首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The partial degradation of proteoglycan aggregate by human leucocyte elastase yielded products that banded with Mr 190,000, 140,000, 88,000, and 71,000 when analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide electrophoresis. Analysis of these bands revealed that the 190,000- and 140,000-Da bands contained chondroitin and keratan sulfate stubs and had N-terminal amino acid sequences corresponding to a sequence starting at residue 398 of the core protein of rat or human aggrecan. With increased time of digestion, the staining intensities of the 190,000-, 140,000-, and 88,000-Da bands decreased relative to the 71,000-Da band. Analysis of the 88,000- and 71,000-Da bands showed that they contained peptides substituted only with keratan sulfate stubs and that each band contained two peptides with different N-terminal sequences. One of these corresponded to a sequence that started at residue 398 of rat or human aggrecan and the other to the N-terminal sequence of bovine aggrecan. Under conditions of complete digestion, bands of 71,000 and 56,000 Da which contained only keratan sulfate stubs were observed on SDS-polyacrylamide electrophoresis. The 71,000-Da band was shown to have a single sequence similar to that starting at residue 398 of human and rat aggrecan and thus represents the globular domain 2 (G2) of the core protein of aggrecan. The 56,000-Da band was shown to have a sequence similar to that of the N-terminal sequence of bovine aggrecan indicating that this peptide corresponds to the globular domain 1 (G1) of the molecule. These results suggest that leucocyte elastase cleaves the core protein of aggrecan between valine 397 and isoleucine 398, which are located in the interglobular domain linking the G1 and G2 domains of the core protein of aggrecan. Further digestion of the proteoglycan aggregate with elastase resulted in the cleavage of the core protein within the chondroitin sulfate attachment domains.  相似文献   

2.
A method has been developed for the production, isolation, and quantitation of 15 marker peptides from the three globular domains (G1, G2, and G3) and the interglobular domain of bovine aggrecan (aggregating cartilage proteoglycan). Three of the peptides are from G1, two are from the interglobular domain, four are from G2, and six are from G3. The method involves separation of tryptic peptides by sequential anion-exchange, cation-exchange, and reversed-phase high performance liquid chromatography and quantitation by absorbance at 220 nm. The values obtained (peak area per microgram of core protein) were a function of the molar yield and also the size and aromatic residue content of individual peptides. This procedure has been applied to aggrecan purified from fresh calf articular cartilage and to aggrecan isolated from the medium and tissue compartments of cartilage explant cultures, maintained in basal medium for 15 days without and with interleukin-1 alpha. These analyses indicate that aggrecan which is released into explant medium has a reduced content of the G1 domain, but has a normal content of the G2 domain, the COOH-terminal region of the interglobular domain, and also the G3 domain. On the other hand, aggrecan which is retained by the cartilage during 15 days of culture has a normal content of G1, interglobular domain, and G2 domains, but, in the presence of interleukin-1 alpha, it has a reduced content of the G3 domain. The percentage of medium molecules which retained the G1 domain was higher in control cultures (about 35%) than in interleukin cultures (about 20%), and this was consistent with the relative aggregability of these samples. Taken together these results suggest that catabolism of aggrecan in articular cartilage involves a specific proteolysis of the core protein at a site which is within the interglobular domain and NH2-terminal to the sequence LPGG. This process occurs in control cultures but is accelerated by the addition of interleukin-1 alpha. Degraded molecules which lack the G1 domain are released preferentially into the medium; however, these molecules carry both the G2 and G3 domains, indicating that these domains do not confer strong matrix binding properties on aggrecan. The method described here for the isolation of peptides from bovine aggrecan should have wide application to structural and biosynthetic studies on this molecule in species such as human and rat, since many of the marker peptides are from highly conserved regions of the aggrecan core protein.  相似文献   

