首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epand RF  Martinou JC  Montessuit S  Epand RM 《Biochemistry》2003,42(49):14576-14582
It is known that the proapoptotic protein Bax facilitates the formation of pores in bilayers, resulting in the release of proteins from the intermitochondrial space. We demonstrate that another consequence of the interaction of Bax with membranes is an increase in the rate of lipid transbilayer diffusion. We use two independent assays for transbilayer diffusion, one involving the formation of asymmetric liposomes by placing a pyrene-labeled lipid into the outer monolayer of preformed vesicles and another assay based on the initial preparation of liposomes having an asymmetric transbilayer distribution of lipids. With both methods we find that oligomeric BaxDeltaC or full-length Bax in the presence of tBid, but not monomeric full-length Bax, strongly promotes the rate of transbilayer diffusion. Although biological membranes exhibit rates of lipid transbilayer diffusion of minutes or less, they are able to maintain an asymmetric distribution of lipids across the bilayer. In the case of mitochondria, cardiolipin is sequestered on the inner leaflet of the inner mitochondrial membrane. However, during apoptosis this lipid translocates to the outer surface of the outer mitochondrial membrane. This phenomenon must involve an increase in the rate of transbilayer diffusion. The results of the present paper demonstrate that an activated form of Bax can cause this increased rate.  相似文献   

2.
Lipid translocation across the plasma membrane of mammalian cells.   总被引:25,自引:0,他引:25  
The plasma membrane, which forms the physical barrier between the intra- and extracellular milieu, plays a pivotal role in the communication of cells with their environment. Exchanging metabolites, transferring signals and providing a platform for the assembly of multi-protein complexes are a few of the major functions of the plasma membrane, each of which requires participation of specific membrane proteins and/or lipids. It is therefore not surprising that the two leaflets of the membrane bilayer each have their specific lipid composition. Although membrane lipid asymmetry has been known for many years, the mechanisms for maintaining or regulating the transbilayer lipid distribution are still not completely understood. Three major players have been presented over the past years: (1) an inward-directed pump specific for phosphatidylserine and phosphatidylethanolamine, known as aminophospholipid translocase; (2) an outward-directed pump referred to as 'floppase' with little selectivity for the polar headgroup of the phospholipid, but whose actual participation in transport of endogenous lipids has not been well established; and (3) a lipid scramblase, which facilitates bi-directional migration across the bilayer of all phospholipid classes, independent of the polar headgroup. Whereas a concerted action of aminophospholipid translocase and floppase could, in principle, account for the maintenance of lipid asymmetry in quiescent cells, activation of the scramblase and concomitant inhibition of the aminophospholipid translocase causes a collapse of lipid asymmetry, manifested by exposure of phosphatidylserine on the cell surface. In this article, each of these transporters will be discussed, and their physiological importance will be illustrated by the Scott syndrome, a bleeding disorder caused by impaired lipid scrambling. Finally, phosphatidylserine exposure during apoptosis will be briefly discussed in relation to inhibition of translocase and simultaneous activation of scramblase.  相似文献   

3.
Back and forth     
Summary

That some membranes restrict certain lipid species to one side of the bilayer and others to the opposite side has been known for two decades. However, how this asymmetric transbilayer distribution is generated and controlled, how many and what type of membranes are so structured, and even the reason for its existence is just now beginning to be understood. It has been a decade since the discovery of an activity which transports in an ATP-dependent manner only the aminophospholipids from the outer to the inner leaflet of the plasma membrane. This aminophospholipid translocase has yet to be isolated, reconstituted, and identified molecularly. Elevating intracellular Ca2+ allows all the major classes of phospholipids to move freely across the bilayer, scrambling lipids and dissipating asymmetry. The nature of this pathway and its mode of activation by Ca2+ remain to be determined. Though loss of transbilayer asymmetry by blood cells clearly produces a procoagulant surface and increases interactions with the reticuloendothelial system, it remains to be elucidated whether maintenance of blood homeostasis is just one expression of a more general raison d'ětre for lipid asymmetry. It is these persisting uncertainties and gaps in our knowledge which make the field such an interesting and exciting challenge at the present time.  相似文献   

