首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
Growth hormone (GH) evolution is very conservative among mammals, except for primates and ruminant artiodactyls. In fact, most known mammalian GH sequences differ from the inferred ancestral mammalian sequence by only a few amino acids. In contrast, the human GH sequence differs from the inferred ancestral sequence by 59 amino acids. However, it is not known when this rapid evolution of GH occurred during primate evolution or whether it was due to positive selection. Also, human growth hormone receptor (GHR) displays species specificity; i.e., it can interact only with human (or rhesus monkey) GH, not with nonprimate GHS: The species specificity of human GHR is largely due to the Leu-->Arg change at position 43, and it has been hypothesized that this change must have been preceded by the His-->Asp change at position 171 of GH. Is this hypothesis true? And when did these changes occur? To address the above issues, we sequenced GH and GHR genes in prosimians and simians. Our data supported the above hypothesis and revealed that the species specificity of human GHR actually emerged in the common ancestor of Old World primates, but the transitional phase still persists in New World monkeys. Our data showed that the rapid evolution of primate GH occurred during a relatively short period (in the common ancestor of higher primates) and that the rate of change was especially high at functionally important sites, suggesting positive selection. However, the nonsynonymous rate/synonymous rate ratio at these sites was <1, so relaxation of purifying selection might have played a role in the rapid evolution of the GH gene in simians, possibly as a result of multiple gene duplications. Similar to GH, GHR displayed an accelerated rate of evolution in primates. Our data revealed proportionally more amino acid replacements at the functionally important sites in both GH and GHR in simians but, surprisingly, showed few coincidental replacements of amino acids forming the same intermolecular contacts between the two proteins.  相似文献   

2.
Peterson FC  Brooks CL 《FEBS letters》2000,472(2-3):276-282
Primate growth hormones (GH) activate both primate and non-primate somatotrophic receptors (GH receptors), but non-primate GHs do not activate primate GH receptors. Previous studies argued the interaction of Asp(171) of human GH and Arg(43) of the receptor produced an attractive ionic interaction. In non-primate GHs, His(170) replaces the homologous Asp(171), producing a repulsive interaction with Arg(43) of the primate receptor which was believed to reduce the attraction of non-primate GH for the human GH receptor, thus providing species specificity. In this report, H170D bovine GH had activity and affinity for human GH receptors approaching those of human GH. In contrast, replacing Asp(171) of human GH with His did not significantly reduce somatotrophic activity, indicating that species specificity is not wholly explained by this residue's interaction with Arg(43) of the receptor. Deletion of either Phe(44) (a residue present only in primate GHs) or residues 32-46 (20-kDa form of human GH) each only marginally reduced somatotrophic activities. But the combination of the D171H mutation with either DeltaPhe(44) or Delta32-46 in human GH reduced binding and activity in a greater than additive fashion, indicated a functional interaction between these distant structural features. In bovine GH addition of phenylalanine at position 44 increased the somatotrophic activity and receptor affinity in cells containing the human GH receptor. The combination of the H170D mutation and the addition of phenylalanine at position 44 created a bovine GH with activity indistinguishable from wild-type human GH. Based on evidence from both bovine and human GHs, the cooperative interaction of these two distant motifs determined the species specificity and indicated that structural plasticity was a critical feature necessary for the species specificity of somatotrophic activity.  相似文献   

3.
Peptide hormones depend on reliable recognition by their receptors. Any mutation that compromises recognition of hormone and receptor molecules is dangerous, the carrier animal would not procreate and the mutation would be lost. Although, most of the hormones from one mammalian species are active when injected into another, the incompatibility of human GH receptor toward nonprimate GHs is a notable exception. It is reported that the coevolution of GH and GHR in primates includes two crucial steps (Mol. Biol. Evol. 18 (2001) 945). The first was mutation of GH His→Asp at position 171 that happened before the split of Old world and New world monkeys. The second event was Leu→Arg change at position 43 in the GH receptor molecule that happened in the ancestor of Old world monkeys. The proposed model is based on the possibility that certain mutations can modify the surface of one of interacting molecules to form a confined empty space, a niche in the otherwise congruent hormone/receptor interface. Although affinity between molecules is probably slightly reduced, recognition and function are not compromised in this special case. Further mutations of hormone and receptor molecules are allowed under the condition that they remain confined to the niche space. Mutations that do not compromise hormone function can be passed to offsprings. If the consequent mutation of one molecule change its shape to fill the niche space, further mutations without function loss will become less probable. Without the niche space, the phase of fast evolution is closed and both genes become conserved. In this setting, accumulated mutations before the niche closing mutation are the cause of species specificity. To become a dominant variety, carrier animals must possess survival advantage in comparison to the carriers of other less advantageous mutations.  相似文献   

