首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial permeability transition (MPT) is thought to determine cell death under oxidative stress. However, MPT inhibitors only partially suppress oxidative stress-induced cell death. Here, we demonstrate that cells in which MPT is inhibited undergo cell death under oxidative stress. When C6 cells were exposed to 250 μM t-butyl hydroperoxide (t-BuOOH), the loss of a membrane potential-sensitive dye (tetramethylrhodamine ethyl ester, TMRE) from mitochondria was observed, indicating mitochondrial depolarization leading to cell death. The fluorescence of calcein entrapped in mitochondria prior to addition of t-BuOOH was significantly decreased to 70% after mitochondrial depolarization. Cyclosporin A suppressed the decrease in mitochondrial calcein fluorescence, but not mitochondrial depolarization. These results show that t-BuOOH induced cell death even when it did not induce MPT. Prior to MPT, lactate production and respiration were hampered. Taken together, these data indicate that the decreased turnover rate of glycolysis and mitochondrial respiration may be as vital as MPT for cell death induced under moderate oxidative stress.  相似文献   

2.
The mitochondrial permeability transition (MPT) plays an important role in hepatocyte death caused by ischemia-reperfusion (IR). This study investigated whether activation of the cellular oxygen-sensing signal cascade by prolyl hydroxylase inhibitors (PHI) protects against the MPT after hepatic IR. Ethyl 3,4-dihyroxybenzoate (EDHB, 100 mg/kg ip), a PHI, increased mouse hepatic hypoxia-inducible factor-1alpha and heme oxygenase-1 (HO-1). EDHB-treated and untreated mice were subjected to 1 h of warm ischemia to approximately 70% of the liver followed by reperfusion. Mitochondrial polarization, cell death, and the MPT were assessed by intravital confocal/multiphoton microscopy of rhodamine 123, propidium iodide, and calcein. EDHB largely blunted alanine aminotransferase (ALT) release and necrosis after reperfusion. In vehicle-treated mice at 2 h after reperfusion, viable cells with depolarized mitochondria were 72%, and dead cells were 2%, indicating that depolarization preceded necrosis. Mitochondrial voids excluding calcein disappeared, indicating MPT onset in vivo. NIM811, a specific inhibitor of the MPT, blocked mitochondrial depolarization after IR, further confirming that mitochondrial depolarization was due to MPT onset. EDHB decreased mitochondrial depolarization to 16% and prevented the MPT. Tin protoporphyrin (10 micromol/kg sc), an HO-1 inhibitor, partially abrogated protection by EDHB against ALT release, necrosis, and mitochondrial depolarization. In conclusion, IR causes the MPT and mitochondrial dysfunction, leading to hepatocellular death. PHI prevents MPT onset and liver damage through an effect mediated partially by HO-1.  相似文献   

3.
The mitochondrial permeability transition (MPT) is involved in both Ca2+ signaling and cell death. The present study aimed to clarify the involvement of cyclophilin D, a peptidyl prolyl cis-trans isomerase (PPIase), in MPT induction in intact cells. To achieve this, we used C6 cells overexpressing wild-type or PPIase-deficient cyclophilin D, and measured the inner mitochondrial membrane permeability to calcein, a 623-Da hydrophilic fluorescent molecule, to evaluate MPT induction. In vector control cells, the percentage of MPT induction by ionomycin increased as the Ca2+ concentration in the extracellular medium increased. This result indicates that the present method is valid for numerical evaluation of MPT induction. In C6 cells expressing the PPIase-deficient mutant, the percentage of MPT induction was significantly decreased compared with wild-type CypD-overexpressing cells or vector control cells. These results suggest that cyclophilin D is involved in MPT induction by Ca2+ in intact cells.  相似文献   