4.
Smriti  Nemergut EC  Daleke DL 《Biochemistry》2007,46(8):2249-2259
The plasma membrane of most cells contains a number of lipid transporters that catalyze the ATP-dependent movement of phospholipids across the membrane and assist in the maintenance of lipid asymmetry. The most well-characterized of these transporters is the erythrocyte aminophospholipid flippase, which selectively transports phosphatidylserine (PS) from the outer to the inner monolayer. Previous work has demonstrated that PS and to a lesser extent phosphatidylethanolamine (PE) are substrates for the flippase and that other phospholipids move across the membrane only by passive flip-flop. The present study re-evaluates these results. The incorporation and transbilayer movement of a number of short-chain (dilauroyl) phospholipid analogues in human erythrocytes was measured by observing lipid-induced changes in cell morphology, and the effect of an ATPase inhibitor (vanadate) and a sulfyhdryl reagent (N-ethylmaleimide) was determined. Incubation of cells with these lipids causes the rapid formation of echinocytes, because of the accumulation of the lipid in the outer monolayer. While dilauroylphosphatidylcholine-treated cells retained this shape, cells treated with sn-1,2-DLP-l-S, sn-1,2-DLP-d-S, or N-methyl-DLPS rapidly changed morphology to stomatocytes, which is consistent with the transport and accumulation of the lipid in the inner monolayer. A similar, although slower, stomatocytic shape change was induced by sn-2,3-DLP-l-S. Other lipids that were tested (dilauroylphosphatidylhydroxypropionate, dilauroylphosphatidylhomoserine, DLPS-methyl ester, or sn-2,3-DLP-d-S) reverted to discocytes only. In all cases, pretreatment with vanadate or N-ethylmaleimide inhibited the conversion of echinocytes to discocytes or stomatocytes. This is the first report of a protein- and energy-dependent pathway for the inwardly directed transbilayer movement of lipids other than PS and PE in the erythrocyte membrane and suggests that the flippase has broader specificity for substrates or that other lipid transporters are present.  相似文献   

5.
ABC (ATP-binding cassette) proteins actively transport a wide variety of substrates, including peptides, amino acids, sugars, metals, drugs, vitamins and lipids, across extracellular and intracellular membranes. Of the 49 hum an ABC proteins, a significant number are known to mediate the extrusion of lipids from membranes or the flipping of membrane lipids across the bilayer to generate and maintain membrane lipid asymmetry. Typical lipid substrates include phospholipids, sterols, sphingolipids, bile acids and related lipid conjugates. Members of the ABCA subfamily of ABC transporters and other ABC proteins such as ABCB4, ABCG1 and ABCG5/8 implicated in lipid transport play important roles in diverse biological processes such as cell signalling, membrane lipid asymmetry, removal of potentially toxic compounds and metabolites, and apoptosis. The importance of these ABC lipid transporters in cell physiology is evident from the finding that mutations in the genes encoding many of these proteins are responsible for severe inherited diseases. For example, mutations in ABCA1 cause Tangier disease associated with defective efflux of cholesterol and phosphatidylcholine from the plasma membrane to the lipid acceptor protein apoA1 (apolipoprotein AI), mutations in ABCA3 cause neonatal surfactant deficiency associated with a loss in secretion of the lipid pulmonary surfactants from lungs of newborns, mutations in ABCA4 cause Stargardt macular degeneration, a retinal degenerative disease linked to the reduced clearance of retinoid compounds from photoreceptor cells, mutations in ABCA12 cause harlequin and lamellar ichthyosis, skin diseases associated with defective lipid trafficking in keratinocytes, and mutations in ABCB4 and ABCG5/ABCG8 are responsible for progressive intrafamilial hepatic disease and sitosterolaemia associated with defective phospholipid and sterol transport respectively. This chapter highlights the involvement of various mammalian ABC transporters in lipid transport in the context of their role in cell signalling, cellular homoeostasis, apoptosis and inherited disorders.  相似文献   

6.
Lipid distribution and transport across cellular membranes   总被引:1,自引:0,他引:1  
In eukaryotic cells, the membranes of different intracellular organelles have different lipid composition, and various biomembranes show an asymmetric distribution of lipid types across the membrane bilayer. Membrane lipid organization reflects a dynamic equilibrium of lipids moving across the bilayer in both directions. In this review, we summarize data supporting the role of specific membrane proteins in catalyzing transbilayer lipid movement, thereby controlling and regulating the distribution of lipids over the leaflets of biomembranes.  相似文献   