3.
The objective of this study was to determine whether a fragment(s) of type II collagen can induce cartilage degradation. Fragments generated by cyanogen bromide (CB) cleavage of purified bovine type II collagen were separated by HPLC. These fragments together with selected overlapping synthetic peptides were first analysed for their capacity to induce cleavage of type II collagen by collagenases in chondrocyte and explant cultures of healthy adult bovine articular cartilage. Collagen cleavage was measured by immunoassay and degradation of proteoglycan (mainly aggrecan) was determined by analysis of cleavage products of core protein by Western blotting. Gene expression of matrix metalloproteinases MMP-13 and MMP-1 was measured using Real-time PCR. Induction of denaturation of type II collagen in situ in cartilage matrix with exposure of the CB domain was identified with a polyclonal and monoclonal antibodies that only react with this domain in denatured but not native type II collagen. As well as the mixture of CB fragments and peptide CB12, a single synthetic peptide CB12-II (residues 195-218), but not synthetic peptide CB12-IV (residues 231-254), potently and consistently induced in explant cultures at 10 microM and 25 microM, in a time, cell and dose dependent manner, collagenase-induced cleavage of type II collagen accompanied by upregulation of MMP-13 expression but not MMP-1. In isolated chondrocyte cultures CB12-II induced very limited upregulation of MMP-13 as well as MMP-1 expression. Although this was accompanied by concomitant induction of cleavage of type II collagen by collagenases, this was not associated by aggrecan cleavage. Peptide CB12-IV, which had no effect on collagen cleavage, clearly induced aggrecanase specific cleavage of the core protein of this proteoglycan. Thus these events involving matrix molecule cleavage can importantly occur independently of each other, contrary to popular belief. Denaturation of type II collagen with exposure of the CB12-II domain was also shown to be much increased in osteoarthritic human cartilage compared to non-arthritic cartilage. These observations reveal that peptides of type II collagen, to which there is increased exposure in osteoarthritic cartilage, can when present in sufficient concentration induce cleavage of type II collagen (CB12-II) and aggrecan (CB12-IV) accompanied by increased expression of collagenases. Such increased concentrations of denatured collagen are present in adult and osteoarthritic cartilages and the exposure of chondrocytes to the sequences they encode, either in soluble or more likely insoluble form, may therefore play a role in the excessive resorption of matrix molecules that is seen in arthritis and development.  相似文献   

4.
Mechanisms involved in cartilage proteoglycan catabolism.   总被引:19,自引:0,他引:19  
The increased catabolism of the cartilage proteoglycan aggrecan is a principal pathological process which leads to the degeneration of articular cartilage in arthritic joint diseases. The consequent loss of sulphated glycosaminoglycans, which are intrinsic components of the aggrecan molecule, compromises both the functional and structural integrity of the cartilage matrix and ultimately renders the tissue incapable of resisting the compressive loads applied during joint articulation. Over time, this process leads to irreversible cartilage erosion. In situ degradation of aggrecan is a proteolytic process involving cleavage at specific peptide bonds located within the core protein. The most well characterised enzymatic activities contributing to this process are engendered by zinc-dependent metalloproteinases. In vitro aggrecanolysis by matrix metalloproteinases (MMPs) has been widely studied; however, it is now well recognised that the principal proteinases responsible for aggrecan degradation in situ in articular cartilage are the aggrecanases, two recently identified isoforms of which are members of the 'A Disintegrin And Metalloproteinase with Thrombospondin motifs' (ADAMTS) gene family. In this review we have described: (i) the development of monoclonal antibody technologies to identify catabolic neoepitopes on aggrecan degradation products; (ii) the use of such neoepitope antibodies in studies designed to characterise and identify the enzymes responsible for cartilage aggrecan metabolism; (iii) the biochemical properties of soluble cartilage aggrecanase(s) and their differential expression in situ; and (iv) model culture systems for studying cartilage aggrecan catabolism. These studies have clearly established that 'aggrecanase(s)' is primarily responsible for the catabolism and loss of aggrecan from articular cartilage in the early stages of arthritic joint diseases that precede overt collagen catabolism and disruption of the tissue integrity. At later stages, when collagen catabolism is occurring, there is evidence for MMP-mediated degradation of the small proportion of aggrecan remaining in the tissue, but this occurs independently of continued aggrecanase activity. Furthermore, the catabolism of link proteins by MMPs is also initiated when overt collagen degradation is evident.  相似文献   