4.
Peptide hormones depend on reliable recognition by their receptors. Any mutation that compromises recognition of hormone and receptor molecules is dangerous, the carrier animal would not procreate and the mutation would be lost. Although, most of the hormones from one mammalian species are active when injected into another, the incompatibility of human GH receptor toward nonprimate GHs is a notable exception. It is reported that the coevolution of GH and GHR in primates includes two crucial steps (Mol. Biol. Evol. 18 (2001) 945). The first was mutation of GH His→Asp at position 171 that happened before the split of Old world and New world monkeys. The second event was Leu→Arg change at position 43 in the GH receptor molecule that happened in the ancestor of Old world monkeys. The proposed model is based on the possibility that certain mutations can modify the surface of one of interacting molecules to form a confined empty space, a niche in the otherwise congruent hormone/receptor interface. Although affinity between molecules is probably slightly reduced, recognition and function are not compromised in this special case. Further mutations of hormone and receptor molecules are allowed under the condition that they remain confined to the niche space. Mutations that do not compromise hormone function can be passed to offsprings. If the consequent mutation of one molecule change its shape to fill the niche space, further mutations without function loss will become less probable. Without the niche space, the phase of fast evolution is closed and both genes become conserved. In this setting, accumulated mutations before the niche closing mutation are the cause of species specificity. To become a dominant variety, carrier animals must possess survival advantage in comparison to the carriers of other less advantageous mutations.  相似文献   

5.
The affinity of 22,000-Mr human growth hormone (22 K-hGH) for GH binding proteins in rabbit liver is increased approx. 19-fold by 25 mM-Ca2+. In contrast, ovine growth hormone (oGH) binding is Ca2+-independent up to 10 mM, and decreased by greater Ca2+ concentrations. The 20,000-Mr hGH variant (20K-hGH), lacking residues 32-46, exhibits intermediate behaviour. Without Ca2+ there is a residual 40% of maximum specific binding to liver microsomes, and this increases to 65% with liver cytosolic GH binding proteins. In contrast with 22K-hGH, Scatchard analysis of 20K-hGH binding to liver microsomes produces curvilinear plots in the presence of 25 mM-Ca2+. From these results and inhibition studies with monoclonal antibodies to the GH binding proteins, it is concluded that deletion of the region 32-46 from 22K-hGH has eliminated one component of high-affinity Ca2+-potentiable binding. The Ca2+-mediated increase in Ka for the 22K-hGH-binding protein interaction is consistent with convergence of unit negative charges on the hormone and binding protein towards an intercalated Ca2+ ion. A positive charge in the critical region of nonprimate GHs would render their interactions Ca2+-independent and of lower Ka compared with 22K-hGH. A likely candidate for the negatively charged interactive residue is glutamate-33, since it is unique to human GH and is replaced by a positively charged arginine in non-primate GHs. Its absence in 20K-hGH could explain the altered calcium-dependence of 20K-hGH binding to what is probably the type 2 binding protein [Barnard & Waters (1986) Biochem. J. 237, 885-892]. The Ca2+-dependence of 20K-hGH binding to a subset of GH binding proteins provides both a verification and a mechanistic basis for the proposal [Hughes, Tokuhiro, Simpson & Friesen (1983) Endocrinology (Baltimore) 113, 1904-1906] that 20K-hGH binds with high affinity to only a subset of binding proteins in rabbit liver membranes.  相似文献   

6.
Despite the lower site 1 affinity of the 20-kDa human growth hormone (20K-hGH) for the hGH receptor (hGHR), 20K-hGH has the same hGHR-mediated activity as 22-kDa human GH (22K-hGH) at low hGH concentration and even higher activity at high hGH concentration. This study was performed to elucidate the reason why 20K-hGH can activate hGHR to the same level as 22K-hGH. To answer the question, we hypothesized that the binding between the stem regions of hGHR could compensate for the weaker site 1 binding of 20K-hGH than that of 22K-hGH in the sequential binding with hGHR. To demonstrate it, we prepared 15 types of alanine-substituted hGHR gene at the stem region and stably transfected them into Ba/F3 cells. Using these cells, we measured and compared the cell proliferation activities between 20K- and 22K-hGH. As a result, the activity of 20K-hGH was markedly reduced than that of 22K-hGH in three types of mutant hGHR (T147A, H150A, and Y200A). Regarding these mutants, the dissociation constant of hGH at the first and second step (KD1 and KD2) in the sequential binding with two hGHRs was predicted based on the mathematical cell proliferation model and computational simulation. Consequently, it was revealed that the reduction of the activity in 20K-hGH was attributed to the change of not KD1 but KD2. In conclusion, these findings support our hypothesis, which can account for the same potencies for activating hGHR between 20K- and 22K-hGH, although the site 1 affinity of 20K-hGH is lower than that of 22K-hGH.  相似文献   