7.
The normal asymmetric distribution of phospholipids across the plasma membrane of erythrocytes can be abolished by lysing and resealing cells in the presence of Ca2+. In the present study, using flow cytometric analysis of the binding of merocyanine 540 to monitor transbilayer phospholipid distribution, Ca(2+)-induced loss of asymmetry is shown to be independent from the aminophospholipid translocase which catalyzes movement of normally internal phospholipids from the outer to the inner leaflet of the membrane. Loss of asymmetry is rapid, temperature-sensitive, and occurs in an uninterrupted, intact bilayer, rather than by diffusion of lipids through the hemolytic pore. Addition of ATP during lysis reverses loss of asymmetry, and this restoration can be blocked by inhibitors of the aminophospholipid translocase. These results suggest that the ATP-dependent translocase is essential for recovery of asymmetry, in turn suggesting that separate mechanisms mediate the loss and the recovery of lipid asymmetry in erythrocytes.  相似文献   

8.
Eukaryotic cells contain hundreds of different lipid species that are not uniformly distributed among their membranes. For example, sphingolipids and sterols form gradients along the secretory pathway with the highest levels in the plasma membrane and the lowest in the endoplasmic reticulum. Moreover, lipids in late secretory organelles display asymmetric transbilayer arrangements with the aminophospholipids concentrated in the cytoplasmic leaflet. This lipid heterogeneity can be viewed as a manifestation of the fact that cells exploit the structural diversity of lipids in organizing intracellular membrane transport. Lipid immiscibility and the generation of phase-separated lipid domains provide a molecular basis for sorting membrane proteins into specific vesicular pathways. At the same time, energy-driven aminophospholipid transporters participate in membrane deformation during vesicle biogenesis. This review will focus on how selective membrane transport relies on a dynamic interplay between membrane lipids and proteins.  相似文献   

9.
The complex mixture of lipids and proteins of the red blood cell membrane is well maintained during the life of the cell. Lipid analysis of the red cell reveals hundreds of phospholipid molecular species and cholesterol that differ with respect to their (polar) head group, and (apolar) side chains. These molecules move rapidly in the plane, as well as across the lipid bilayer. This dynamic movement is highly organized. In the plane of the bilayer, areas enriched in certain lipids accommodate protein structure and modulate function. While lipids move across the bilayer, the organization is highly asymmetric. Amino phospholipids are mainly found on the inside and choline containing phospholipids on the outside. Both the composition and organization of the red cell membrane is maintained throughout the life of the red cell by an intricate mechanism that involves enzymes, transporters and cytosolic factors. Key proteins that maintain red blood cell lipid organization have recently been identified. Alterations in these mechanisms, as the result of the globin mutations in sickle cell disease or thalassemia will lead to loss of membrane viability, apoptosis during erythropoiesis, early demise of the cell in the circulation, and when these cells are not removed appropriately their presence has pathologic consequences.  相似文献   

10.
Book reviews     
Eukaryotic cells contain hundreds of different lipid species that are not uniformly distributed among their membranes. For example, sphingolipids and sterols form gradients along the secretory pathway with the highest levels in the plasma membrane and the lowest in the endoplasmic reticulum. Moreover, lipids in late secretory organelles display asymmetric transbilayer arrangements with the aminophospholipids concentrated in the cytoplasmic leaflet. This lipid heterogeneity can be viewed as a manifestation of the fact that cells exploit the structural diversity of lipids in organizing intracellular membrane transport. Lipid immiscibility and the generation of phase-separated lipid domains provide a molecular basis for sorting membrane proteins into specific vesicular pathways. At the same time, energy-driven aminophospholipid transporters participate in membrane deformation during vesicle biogenesis. This review will focus on how selective membrane transport relies on a dynamic interplay between membrane lipids and proteins.  相似文献   