5.
Normal and pathological turnover of proteoglycans in articular cartilage involves its cleavage close to the N-terminal G1 domain responsible for aggregation. A fragment containing G1 and G2 N-terminal domains of pig cartilage proteoglycans was therefore used as a substrate to investigate its degradation by the metalloproteinase stromelysin and related recombinant stromelysin enzymes. The stromelysins produced an apparent single cleavage yielding a G1 fragment of 56 kDa and a G2 fragment of 110 kDa. Rabbit bone stromelysin was much more active against the G1-G2 fragment and against proteoglycan aggregates than recombinant human stromelysin-1 and stromelysin-2. All metalloproteinase preparations were active against proteoglycan and the G1-G2 fragment at acid (pH 5.5) and neutral pH (7.4). N-terminal sequencing of the G2 fragment derived from the action of recombinant human stromelysin-1 revealed that cleavage between G1 and G2 occurred at the N-terminal end of the interglobular domain, close to the last cysteine in G1. The specific cleavage site was between an asparagine and a pair of phenylalanine residues, where the asparagine corresponds to residue 341 in human and rat mature core protein sequence.  相似文献   

6.
Products generated by the digestion of human aggrecan with recombinant human stromelysin have been purified and analyzed by N-terminal sequencing and C-terminal peptide isolation. N-terminal analysis of chondroitin sulfate-bearing fragments revealed a clearly identifiable sequence initiating at residue Phe342 of human aggrecan, providing evidence for a cleavage site at the Asn341-Phe342 bond located within the interglobular domain. This cleavage site, which separates the G1 domain from the remainder of the molecule, was confirmed by isolation from the liberated G1 domain of a C-terminal tryptic peptide with the sequence YDAICYTGEDFVDIPEN (in which the C-terminal residue is Asn341). This peptide was also isolated from tryptic digests of hyaluronan-binding proteins (A1D4 samples) prepared by CsCl gradient centrifugation of extracts of mature human articular cartilages. Since these A1D4 samples contain G1 domain which accumulates as a result of aggrecan catabolism in vivo, these results clearly indicate that stromelysin cleaves the Asn341-Phe342 bond of human aggrecan in situ.  相似文献   

7.
The catabolism of aggrecan has been studied in calf articular cartilage explant cultures. The chondroitin sulfate-rich, high buoyant density products that accumulate in culture medium have been purified, and NH2-terminal sequence data have been obtained. Aggrecan released from the tissue in the presence or absence of interleukin-1 alpha, whether analyzed before or after reduction and alkylation, exhibited only one major and one minor NH2-terminal sequence. The major sequence, ARGXVILXAKPDF, shows very high similarity to a region of the interglobular domain (between the G1 and G2 domains) of both human and rat aggrecan. The minor sequence, VEVS, was that previously described for the NH2 terminus of the intact core protein. These results indicate that catabolism of aggrecan in cartilage explants involves proteolytic cleavage within a conserved region of the interglobular domain and that this results in the separation of the G1 domain from the remainder of the molecule. A major product of this process is a large nonaggregating species that consists of an NH2-terminal sequence beginning with ARG (and composed of about 100 residues of the interglobular domain) that is attached to an intact G2 domain followed by an extended section of the chondroitin sulfate-bearing domain toward the COOH terminus.  相似文献   