4.
The mitochondrial permeability transition (MPT) initiated by reactive oxygen species (ROS) plays an essential role in ischemia–reperfusion (IR) injury. Iron is a critical catalyst for ROS formation, and intracellular chelatable iron promotes oxidative injury-induced and MPT-dependent cell death in hepatocytes. Accordingly, our aim was to investigate the role of chelatable iron in IR-induced ROS generation, MPT formation, and cell death in primary rat hepatocytes. To simulate IR, overnight-cultured hepatocytes were incubated anoxically at pH 6.2 for 4 h and reoxygenated at pH 7.4. Chelatable Fe2+, ROS, and mitochondrial membrane potential were monitored by confocal fluorescence microscopy of calcein, chloromethyldichlorofluorescein, and tetramethylrhodamine methyl ester, respectively. Cell killing was assessed by propidium iodide fluorimetry. Ischemia caused progressive quenching of cytosolic calcein by more than 90%, signifying increased chelatable Fe2+. Desferal and starch–desferal 1 h before ischemia suppressed calcein quenching. Ischemia also induced quenching and dequenching of calcein loaded into mitochondria and lysosomes, respectively. Desferal, starch–desferal, and the inhibitor of the mitochondrial Ca2+ uniporter (MCU), Ru360, suppressed mitochondrial calcein quenching during ischemia. Desferal, starch–desferal, and Ru360 before ischemia also decreased mitochondrial ROS formation, MPT opening, and cell killing after reperfusion. These results indicate that lysosomes release chelatable Fe2+ during ischemia, which is taken up into mitochondria by MCU. Increased mitochondrial iron then predisposes to ROS-dependent MPT opening and cell killing after reperfusion.  相似文献   

5.
The occurrence and the mode of opening of the mitochondrial permeability transition pore (MTP) were investigated directly in intact cells by monitoring the fluorescence of mitochondrial entrapped calcein. When MH1C1 cells and hepatocytes were loaded with calcein AM, calcein was also present within mitochondria, because (i) its mitochondrial signal was quenched by the addition of tetramethylrhodamine methyl ester and (ii) calcein-loaded mitochondria could be visualized after digitonin permeabilization. Under the latter condition, the addition of Ca2+ induced a prompt and massive release of the accumulated calcein, which was prevented by CsA, indicating that calcein release could, in principle, probe MTP opening in intact cells as well. To study this process, we developed a procedure by which the cytosolic calcein signal was quenched by Co2+. In hepatocytes and MH1C1 cells coloaded with Co2+ and calcein AM, treatment with MTP inducers caused a rapid, though limited, decrease in mitochondrial calcein fluorescence, which was significantly reduced by CsA. We also observed a constant and spontaneous decrease in mitochondrial calcein fluorescence, which was completely prevented by CsA. Thus MTP likely fluctuates rapidly between open and closed states in intact cells.  相似文献   

6.
The mitochondrial inner membrane permeability transition (MPT) plays an important role in the pathophysiology of acute disorders of the central nervous systems, including ischemic and traumatic brain injury, and possibly in neurodegenerative diseases. Opening of the permeability transition pore (PTP) by a combination of abnormally elevated intramitochondrial Ca2+ and oxidative stress induces the collapse of transmembrane ion gradients, resulting in membrane depolarization and uncoupling of oxidative phosphorylation. This loss of ATP synthesis eventually results in cellular metabolic failure and necrotic cell death. Drugs, e.g., cyclosporin A, can inhibit the permeability transition through their interaction with the mitochondria-specific protein, cyclophilin D, and demonstrate neuroprotection in several animal models. These characteristics of the MPT were developed almost exclusively from experiments performed with young, mature rodents whereas the neuropathologies associated with the MPT are most prevalent in the elderly population. Some evidence indicates that the sensitivity of mitochondria to Ca2+-induced PTP opening is greater in the aged compared to the young mature brain; however, the basis for this difference is unknown. Based on knowledge of factors that regulate the MPT and on other comparisons between cells and mitochondria from young and old animals, several features may be important. These aging-related features include impaired neuronal Ca2+ homeostasis, increased oxidative stress, increased cyclophilin D protein levels, oxidative modification of the adenine nucleotide translocase and of cardiolipin, and changes in the levels of anti-death mitochondrial proteins, e.g., Bcl-2. The influence of aging on both the contribution of the MPT to neuropathology and the neuroprotective efficacy of MPT inhibitors is a substantial knowledge gap that requires extensive research at the subcellular, cellular, and animal model levels.  相似文献   