11.
Sharom FJ 《IUBMB life》2011,63(9):736-746
The rapid movement of polar lipids from one membrane leaflet to the other is facilitated by lipid flippases or translocases. Although their activity was first observed over 30 years ago, the structures, physiological roles, and molecular mechanisms of this group of proteins remain enigmatic. Lipid flippases maintain membrane lipid asymmetry, and in eukaryotes they are also intimately involved in membrane budding and vesicle trafficking. The ATP-dependent flippases are members of well-characterized protein families, whose other members transport nonlipid substrates across cell membranes. The P(4)-type ATPases carry out the inward translocation of phospholipids, and various ABC transporters are involved in outward lipid movement. The ATP-independent flippases move lipid substrates in both directions between membrane leaflets. With only a few exceptions, the molecular identity of these proteins is still unknown, despite their involvement in key biosynthetic pathways in both bacteria and eukaryotes. This review provides an overview of the different classes of flippases, and summarizes recent progress in their identification and functional characterization. The possible mechanisms of action of lipid flippases are discussed, and future directions explored.  相似文献   

12.
Organelle biogenesis and intracellular lipid transport in eukaryotes.   总被引:8,自引:1,他引:7  
The inter- and intramembrane transport of phospholipids, sphingolipids, and sterols involves the most fundamental processes of membrane biogenesis. Identification of the mechanisms involved in these lipid transport reactions has lagged significantly behind that for intermembrane protein traffic until recently. Application of methods that include fluorescently labeled and spin-labeled lipid analogs, new cellular fractionation techniques, topographically specific chemical modification techniques, the identification of organelle-specific metabolism, permeabilized cell methodology, and yeast molecular genetics has contributed to revealing a diverse biochemical array of transport processes for lipids. Compelling evidence now exists for ATP-dependent, ATP-independent, vesicle-dependent, and vesicle-independent transport processes that are lipid and membrane specific. ATP-dependent transport processes include the transbilayer movement of phosphatidylserine and phosphatidylethanolamine at the plasma membrane and the transport of phosphatidylserine from its site of synthesis to the mitochondria. ATP-independent processes include the transbilayer movement of virtually all lipids at the endoplasmic reticulum, the movement of phosphatidylserine between the inner and outer mitochondrial membranes, and the transfer of nascent phosphatidylcholine and phosphatidylethanolamine to the plasma membrane. The ATP-independent movement of lipids between organelles is believed to be due to the action of lipid transfer proteins, but this still remains to be proved. Vesicle-based transport mechanisms (which are also inherently ATP dependent) include the transport of nascent cholesterol, sphingomyelin, and glycosphingolipids from the Golgi apparatus to the plasma membrane and the recycling of sphingolipids and selected pools of phosphatidylcholine from the plasma membrane to the cell interior. The vesicles involved in cholesterol transport to the plasma membrane are different from those involved in bulk protein transport to the cell surface. The vesicles involved in recycling sphingomyelin to and from the cell surface are different from those involved in the assembly of newly synthesized sphingolipids into the plasma membrane. The preliminary characterization of these lipid translocation processes suggests divergent rather than unifying mechanisms for lipid transport in organelle assembly.  相似文献   

13.
An equilibrium transmembrane asymmetry in charged lipids is shown to arise as a result of oriented, bipolar proteins in the membrane. The basic interaction giving rise to the asymmetry is between a lipid molecule and a transbilayer potential generated by the asymmetric charge distribution in the protein. Thus, a protein can generate a lipid asymmetry without a direct binding interaction between lipid and protein. The generation of an asymmetry in charged lipid by this mechanism can also lead to a concomitant asymmetry in neutral lipids if deviations from ideality in the lipid mixture are taken into account. It is shown that regular solution theory applied to the lipid phase predicts an asymmetry in all components of a ternary mixture as long as one component is electrostatically oriented according to the mechanism mentioned above. The resulting asymmetry is not strongly salt dependent. The mechanism quantitatively accounts for the experimentally determined phospholipid asymmetry in the rod outer segment disc membrane of the vertebrate photoreceptor.  相似文献   