8.
We have determined the sequence of a cDNA clone encoding the keratan sulfate-rich domain of the large aggregating cartilage proteoglycan core protein. The C-terminal portion of the deduced amino acid sequence is homologous to the chondroitin sulfate-rich region (domain CS1) of the rat chondrosarcoma proteoglycan, and the N-terminal portion is homologous to the second globular domain (G2) of the rat proteoglycan (Doege, K., Sasaki, M., Horigan, E., Hassell, J. R., and Yamada, Y. (1987) J. Biol. Chem. 262, 17757-17767). We could identify, inserted between these regions, a region absent in the rat proteoglycan. This domain corresponds to the keratan sulfate-enriched region of the bovine proteoglycan. It consists of a highly conserved hexapeptide motif consecutively repeated 23 times. Transfer blot analysis of genomic DNA indicated a single gene. The coding region for the keratan sulfate-enriched region was present both in human and bovine DNA, whereas the coding region for this domain appears to be absent in the rat genome. Transfer blot analysis of RNA showed that the keratan sulfate-rich region is present in proteoglycans from fetal as well as adult sources. Furthermore, RNA protection assays of RNA isolated from adult and fetal bovine articular cartilage showed that no alternative splicing occurs within this keratan sulfate-enriched region. These experiments show that the fetal bovine cartilage proteoglycan contains the keratan sulfate attachment domain, although it lacks the keratan sulfate side chains.  相似文献   

9.
Bovine aggrecan was digested with bovine cathepsin D at pH 5.2 under conditions of partial digestion and the resulting aggrecan core protein fragments were separated by electrophoresis on gradient polyacrylamide gels. The fragments were characterized by their reactivity to specific antibodies and by N-terminal amino acid sequencing. It was also demonstrated that cathepsin D cleaved bovine aggrecan at five sites within the core protein, between residues Phe(342)-Phe(343) in the interglobular domain, Leu(1462)-Val(1463) between the chondroitin sulfate attachment regions 1 and 2 and Leu(1654)-Val(1655), Phe(1754)-Val(1755) and Leu(1854)-Ile(1855) that are located within the chondroitin sulfate attachment region 2 of the core protein. The time course of digestion showed that there was a continued degradation of aggrecan and there was no preferential cleavage of the core protein at any one site. It was shown that cathepsin D digested aggrecan over the pH range 5.2-6.5 resulting in the same products. When bovine cartilage was maintained in explant culture at pH 5.2 there was a rapid loss of both radiolabeled and chemical pools of sulfated glycosaminoglycans into the culture medium and this loss was inhibited by the inclusion in the medium of the aspartic proteinase inhibitor, pepstatin A. The aggrecan core protein fragments appearing in the medium of cultures maintained at pH 5.2 were characterized and it was shown that the fragments had N-terminal sequences starting at Phe(343), Ile(1855), and Val(1755) or Val(1463). This work demonstrates that cathepsin D present within the extracellular matrix of articular cartilage has the potential to contribute to the proteolytic processing of the core protein of aggrecan in this tissue.  相似文献   

10.
Monoclonal antibody (MAb) technology was used to examine aggrecan metabolites and the role of aggrecanases and matrix metalloproteinases (MMPs) in proteolysis of the interglobular domain (IGD) and C-terminus of aggrecan. An in vitro model of progressive cartilage degradation characterized by early proteoglycan loss and late stage collagen catabolism was evaluated in conjunction with a broad-spectrum inhibitor of MMPs. We have for the first time demonstrated that IGD cleavage by MMPs occurs during this late stage cartilage degeneration, both as a primary event in association with glycosaminoglycan (GAG) release from the tissue and secondarily in trimming of aggrecanase-generated G1 metabolites. Additionally, we have shown that MMPs were responsible for C-terminal catabolism of aggrecan and generation of chondroitin sulfate (CS) deficient aggrecan monomers and that this aggrecan truncation occurred prior to detectable IGD cleavage by MMPs. The onset of this later stage MMP activity was also evident by the generation of MMP-specific link protein catabolites in this model culture system. Recombinant MMP-1, -3 and -13 were all capable of C-terminally truncating aggrecan with at least two cleavage sites N-terminal to the CS attachment domains of aggrecan. Through analysis of aggrecan metabolites in pathological synovial fluids from human, canine and equine sources, we have demonstrated the presence of aggrecan catabolites that appear to have resulted from similar C-terminal processing of aggrecan as that induced in our in vitro culture systems. Finally, by developing a new MAb recognizing a linear epitope in the IGD of aggrecan, we have identified two novel aggrecan metabolites generated by an as yet unidentified proteolytic event. Collectively, these results suggest that C-terminal processing of aggrecan by MMPs may contribute to the depletion of cartilage GAG that leads to loss of tissue function in aging and disease. Furthermore, analysis of aggrecan metabolites resulting from both C-terminal and IGD cleavage by MMPs may prove useful in monitoring different stages in the progression of cartilage degeneration.  相似文献   