7.
Onset of the mitochondrial permeability transition (MPT) is the penultimate event leading to lethal cellular ischemia-reperfusion injury, but the mechanisms precipitating the MPT after reperfusion remain unclear. Here, we investigated the role of mitochondrial free Ca(2+) and reactive oxygen species (ROS) in pH- and MPT-dependent reperfusion injury to hepatocytes. Cultured rat hepatocytes were incubated in anoxic Krebs-Ringer-HEPES buffer at pH 6.2 for 4 h and then reoxygenated at pH 7.4 to simulate ischemia-reperfusion. Some cells were loaded with the Ca(2+) chelators, BAPTA/AM and 2-[(2-bis-[carboxymethyl]aono-5-methoxyphenyl)-methyl-6-methoxy-8-bis[carboxymethyl]aminoquinoline, either by a cold loading protocol for intramitochondrial loading or by warm incubation for cytosolic loading. Cell death was assessed by propidium iodide fluorometry and immunoblotting. Mitochondrial Ca(2+), inner membrane permeability, membrane potential, and ROS formation were monitored with Rhod-2, calcein, tetramethylrhodamine methylester, and dihydrodichlorofluorescein, respectively. Necrotic cell death increased after reoxygenation. Necrosis was blocked by 1 μM cyclosporin A, an MPT inhibitor, and by reoxygenation at pH 6.2. Confocal imaging of Rhod-2, calcein, and dichlorofluorescein revealed that an increase of mitochondrial Ca(2+) and ROS preceded onset of the MPT after reoxygenation. Intramitochondrial Ca(2+) chelation, but not cytosolic Ca(2+) chelation, prevented ROS formation and subsequent necrotic and apoptotic cell death. Reoxygenation with the antioxidants, desferal or diphenylphenylenediamine, also suppressed MPT-mediated cell death. However, inhibition of cytosolic ROS by apocynin or diphenyleneiodonium chloride failed to prevent reoxygenation-induced cell death. In conclusion, Ca(2+)-dependent mitochondrial ROS formation is the molecular signal culminating in onset of the MPT after reoxygenation of anoxic hepatocytes, leading to cell death.  相似文献   

8.
Manganese is known to cause central nervous system injury leading to parkinsonism and to contribute to the pathogenesis of hepatic encephalopathy. Although mechanisms of manganese neurotoxicity are not completely understood, chronic exposure of various cell types to manganese has shown oxidative stress and mitochondrial energy failure, factors that are often implicated in the induction of the mitochondrial permeability transition (MPT). In this study, we examined whether exposure of cultured neurons and astrocytes to manganese induces the MPT. Cells were treated with manganese acetate (10-100 microM), and the MPT was assessed by changes in the mitochondrial membrane potential and in mitochondrial calcein fluorescence. In astrocytes, manganese caused a dissipation of the mitochondrial membrane potential and decreased the mitochondrial calcein fluorescence in a concentration- and time-dependent manner. These changes were completely blocked by pretreatment with cyclosporin A, consistent with induction of the MPT. On the other hand, similarly treated cultured cortical neurons had a delayed or reduced MPT as compared with astrocytes. The manganese-induced MPT in astrocytes was blocked by pretreatment with antioxidants, suggesting the potential involvement of oxidative stress in this process. Induction of the MPT by manganese and associated mitochondrial dysfunction in astrocytes may represent key mechanisms in manganese neurotoxicity.  相似文献   

9.
Reactive oxygen species (ROS) play a key role in promoting mitochondrial cytochrome c release and induction of apoptosis. ROS induce dissociation of cytochrome c from cardiolipin on the inner mitochondrial membrane (IMM), and cytochrome c may then be released via mitochondrial permeability transition (MPT)-dependent or MPT-independent mechanisms. We have developed peptide antioxidants that target the IMM, and we used them to investigate the role of ROS and MPT in cell death caused by t-butylhydroperoxide (tBHP) and 3-nitropropionic acid (3NP). The structural motif of these peptides centers on alternating aromatic and basic amino acid residues, with dimethyltyrosine providing scavenging properties. These peptide antioxidants are cell-permeable and concentrate 1000-fold in the IMM. They potently reduced intracellular ROS and cell death caused by tBHP in neuronal N(2)A cells (EC(50) in nm range). They also decreased mitochondrial ROS production, inhibited MPT and swelling, and prevented cytochrome c release induced by Ca(2+) in isolated mitochondria. In addition, they inhibited 3NP-induced MPT in isolated mitochondria and prevented mitochondrial depolarization in cells treated with 3NP. ROS and MPT have been implicated in myocardial stunning associated with reperfusion in ischemic hearts, and these peptide antioxidants potently improved contractile force in an ex vivo heart model. It is noteworthy that peptide analogs without dimethyltyrosine did not inhibit mitochondrial ROS generation or swelling and failed to prevent myocardial stunning. These results clearly demonstrate that overproduction of ROS underlies the cellular toxicity of tBHP and 3NP, and ROS mediate cytochrome c release via MPT. These IMM-targeted antioxidants may be very beneficial in the treatment of aging and diseases associated with oxidative stress.  相似文献   