14.
Two phospholipid exchange proteins and two phospholipases C have been employed to determine the phospholipid composition of the outer surface of the membrane of influenza virus. These four protein probes have defined the same accessible and inaccessible pool for each viral phospholipid. Phospholipids which are exchangeable or hydrolyzable are located on the outer surface, whereas the inaccessible pool is located at the inner surface of the viral bilayer. The two pools are unequal in size, with ca. 30% of the total phospholipid accessible to the four proteins, and ca. 70% inaccessible. The membrane is thus highly asymmetric with regard to the amount of phospholipid on each side of the membrane. There is also a marked asymmetry of phospholipid composition. Phosphatidylcholine and phosphatidylinositol are enriched in the outer surface, and sphingomyelim is enriched in the inner surface, whereas phosphatidylethanolamine and phosphatidylserine are present in similar proportions in each surface. This distribution is qualitatively different from that previously reported for the human erythrocyte. The close agreement between results obtained with excahnge proteins and phospholipases C demonstrates that the hydrolytic action of these enzymes does not alter phospholipid asymmetry. The nonperturbing nature of the exchange proteins has permitted the rate of transmembrane movement of phospholipids (flip-flop) in the intact virion to be studied. This process could not be detected after 2 days at 37 degrees C. It was estimated that the half-time for flip-flop is indeterminately in excess of 30 days for sphingomyelin and 10 days for phosphatidylcholine at 37 degrees C. These extremely long times provide a simple explanation for the maintenance of transbilayer asymmetry in influenza virions and possibly, other membranes. Since the viral membrane is acquired by budding through the host cell plasma membrane, the transbilayer distribution of phospholipids observed in the virions presumably reflects a similar asymmetric distribution of phospholipids in the host cell surface membrane. Because animal cells in culture do not incorporate extracellular phospholipid, our results demonstrate that individual cells have the capacity to generate asymmetric membranes.  相似文献   

15.
This review describes: (i) perturbations of the membrane lipids that are induced by integral membrane proteins, and reciprocally, (ii) the effects that the lipids may have on the function of membrane-associated proteins. Topics of the first category that are covered include: stoichiometry and selectivity of the first shell of lipids associated at the intramembranous perimeter of transmembrane proteins; the chain configuration and exchange rates of the first-shell lipids; the effects of transmembrane peptides on transbilayer movement of lipids (flip-flop); the effects of membrane proteins on lipid polymorphism and formation of non-lamellar phases; and the effects of hydrophobic mismatch on lipid chain configuration, phase stability and selectivity of lipid-protein association. Topics of the second category are: the influence of lipid selectivity on conformational changes in the protein; the effects of elastic fluctuations of the lipid bilayer on protein insertion and orientation in membranes; the effects of hydrophobic matching on intramembrane protein-protein association; and the effects of intrinsic lipid curvature on membrane integration, oligomer formation and activity of membrane proteins.  相似文献   

16.
This paper reviews the current knowledge on the various mechanisms for transbilayer, or flip-flop, lipid motion in model and cell membranes, enzyme-assisted lipid transfer by flippases, floppases and scramblases is briefly discussed, while non-catalyzed lipid flip-flop is reviewed in more detail. Transbilayer lipid motion may occur as a result of the insertion of foreign molecules (detergents, lipids, or even proteins) in one of the membrane leaflets. It may also be the result of the enzymatic generation of lipids, e.g. diacylglycerol or ceramide, at one side of the membrane. Transbilayer motion rates decrease in the order diacylglycerol ? ceramide ? phospholipids. Ceramide, but not diacylglycerol, can induce transbilayer motion of other lipids, and bilayer scrambling. Transbilayer lipid diffusion and bilayer scrambling are defined as two conceptually and mechanistically different processes. The mechanism of scrambling appears to be related to local instabilities caused by the non-lamellar ceramide molecule, or by other molecules that exhibit a relatively slow flip-flop rate, when asymmetrically inserted or generated in one of the monolayers in a cell or model membrane.  相似文献   

17.
Normal quescent cells maintain membrane lipid asymmetry by ATP-dependent membrane lipid transporters, which shuttle different phospholipids from one leaflet to the other against their respective concentration gradients. When cells are challenged, membrane lipid asymmetry can be perturbed resulting in exposure of phosphatidylserine [PS] at the outer cell surface. Translocation of PS from the inner to outer membrane leaflet of activated blood platelets and platelet-derived microvesicles provides a catalytic surface for interacting coagulation factors. This process is dramatically impaired in Scott syndrome, a rare congenital bleeding disorder, underscoring the indispensible role of PS in hemostasis. This also testifies to a defect of a protein-catalyzed scrambling of membrane phospholipids. The Scott phenotype is not restricted to platelets, but can be demonstrated in other blood cells as well. The functional aberrations observed in Scott syndrome have increased our understanding of transmembrane lipid movements, and may help to identify the molecular elements that promote the collapse of phospholipid asymmetry during cell activation and apoptosis.  相似文献   