11.
Monoclonal antibodies were raised that specifically recognize the NH2-terminal neoepitope sequence present in link protein cleavage products derived from stromelysin-degraded proteoglycan aggregate. Competitive enzyme-linked immunosorbent assay, using synthetic peptides as inhibitors, showed that one of these antibodies (CH-3) required, for antibody recognition, the free NH2-terminal amino acid isoleucine (residue 17 of the intact protein) in the sequence NH2-IQAENG at the stromelysin cleavage site of link protein 3. Human proteoglycan aggregate was digested with recombinant human stromelysin, bovine chymotrypsin, bovine trypsin, and porcine elastase, and their respective link protein degradation products were tested for immunoreactivity with antibody CH-3. Only stromelysin- and chymotrypsin-generated link protein 3 were recognized by antibody CH-3. Both of these enzymes generate link protein NH2 termini with the sequence 17IQAENG. . .; hence these studies indicated that monoclonal antibody CH-3 recognized this neoepitope sequence in only specific proteolytically modified link protein molecules. Since the occurrence of link protein 3 increases with aging, the incidence of CH-3 epitope in proteoglycans isolated from human knee articular cartilage of individuals of different ages was investigated. The prevalence of CH-3 epitope was found to be highest in newborn and adolescent articular cartilage samples. However, little CH-3 epitope was detected in older adult cartilage, although considerably more link protein 3 was present in these samples. These results suggest that additional proteolytic agents are responsible for the increased occurrence of link protein degradation products with aging.  相似文献   

12.
There has been no structural information about the core protein of salmon nasal cartilage proteoglycan although its physiological activities have been investigated. Internal amino acid sequencing using nano-LC/MS/MS revealed that the salmon proteoglycan was aggrecan. Primer walk sequencing based on the amino acid information determined that the salmon aggrecan cDNA is comprised of 4207 bp nucleotides predicted to encode 1324 amino acids with a molecular mass of 143,276. It exhibited significant similarities to predicted pufferfish aggrecan, zebrafish similar to aggrecan, zebrafish aggrecan, bovine aggrecan and human aggrecan isoform 2 precursor; whose amino acid identities were 56%, 55%, 49%, 31% and 30%, respectively. Salmon cartilage aggrecan had globular domains G1, G2 and G3 as in mammalian aggrecans. Neither the putative keratan sulfate attachment domain enriched with serine, glutamic acid and proline, nor the putative chondroitin sulfate attachment domain with repeating amino acid sequence containing serine–glycine, found in mammalian aggrecans were observed in salmon, however, random serine–glycine (or glycine–serine) sequences predicted to the sugar chain attachment sites were observed. Based on cDNA analysis and amino acid analysis after β-elimination, the ratio of serine attached to sugar chains was calculated to be approximately 37.7% of total serine, that is, 46 of 123 serine residues.  相似文献   

13.
Core protein from bovine nasal proteoglycan has been obtained by cyanogen bromide cleavage and by removal of most of the glycosaminoglycan side chains by hydrogen fluoride treatment. Amino acid analysis of the cyanogen bromide fragment shows it to consist mainly of proline, serine, glycine and glutamic acid (glutamine). End-group analyses of the fragment and HF stripped core reveal and N-terminal residue to be valine in each case. The stripped core has been subjected to sequencing and some sequential information is presented. Based upon the amino acid analysis, sequence information and other properties, conformation analysis indicates that the most likely conformation is that of a flexible extended chain containing β-turns. The existence of a common N-terminal residue indicates that it is the C-terminal region which lies in the region of the hyaluronic acid backbone in intact proteoglycan. Furthermore, enzymatic cleavage of core protein which occurs in proteoglycan turnover, aging and degenerative diseases, probably does not occur by a stepwise cleavage from the N terminus of proteoglycan but by a more drastic degradation process.  相似文献   