10.
Mitochondria are frequently the target of injury after stresses leading to necrotic and apoptoticcell death. Inhibition of oxidative phosphorylation progresses to uncoupling when opening ofa high conductance permeability transition (PT) pore in the mitochondrial inner membraneabruptly increases the permeability of the mitochondrial inner membrane to solutes of molecularmass up to 1500 Da. Cyclosporin A (CsA) blocks this mitochondrial permeability transition(MPT) and prevents necrotic cell death from oxidative stress, Ca2+ ionophore toxicity,Reye-related drug toxicity, pH-dependent ischemia/reperfusion injury, and other models of cell injury.Confocal fluorescence microscopy directly visualizes onset of the MPT from the movementof green-fluorescing calcein into mitochondria and the simultaneous release from mitochondriaof red-fluorescing tetramethylrhodamine methylester, a membrane potential-indicatingfluorophore. In oxidative stress to hepatocytes induced by tert-butylhydroperoxide, NAD(P)Hoxidation, increased mitochondrial Ca2+, and mitochondrial generation of reactive oxygen speciesprecede and contribute to onset of the MPT. Confocal microscopy also shows directly thatthe MPT is a critical event in apoptosis of hepatocytes induced by tumor necrosis factor-.Progression to necrotic and apoptotic cell killing depends, at least in part, on the effect theMPT has on cellular ATP levels. If ATP levels fall profoundly, necrotic killing ensues. If ATPlevels are at least partially maintained, apoptosis follows the MPT. Cellular features of bothapoptosis and necrosis frequently occur together after death signals and toxic stresses. A newterm, necrapoptosis, describes such death processes that begin with a common stress or deathsignal, progress by shared pathways, but culminate in either cell lysis (necrosis) or programmedcellular resorption (apoptosis) depending on modifying factors such as ATP.  相似文献   

11.
Ammonia is a neurotoxin that has been strongly implicated in the pathogenesis of hepatic encephalopathy (HE) and other neurological disorders, and astrocytes are thought to be the principal target of ammonia toxicity. While the precise mechanisms of ammonia neurotoxicity remain to be more clearly defined, altered bioenergetics and oxidative stress appear to be critical factors in its pathogenesis. It has recently been demonstrated that pathophysiological concentrations of ammonia induce the mitochondrial permeability transition (MPT) in cultured astrocytes, a process associated with mitochondrial dysfunction, and frequently caused by oxidative stress. This study investigated the potential role of oxidative stress in the induction of the MPT by ammonia. Accordingly, the effect of various antioxidants on the induction of the MPT by ammonia in cultured astrocytes was examined. Astrocytes were subjected to NH4Cl (5 mM) treatment for 2 days with or without various antioxidants. The MPT was assessed by quantitative fluorescence imaging for the mitochondrial membrane potential (DeltaPsim), employing the potentiometric dye TMRE; by changes in mitochondrial calcein fluorescence and by 2-deoxyglucose-6-phosphate (2-DG-6-P) changes in mitochondrial permeability. Astrocytes treated with ammonia significantly dissipated the DeltaPsim, which was blocked by the MPT inhibitor, cyclosporin A, caused a decrease in mitochondrial calcein fluorescence and increased 2-DG-6-P permeability into mitochondria. All of these findings are consistent with induction of the MPT. Pretreatment with SOD, catalase, desferroxamine, Vitamin E, PBN and the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), completely blocked the ammonia-induced MPT. These data provide strong evidence that oxidative stress is involved in the induction of the MPT by ammonia, and suggest that oxidative stress and the subsequent induction of the MPT contribute to the pathogenesis of HE and other hyperammonemic disorders.  相似文献   

