 0.14). In addition to variations in the level of enzyme activity, there are also wide individual variations in the thermal stability of platelet TS PST.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The biochemical characteristics of soluble catechol-O-methyltransferase (COMT) activity in rat erythrocytes were compared with the properties of the soluble enzyme in rat liver, heart, and brain. COMT was measured by a procedure that avoided artifacts of some other assay procedures including inhibition of the enzyme by endogenous calcium. After the removal of calcium from the reaction mixture the apparent Michaelis-Menten constants for the two cosubstrates of the COMT reaction, S-adenosyl-1-methionine (SAM) and 3,4-dihydroxybenzoic acid (DBA), were similar in tissue preparations of rat liver, brain, heart and blood. The apparent Km values for the four tissues ranged from 5.7 to 6.7 x 10(-6) M and from 0.9-1.4 x 10(-4) M for SAM and DBA, respectively. The optimal pH and the optimal concentration of magnesium for the assay of red blood cell COMT were also similar to those for the enzyme in the three other rat tissues. After the removal of endogenous calcium, COMT activity in all four tissues was inhibited by the addition of calcium, and the [CaCl2] necessary to inhibit the enzyme activity 50% was 3-5 x 10(-4) M in all cases. The relative activities of COMT in the rat heart, brain, erythrocyte, and liver when expressed per g tissue or per ml of packed red blood cells were 1 to 1.15 to 1.58 to 140, respectively.  相似文献   

12.
The inhibitory effects of the analgesic neuropeptides kyotorphin (Tyr-Arg) and neo-kyotorphin (Thr-Ser-Lys-Tyr-Arg) on enkephalin-degrading enzymes were studied. The enzyme used were aminopeptidase (AP), dipeptidyl aminopeptidase (DPP), enkephalinase-A (ENK-A), and angiotensin-converting enzyme (ACE), which were prepared from the monkey brain membrane fraction. Kyotorphin inhibited only DPP (IC50, 18 microM), and the mode of inhibition was non-competitive (Ki, 6 microM). Neo-kyotorphin inhibited AP, DPP, and ACE with IC50 values of 131, 306, and 200 microM, respectively, but the inhibition of the enzyme activities were not effective. The selective inhibition by kyotorphin suggested that kyotorphin might protect the released Met-enkephalin against enzymatic degradation by DPP. Thus, kyotorphin may not only induce the release of Met-enkephalin but also stabilize the released neuropeptide.  相似文献   

13.
Cytosolic sialidase A was extracted from pig brain and purified about 2000-fold with respect to the starting homogenate (about 550-fold relative to the cytosolic fraction). The enzyme preparation provided a single peak on Ultrogel AcA-34 column chromatography and had an apparent molecular weight of 4 x 10(4). On incubation with micellar ganglioside GT1b, (molecular weight of the micelle, 3.5 x 10(5)) under the conditions used for the enzyme assay, brain cytosolic sialidase A formed two ganglioside-enzyme complexes, I and II, which were isolated and characterized. Complex II had a molecular weight of 4.2 X 10(5), and a ganglioside/protein ratio (w/w) of 4:1. This is consistent with a stoichiometric combination of one ganglioside micelle and two enzyme molecules. Complex I was probably a dimer of complex II. In both complexes I and II cytosolic sialidase was completely inactive. Inactivation of cytosolic sialidase by formation of the corresponding complexes was also obtained with gangliosides GD1a and GD1b, which, like GT1b, are potential substrates for the enzyme and GM1, which is resistant to the enzyme action. Therefore, the enzyme becomes inactive after interacting with ganglioside micelles. GT1b-sialidase complexes acted as excellent substrates for free cytosolic sialidase, as did the complexes with GD1a and GD1b.  相似文献   