14.
We have isolated cDNA clones that code for a proteoglycan-related polypeptide with unique properties. A lambda gt11 expression library made from human fibroblast mRNA was screened with an antiserum made against a proteoglycan fraction from human fetal membranes. One group of positive clones revealed an open reading frame coding for 685 amino acids from the COOH terminus of a polypeptide. This amino acid sequence contains a domain that is strongly homologous with the COOH-terminal core protein domain of the large aggregating cartilage proteoglycan. This domain also contains sequences that are homologous with vertebrate lectins that bind terminal galactosyl, N-acetyl-glucosaminyl or mannosyl residues. On the NH2-terminal side of the lectin-like domain the cDNA-derived amino acid sequence contains two epidermal growth factor-related segments. The cDNA clones were shown to belong to a chondroitin sulfate proteoglycan by using antisera made against two peptides predicted from the cDNA sequence. These antisera were reactive with a proteoglycan fraction from fibroblasts after chondroitinase treatment of the fraction but not after treatment with heparinase or no treatment. Among the several polypeptides reactive with the anti-peptide antibodies the largest one, corresponding to a molecular weight of about 400,000, is likely to be the intact core protein, whereas the smaller polypeptides may be processing products or products of artifactual proteolysis. These results show that the amino acid sequence belongs to a proteoglycan core protein, and the sequence, therefore, provides a molecular definition to this proteoglycan. The lectin-related and growth factor-like sequences in the core protein of this proteoglycan suggest that it may play a role in intercellular signaling.  相似文献   

15.
We have determined the sequence of a partial cDNA clone encoding the C-terminal region of bovine cartilage aggregating proteoglycan core protein. The deduced amino acid sequence contains a cysteine-rich region which is homologous with chicken hepatic lectin. This lectin-homologous region has previously been identified in rat and chicken cartilage proteoglycan. The bovine sequence presented here is highly homologous with the rat and chicken amino acid sequences in this apparently globular region. A region containing clusters of Ser-Gly sequences is located N-terminal to the lectin homology domain. These Ser-Gly-rich segments are arranged in tandemly repeated, approx. 100-residue-long, homology domains. Each homology domain consists of an approx. 75-residue-long Ser-Gly-rich region separated by an approx. 25-residue-long segment lacking Ser-Gly dipeptides. These dipeptides are arranged in 10-residue-long segments in the 100-residue-long homology domains. The shorter homologous segments are tandemly repeated some six times in each 100-residue-long homology domain. Serine residues in these repeats are potential attachment sites for chondroitin sulphate chains.  相似文献   

16.
Tendons are collagenous tissues made of mainly Type I collagen and it has been shown that the major proteoglycans of tendons are decorin and versican. Little is still known about the catabolism of these proteoglycans in tendon. Therefore, the aim of the study was to characterise the proteoglycans including their catabolic products present in uncultured bovine tendon and in the explant cultures of tendon. In this study, the proteoglycans were extracted from the tensile region of deep flexor tendon and isolated by ion-exchange chromatography and after deglycosylation analysed by SDS-polyacrylamide electrophoresis, Western blotting and amino-terminal amino acid sequence analysis. Based on amino acid sequence analysis, approximately 80% of the total proteoglycan core proteins in fresh tendon was decorin. Other species that were detected were biglycan and the large proteoglycans versican (splice variants V(0) and/or V(1)) and aggrecan. Approximately 35% of decorin present in the matrix showed carboxyl-terminal proteolytic processing at a number of specific sites. The analysis of small proteoglycans lost to the medium of tendon explants showed the presence of biglycan and decorin with the intact core protein as well as decorin fragments that contained the amino terminus of the core protein. In addition, two core protein peptides of decorin starting at residues K(171) and D(180) were observed in the matrix and one core protein with an amino-terminal sequence commencing at G(189) was isolated from the culture medium. The majority of the large proteoglycans present in the matrix of tendon were degraded and did not contain the G1 globular domain. Furthermore the aggrecan catabolites present in fresh tendon and lost to the medium of explants were derived from aggrecanase cleavage of the core protein at residues E(373)-A(374), E(1480)-G(1481) and E(1771)-A(1772). The analysis of versican catabolites (splice variants V(0) and/or V(1)) also showed evidence of degradation of the core protein by aggrecanase within the GAG-beta subdomain, as well as cleavage by other proteinase(s) within the GAG-alpha and GAG-beta subdomains of versican (variants V(0) and/or V(2)). Degradation products from the amino terminal region of type XII collagen were also detected in the matrix and medium of tendon explants. This work suggests a prominent role for aggrecanase enzymes in the degradation of aggrecan and to a lesser extent versican. Other unidentified proteinases are also involved in the degradation of versican and small leucine-rich proteoglycans.  相似文献   