12.
Mitochondrial permeability transition (MPT) and cytochrome c redistribution from mitochondria are two events associated with apoptosis. We investigated whether an MPT event obligatorily leads to cytochrome c release in vivo. We have previously shown that treatment of human osteosarcoma cells with the protonophore m-chlorophenylhydrazone (CCCP) for 6 h induces MPT and mitochondrial swelling without significant cell death. Here we demonstrate that release of cytochrome c does not occur and the cells remain viable even after 72 h of treatment with CCCP. Bax is not mobilized to mitochondria under these conditions. However, subsequent exposure of CCCP-treated cells to etoposide or staurosporine for 48 h results in rapid cell death and cytochrome c release that is accompanied by Bax association with mitochondria, demonstrating competency of these mitochondria to release cytochrome c with additional triggers. Our findings suggest that MPT is not a sufficient condition, in itself, to effect cytochrome c release.  相似文献   

13.
活性氧、线粒体通透性转换与细胞凋亡   总被引:2,自引:0,他引:2  
线粒体是真核细胞中非常重要的细胞器,细胞中的活性氧等自由基主要来源于此,线粒体膜的通透性转换(mitochondrial permeability transition,MPT)及其孔道(mitochondrialpermeability transition pore,MPTP)更是在内源性细胞凋亡中发挥了关键作用。持续性的线粒体膜通透性转换在凋亡的效应阶段起决定性作用,可介导细胞色素c等促凋亡因子从线粒体释放到胞浆中,进一步激活下游的信号通路,导致细胞不可逆地走向凋亡。瞬时性的线粒体膜通透性转换及其偶联的线粒体局部的活性氧爆发同样具有促凋亡的作用。线粒体通透性孔道的开放释放出大量活性氧,这些活性氧又能够进一步激活该孔道,以正反馈的形式进一步加剧孔道的打开,放大凋亡信号。活性氧、线粒体通透性转换与细胞凋亡之间具有密不可分的联系,本文根据已知的研究结果集中讨论了这三者的关系,并着重论述了该领域中的最新发现和成果。  相似文献   

14.
《Autophagy》2013,9(4):462-472
Autophagy is a highly regulated intracellular degradation process by which cells remove cytosolic long-lived proteins and damaged organelles. The mitochondrial permeability transition (MPT) results in mitochondrial depolarization and increased reactive oxygen species production, which can trigger autophagy. Therefore, we hypothesized that the MPT may have a role in signaling autophagy in cardiac cells. Mitochondrial membrane potential was lower in HL-1 cells subjected to starvation compared to cells maintained in full medium. Mitochondrial membrane potential was preserved in starved cells treated with cyclosporin A (CsA), suggesting the MPT pore is associated with starvation-induced depolarization. Starvation-induced autophagy in HL-1 cells, neonatal rat cardiomyocytes and adult mouse cardiomyocytes was inhibited by CsA. Starvation failed to induce autophagy in CypD-deficient murine cardiomyocytes, whereas in myocytes from mice overexpressing CypD the levels of autophagy were enhanced even under fed conditions. Collectively, these results demonstrate a role for CypD and the MPT in the initiation of autophagy. We also analyzed the role of the MPT in the degradation of mitochondria by biochemical analysis and electron microscopy. HL-1 cells subjected to starvation in the presence of CsA had higher levels of mitochondrial proteins (by Western blot), more mitochondria and less autophagosomes (by electron microscopy) than cells starved in the absence of CsA. Our results suggest a physiologic function for CypD and the MPT in the regulation of starvation-induced autophagy. Starvation-induced autophagy regulated by CypD and the MPT may represent a homeostatic mechanism for cellular and mitochondrial quality control.  相似文献   