18.
Transport proteins are essential for cells in allowing the exchange of substances between cells and their environment across the lipid bilayer forming a tight barrier. Membrane lipids modulate the function of transmembrane proteins such as transporters in two ways: Lipids are tightly and specifically bound to transport proteins and in addition they modulate from the bulk of the lipid bilayer the function of transport proteins. This overview summarizes currently available information at the ultrastructural level on lipids tightly bound to transport proteins and the impact of altered bulk membrane lipid composition. Human diseases leading to altered lipid homeostasis will lead to altered membrane lipid composition, which in turn affect the function of transporter proteins.  相似文献   

19.
Membrane phospholipid asymmetry is considered to be a general property of biological membranes. Detailed information is presently available on the non-random orientation of phospholipids in red cell- and platelet membranes. The outer leaflet of the lipid bilayer membrane is rich in choline-phospholipids, whereas amino-phospholipids are abundant in the inner leaflet. Studies with blood platelets have shown that these asymmetries are not maintained when the cells are activated in various ways. Undoing the normal asymmetry of membrane phospholipids in activated blood cells is presumably mediated by increased transbilayer movement of phospholipids. This process, which leads to increased exposure of negatively charged phosphatidylserine at the outer surface, plays an important physiological role in local blood clotting reactions. A similar phenomenon occurs in sickled red cells. Phospholipid vesicles breaking off from reversibly sickled cells contribute similarly to intravascular clotting in the crisis phase of sickle cell disease.The loss of membrane phospholipid asymmetry in activated platelets seems to be strictly correlated with degradation of cytoskeletal proteins by endogenous calpain. It is remarkable that membrane phospholipid asymmetry can be (partly) restored when activated platelets are treated with reducing agents. This leads to disappearance of phosphatidylserine from the outer leaflet where it was previously exposed during cell activation. These observations will be discussed in relation to two mechanisms which have been recognized to play a role in the regulation of membrane phospholipid asymmetry; i.e. the interaction of aminophospholipids to cytoskeletal proteins, and the involvement of a phospholipid-translocase catalyzing outward-inward transbilayer movement of amino-phospholipids.  相似文献   

20.
Specific proteins and lipids sequester to regions of cell membranes called rafts. Due to their high content of sphingomyelin (SM) and cholesterol, raft bilayers are thicker than nonraft bilayers and, at least at 4 degrees C, are resistant to Triton X-100 extraction. It has been postulated that rafts concentrate proteins with long transbilayer domains because of "hydrophobic matching" between the transbilayer domain and the thick bilayer hydrocarbon region. However, because the area compressibility and bending moduli of SM:cholesterol bilayers are larger than that of nonraft bilayers, there should be an energy cost to partition proteins or peptides into rafts. To determine the effects on peptide sorting of raft thickness and mechanical properties, we incorporated two transbilayer peptides (P-23, P-29) into bilayers composed of SM, dioleoylphosphatidylcholine, and cholesterol, separated detergent-soluble membranes (DSMs) from detergent-resistant membranes (DRMs), and measured their peptide and lipid compositions. P-23 and P-29 were designed to have transbilayer domains that matched the hydrocarbon thicknesses of DSMs and DRMs, respectively. At both 4 degrees C and 37 degrees C DSMs were enriched in dioleoylphosphatidylcholine and DRMs were enriched in SM and cholesterol. At both temperatures both P-23 and P-29 preferentially localized to DSMs, demonstrating the importance of bilayer mechanical properties relative to hydrophobic mismatch. However, at 37 degrees C significantly more P-29 than P-23 was located in DRMs, implying that hydrophobic matching played a role in peptide sorting at physiological temperature. These experiments demonstrate that the sorting of peptides as measured by detergent extraction is temperature-dependent and both bilayer mechanical properties and hydrophobic matching impact peptide distribution between DSMs and DRMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号