17.
A peptide with hyaluronic acid-binding properties was isolated from trypsin digests of bovine articular cartilage proteoglycan aggregate. This peptide originated from the N-terminus of the proteoglycan core protein, retained its function of forming complexes with hyaluronate and link protein and contained at least one keratan sulfate chain. Amino acid sequence data demonstrated that the first six amino acid residues of the N-terminus of bovine articular cartilage proteoglycan core protein differed from the same region from the rat chondrosarcoma proteoglycan. Further sequence data indicate areas of considerable sequence homology in the hyaluronic acid-binding regions of proteoglycans from the two species.  相似文献   

18.
19.
Deglycosylation of chondroitin sulfate proteoglycan and derived peptides   总被引:1,自引:0,他引:1  
In order to define the domain structure of proteoglycans as well as identify primary amino acid sequences specific for attachment of the various carbohydrate substituents, reliable techniques for deglycosylating proteoglycans are required. In this study, deglycosylation of cartilage chondroitin sulfate proteoglycan (CSPG) with minimal core protein cleavage was accomplished by digestion with chondroitinase ABC and keratanase, followed by treatment with anhydrous HF in pyridine. Nearly complete deglycosylation of secreted proteoglycan was verified within 45 min of HF treatment by loss of incorporated [3H]glucosamine label from the proteoglycan as a function of time of treatment, as well as by direct analysis of carbohydrate content and xylosyltransferase acceptor activity of unlabeled core protein preparations. The deglycosylated CSPG preparations were homogeneous and of high molecular weight (approximately 370,000). Comparison of the intact deglycosylated core protein preparations with newly synthesized unprocessed precursors (apparent Mr approximately 360,000) suggested that extensive proteolytic cleavage of the core protein did not occur during normal intracellular processing. Furthermore, peptide patterns generated after clostripain digestion of core protein precursor and of deglycosylated secreted proteoglycan were comparable. With the use of the clostripain digestion procedure, peptides were produced from unlabeled proteoglycan, and two predominant peptides from the most highly glycosylated regions (the chondroitin sulfate rich regions of the proteoglycan) were isolated, characterized, and deglycosylated. These peptides were found to follow similar kinetics of deglycosylation and to acquire xylose acceptor activity comparable to the intact core protein.  相似文献   

20.
The aggregating proteoglycans of the lectican family are important components of extracellular matrices. Aggrecan is the most well studied of these and is central to cartilage biomechanical properties and skeletal development. Key to its biological function is the fixed charge of the many glycosaminoglycan chains, that provide the basis for the viscoelastic properties necessary for load distribution over the articular surface. This review is focused on the globular domains of aggrecan and their role in anchoring the proteoglycans to other extracellular matrix components. The N-terminal G1 domain is vital in that it binds the proteoglycan to hyaluronan in ternary complex with link protein, retaining the proteoglycan in the tissue. The importance of the C-terminal G3 domain interactions has recently been emphasized by two different human hereditary disorders: autosomal recessive aggrecan-type spondyloepimetaphyseal dysplasia and autosomal dominant familial osteochondritis dissecans. In these two conditions, different missense mutations in the aggrecan C-type lectin repeat have been described. The resulting amino acid replacements affect the ligand interactions of the G3 domain, albeit with widely different phenotypic outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号