15.
Metabolic stages, mitochondria and calcium in hypoxic/ischemic brain damage   总被引:13,自引:0,他引:13  
Kristián T 《Cell calcium》2004,36(3-4):221-233
Cerebral hypoxia/ischemia leads to mitochondrial dysfunction due to lack of oxygen leaving the glycolytic metabolism as a main pathway for ATP production. Inhibition of mitochondrial respiration thus triggers generation of lactate and hydrogen ions (H+), and furthermore dramatically reduces ATP generation leading to disregulation of cellular ion metabolism with subsequent intracellular calcium accumulation. Upon reperfusion, when mitochondrial dysfunction is (at least partially) reversed by restoring cerebral oxygen supply, bioenergetic metabolism recovers and brain cells are able to re-institute their normal ionic homeostatic mechanisms. However, the initial restoration of normal mitochondrial function may be only transient and followed by a secondary, delayed perturbation of mitochondrial respiratory performance seen as a decrease in cellular ATP levels and known as "secondary energy failure". There have been several mechanisms considered responsible for delayed post-ischemic mitochondrial failure, the mitochondrial permeability transition (MPT) being one that is considered important. Although the amount of calcium available during early reperfusion in vivo is limited, relative to the amount needed to trigger the MPT in vitro; the additional intracellular conditions (of acidosis, high phosphate, and low adenine nucleotideae levels) prevailing during reperfusion, favor MPT pore opening in vivo. Furthermore, the cellular redistribution and/or changes in the intracellular levels of pro-apoptotic proteins can alter mitochondrial function and initiate apoptotic cell death. Thus, mitochondria seem play an important role in orchestrating cell death mechanisms following hypoxia/ischemia. However, it is still not clear which are the key mechanisms that cause mitochondrial dysfunction and lead ultimately to cell death, and which have more secondary nature to brain damage acting as aggravating factors.  相似文献   

16.
The initiating events that lead to the induction of apoptosis mediated by the chemopreventative agent beta-phenyethyl isothiocyanate (PEITC) have yet to be elucidated. In the present investigation, we examined the effects of PEITC on mitochondrial function and apoptotic signaling in hepatoma HepG2 cells and isolated rat hepatocyte mitochondria. PEITC induced a conformational change in Bax leading to its translocation to mitochondria in HepG2 cells. Bax accumulation was associated with a rapid loss of mitochondrial membrane potential (Deltapsim), impaired respiratory chain enzymatic activity, release of mitochondrial cytochrome c and the activation of caspase-dependent cell death. Caspase inhibition did not prevent Bax translocation, the release of cytochrome c or the loss of Deltapsim, but blocked caspase-mediated DNA fragmentation and cell death. To determine whether PEITC dependent Bax translocation caused loss of Deltapsim by the activation of the mitochondrial permeability transition (MPT), we examined the effects of PEITC in isolated rat hepatocyte mitochondria. Interestingly, PEITC did not induce MPT in isolated rat mitochondria. Accordingly, using pharmacological inhibitors of MPT namely cyclosporine A, trifluoperazine and Bongkrekic acid we were unable to block PEITC mediated apoptosis in HepG2 cells, this suggesting that mitochondrial permeablisation is a likely consequence of Bax dependent pore formation. Taken together, our data suggest that mitochondria are a key target in PEITC induced apoptosis in HepG2 cells via the pore forming ability of pro-apoptotic Bax.  相似文献   

17.
Alcoholic liver disease is associated with an increase in the number of necrotic and apoptotic liver parenchymal cells. Part of this injury is mediated by TNF-alpha. Ethanol exposure sensitizes cells to the cytotoxic effects of TNF-alpha. This may be due, in part, to the increased propensity of the mitochondria in ethanol-exposed cells to induction of mitochondrial permeability transition (MPT) by various agents, including the proapoptotic protein Bax. This idea is supported by the observation that increased cell death induced by TNF-alpha in ethanol-exposed cells was dependent on development of the MPT. In the present study, we elucidate the pathways through which ethanol exposure enhances TNF-alpha induction of the MPT and the resulting cytotoxicity. Specifically, ethanol-exposed cells display caspase-8- and Bid-independent cell killing during TNF-alpha treatment. Moreover, the ethanol-enhanced pathway is dependent on p38 MAPK signaling, which brings about caspase-3 activation, mitochondrial depolarization, accumulation of cytochrome c in the cytosol, and the translocation of Bax to the mitochondria. Additionally, ethanol-exposed cells display a blunting of TNF-alpha-induced Akt activation and Bcl-2 antagonist of cell death phosphorylation that may account, in part, for the increased sensitivity of the mitochondria to Bax-mediated damage.  相似文献   