14.
The procedure for the isolation of two water soluble copper-containing proteins from the white and gray matter of bovine brain is described. One of the proteins, cerebrocuprein I, is superoxide dismutase; and three molecular forms of this enzyme are to be found in brain. The other protein present in gray and white matter is devoid of superoxide dismutase and amine oxidase activities. The amino acid composition, molecular weight, isoelectric point and copper content of this protein were determined. The effect of some agents, pH and thermal treatment of the optical and EPR spectra of the protein were also studied. The copper of the protein may be removed and the holoprotein reconstituted again from apoprotein and copper. The results obtained led to the conclusion that in brain a new copper protein is discovered, which is named neurocuprein.  相似文献   

15.
Deamination of n-octylamine and n-decylamine has been studied in various tissues using a new bioluminescence technique. Selectivity of n-octylamine and n-decylamine as substrates for monoamine oxidase (MAO) A or B has been determined using both clorgyline and (-)-deprenyl inhibition curves and kinetic parameters. Homogenates of rat brain, liver and heart containing predominantly MAO-A or -B were prepared by preincubation for 60 min with (-)-deprenyl or clorgyline (30 nM), respectively. Human placenta (MAO-A) and platelet (MAO-B) were used as reference tissues containing only one MAO form. In tissues (rat liver, brain) containing both MAO forms in equal proportion, inhibition curve studies showed a preference of both substrates for the B form of the enzyme; however, where MAO-A was the major form (rat heart, human placenta), clorgyline was the more effective inhibitor. In the beef brain cortex n-octylamine showed marked preference for MAO-B, whereas n-decylamine was selective toward-MAO-A. Kinetic studies in general supported the picture of greater selectivity of the aliphatic amine substrates for deamination by MAO-B, as reflected by lower Km values for this enzyme type. However, n-octylamine was more selective for MAO-B than n-decylamine in both kinetic and inhibition curve studies. The deamination of these aliphatic amine substrates cannot be explained only by reference to the binary classification of MAO into types A and B.  相似文献   

16.
Monoamine oxidase (MAO) is an enzyme involved in brain catabolism of monoamine neurotransmitters whose oxidative deamination results in the production of hydrogen peroxide. It has been documented that hydrogen peroxide derived from MAO activity represents a special source of oxidative stress in the brain. In this study we investigated the potential effects of the production of hydroxyl radicals (*OH) on MAO-A and MAO-B activities using mitochondrial preparations obtained from rat brain. Ascorbic acid (100 microM) and Fe2+ (0.2, 0.4, 0.8, and 1.6 microM) were used to induce the production of *OH. Results showed that the generation of *OH significantly reduced both MAO-A (85-53%) and MAO-B (77-39%) activities, exhibiting a linear correlation between both MAO-A and MAO-B activities and the amount of *OH produced. The reported inhibition was found to be irreversible for both MAO-A and MAO-B. Assuming the proven contribution of MAO activity to brain oxidative stress, this inhibition appears to reduce this contribution when an overproduction of *OH occurs.  相似文献   

17.
Phenol sulfotransferase (PST) catalyzes the sulfate conjugation of catecholamines and phenol and catechol drugs. The human blood platelet contains a thermolabile (TL) form of PST that catalyzes the sulfate conjugation of dopamine and other monoamines and a thermostable (TS) form that catalyzes the sulfate conjugation of micromolar concentrations of phenol and p-nitrophenol. Experiments were performed to determine whether the brain contains forms of PST analogous to the TL and TS forms found in the human platelet, and to determine whether there are regional variations in human brain PST activity. We found that the human brain contains at least two forms of PST, forms that are similar to the platelet TS and TL forms of the enzyme with respect to substrate specificity, apparent Km constants, thermal stability, and sensitivity to inhibitors. Optimal conditions were determined for the measurement of these two activities in brain homogenates. The stability of PST activities in the human brain after death was determined in five samples of cerebral cortex that were obtained during clinically indicated neurosurgical procedures. An average of 76 +/- 8% and 80 +/- 9% (mean +/- SEM) of the basal TL and TS PST activities, respectively, remained in these five samples of cerebral cortex after 8 h of storage under simulated post-mortem conditions. Six human brains were then obtained less that 8 h after death from patients who had no neurological disease prior to death. The mean activities of the TL and TS forms of PST were measured in 17 different regions of the six brains. If the pituitary was excluded from consideration, TL and TS PST activities both varied approximately fivefold among these regions, and both activities were highest in cerebral cortex. However, the average TS activity in the anterior pituitary, a tissue of non-neural origin embryologically, was 6.5-fold greater than the highest average TS PST activity found in cerebral cortex.  相似文献   

18.
An antiserum to rat liver catechol-O-methyltransferase (COMT) was utilized in the immunological characterization of COMT from rat kidney, brain, and choroid plexuses, in addition to rat liver. The presence of anti-COMT activity was confirmed by the direct inhibition of the activity of the enzyme from rat liver by small quantities of the antiserum and by the inhibition of the activity of the enzyme from rat brain. The specificity of the antiserum was demonstrated both by immunoelectrophoresis of rat liver COMT, and by a partial purification of rat liver COMT in which changes in COMT specific activity were correlated with the appearance of a precipitin line in double-immunodiffusion experiments. The antigenic similarity of the enzyme derived from rat liver, kidney, brain, and choroid plexuses was demonstrated by the formation of a precipitin line of identity when preparations from these four tissues were diffused against the antiserum.  相似文献   

19.
Abstract: Catechol- O -methyltransferase (COMT) activity in the liver and kidneys of adult Fischer-344 (F-344) rats is only half of that in the same organs of Wistar-Furth (W-F) rats. The trait of low COMT activity in these animals is inherited in an autosomal recessive fashion. A comprehensive study of patterns of change in COMT activity during growth and development was performed to determine whether "temporal gene" effects might play a role in the inherited differences in enzyme activity present in adult animals. The COMT activity expressed per mg protein in liver and kidneys of newborn F-344 rats is only 50–60% of that in the same organs of W-F animals. The liver and the kidneys of newborn rats of both strains have COMT activity an order of magnitude higher than those in brain, heart, or blood. In addition, in both strains there are much larger increases in liver and kidney COMT activities during growth and development (5–10 fold) than in blood, brain, or heart (one- to twofold). Immunotitration with antibodies against rat COMT demonstrates that differences in immunoreactive COMT parallel differences in COMT activity, both between strains and within strains during growth and development. However, when the temporal patterns of change in enzyme activities in the liver and the kidneys of the two strains of rat are compared at multiple times during growth and development, no differences in the patterns are present. These results make it unlikely that temporal gene effects can explain the inherited differences in COMT activity in liver and kidneys of F-344 and W-F rats.  相似文献   

20.
N-Nitrosodiethylamine (NEN) and N-nitrodiethylamine (NEA) are carcinogens and in vitro activators of hepatic UDP-glucuronosyltransferase (GT) toward 2-aminophenol (AP) and 4-nitrophenol (NP). In this communication, they were intraperitoneally administered to male Wistar rats for 7 days and GT activities were determined towards AP, NP, phenolphthalein (PH) and testosterone (TS). Administration of 30 or 20 mg/kg dose of NEN caused marked decrease of liver and body weights, and did not affect hepatic GT activities. Injection of 10 mg/kg dose of NEN did not diminish liver and body weights, and increased the maximally activated GT activities toward AP and NP. In contrast, 30 mg/kg dose of NEA, did not affect either liver and body weights or GT activities. N-Nitrosodimethylamine (NMN), which is a carcinogen and a weak in vitro AP GT activator, was more toxic than NEN, and 3.6 mg/kg dose of NMN appears to induce GT toward NP and AP. Administration of 46.5 mg/kg N-nitrosodibutylamine (NBN), which is a carcinogen but not a GT activator, did not affect GT activities or liver body weights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号