18.
Autophagy is a cellular housekeeping process that removes damaged or unwanted cellular components and recycles them to build new constituents. It is essential for tumor growth under adverse environment. Mitochondria play an important role in the formation of autophagosome and its subsequent docking and fusion with lysosome. To understand the contribution of mitochondria to the regulation of homeostatic autophagy in cancer cells, we used the transmitochondrial cytoplasmic hybrid (cybrid) model. Cybrid system allowed us to compare mitochondria from different cell types including highly metastatic breast cancer cell line MDA-MB-231 (c231), less metastatic breast cancer cell lines: MDA-MB-436 (c436) and MDA-MB-468 (c468), as well as non-cancerous mammary epithelial cell MCF-10A (c10A) in a defined nuclear background. The c231 exhibited lower LC3-II levels but higher ratio of LC3-II/LC3-I than c436, c468 and c10A. In addition, c231 displayed more punctate LC3-positive cells and had lower levels of sequestosome 1 (p62/SQSTM1) than other cybrids. These suggested that mitochondria could contribute to the increased autophagy and autophagic flux in metastatic cancer. This increased autophagy was found to be non-selective autophagy instead of selective mitophagy since LC3 puncta in c231 did not co-localize with mitochondria labeled by Mitotracker red or Tomm 20. The promotion of mitochondrial permeability transition (MPT) in c231 also contributed to increased autophagy. Block of MPT by the inhibition of low-conductance stage of MPT pores resulted in a decrease of LC3 puncta in c231. These results suggested that mitochondria from highly metastatic breast cancer cell line MDA-MB-231 can promote homeostatic autophagy of cancer through opening low-conductance MPT pores.  相似文献   

19.
The overexpression of Bax kills cells by a mechanism that depends on induction of the mitochondrial permeability transition (MPT) (Pastorino, J. G., Chen, S.-T., Tafani, M., Snyder, J. W., and Farber, J. L. (1998) J. Biol. Chem. 273, 7770-7775). In the present study, purified, recombinant Bax opened the mitochondrial permeability transition pore (PTP). Depending on its concentration, Bax had two distinct effects. At a concentration of 125 nM, Bax caused the release of the intermembranous proteins cytochrome c and adenylate kinase and the release from the matrix of sequestered calcein, effects prevented by the inhibitor of the PTP cyclosporin A (CSA). At this concentration of Bax, there was no detectable mitochondrial swelling or depolarization. These effects of low Bax concentrations are interpreted as the consequence of transient, non-synchronous activation of the PTP followed by a prompt recovery of mitochondrial integrity. By contrast, Bax concentrations between 250 nM and 1 microM caused a sustained opening of the PTP with consequent persistent mitochondrial swelling and deenergization (the MPT). CSA prevented the MPT induced by Bax. Increasing concentrations of calcium caused a greater proportion of the mitochondria to undergo the MPT in the presence of Bax. Importantly, two known mediators of apoptosis, ceramide and GD3 ganglioside, potentiated the induction by Bax of the MPT. The data imply that Bax mediates the opening of the mitochondrial PTP with the resultant release of cytochrome c from the intermembranous space.  相似文献   

20.
Mitochondria are important organelles for energy production, Ca2+ homeostasis, and cell death. In recent years, the role of the mitochondria in both apoptotic and necrotic cell death has received much attention. In apoptotic and necrotic death, an increase of mitochondrial membrane permeability is considered to be one of the key events, although the detailed mechanism remains to be elucidated. The mitochondrial membrane permeability transition (MPT) is a Ca2+-dependent increase in the permeability of the mitochondrial membrane that leads to loss of Deltapsi, mitochondrial swelling, and rupture of the outer mitochondrial membrane. The MPT is thought to occur after the opening of a channel, which is termed the permeability transition pore (PTP) and putatively consists of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocator (ANT), cyclophilin D (Cyp D: a mitochondrial peptidyl prolyl-cis, trans-isomerase), and other molecule(s). Our studies of mice lacking Cyp D have revealed that it is essential for occurrence of the MPT and that the Cyp D-dependent MPT regulates some forms of necrotic cell death, but not apoptotic death. We have also shown that two anti-apoptotic proteins, Bcl-2 and Bcl-x(L), block the MPT by directly inhibition of VDAC activity. Here we summarize a role of the MPT in cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号