7.
8.
9.
The binding of 125I-labelled human growth hormone (hGH) to a purified plasma membrane preparation from the liver of pregnant rabbit, and to receptors solubilized from this fraction with Triton X-100, was dependent on time, temperature, the cations used and the receptor concentration. Solubilization did not affect the binding properties of the receptors at low concentrations of Triton X-100. Some somatogenic hormones, such as bovine GH, and some lactogenic hormones, such as ovine prolactin, displaced 125I-labelled hGH from purified plasma membranes and solubilized receptor preparations, but GHs and prolactins from various other species were rather ineffective. The results indicate that although there are binding sites for hGH in these pregnant rabbit liver membranes, few of these are specifically somatogenic or lactogenic. The binding properties of the purified plasma membranes are similar to those of a microsomal preparation studied previously, suggesting that the complex nature of the binding of hGH is not due to the heterogeneity of cellular membranes used to study binding, but is a property of the receptors associated with plasma membranes.  相似文献   

10.
Using site-directed mutagenesis we mutated the extracellular domain of the ovine growth hormone receptor (oGHR) to the corresponding amino acids in the rat GHR at two different sites: site A is between Thr28 and Leu34 and represents a major immunogenic epitope, while site B is between Ser121 and Asp124 and is involved in the interaction of the human GHR with growth hormone (GH). Native and mutant receptors were bacterially expressed and refolded, and then RIA and GH-binding assays were carried out on the purified recombinant proteins. Mutations at the N-terminal site A of oGHR led to greatly reduced binding to bovine GH and, in addition, to significant loss of recognition by a polyclonal antiserum to bovine GHR which recognizes site A as a major epitope. The crystal structure of human GH bound to human GHR did not resolve this extreme N-terminal region of the receptor but our data indicate that the N-terminal loop undertakes a 180 degrees turn bringing it into close proximity to the hormone-binding domain in a fashion analogous to the prolactin receptor. A fourfold decrease in affinity for binding bovine GH was also observed after mutation of site B. However, this change from the ovine sequence to the equivalent sequence in the rat GHR at site B caused a 2.4-fold increase in the affinity of binding to rat GH. Taken together, the changes in binding affinity of the site-B mutant for rat and bovine GH demonstrate that this site is involved in conferring species specificity for binding GH.  相似文献   

11.
Binding of growth hormone (GH) to its receptor (GHR) is a well-studied example of molecular recognition between a cytokine and its receptor. Extensive mutagenesis studies and several crystal structures have defined the key interactive amino acid residues that are involved in binding and subsequent receptor dimerization. This review encompasses each of the three molecular recognition events involved in GHR activation, namely binding of GH to its two receptors and the interactions that occur between these receptors. Particular attention is given to species and ligand specificity of hormone binding and to the molecular recognition events involved in receptor activation, including the possibility that a conformational change in the receptor is required.  相似文献   

12.
We have examined the effects of human growth hormone (hGH), in concentrations comparable to those measured in plasma of transgenic mice expressing foreign GHs, on rat liver cells in culture. This treatment produced, within 24 and 48 hr, extreme heterogeneity in liver cell size, enlargement of nuclei, increase in the numbers of large nucleoli and nuclear protrusions, as well as appearance of numerous lipid droplets and accumulation of glycogen. These changes most likely indicate massive metabolic alterations and resemble changes present in vivo in the livers of mice transgenic for hGH and other foreign GHs. Since morphological alterations in vitro were apparent within 24 hr, we conclude that GH acutely and directly affects liver cell morphology and function in vitro and that the pathological lesions in vivo in the livers of transgenic mice are very likely a consequence of GH action.  相似文献   

13.
Growth hormone (GH), prolactin (PRL), and placental lactogen (PL) constitute a protein family whose genes are considered to have evolved from a common ancestral gene. GHs isolated from various vertebrate species are known to possess highly conserved structural and functional features. In the present study we have cloned and sequenced flounder growth hormone (fGH) cDNA to predict the primary structure of the hormone. The preprotein of fGH is composed of 190 amino acids, and mature fGH is found to be extraordinarily small, having 171 or 173 amino acid residues. The estimated molecular masses of mature fGH are 19.4 to 19.7 kDa. This minimal size of fGH enabled an extended analysis of the essential domains and of amino acid residues required in hormone-specific activities. fGH conserves and shares 37 residues with 20 other vertebrate GHs. These common residues are seen to cluster in five distinct domains (GD1 to GD5). In human PL (hPL), which has low growth-promoting activity, 35 of these 37 residues are conserved, while the other 2 residues in the GD1 domain (Arg-16 and Leu-20) are replaced by Gln and Ala, respectively. In a less active variant of human GH, hGH-V, only 1 residue (His-21) of the 37 residues is replaced by Tyr. Besides these 3 residues, 6 other residues unique to the GHs and some PLs, that is, Ala-24 (GD1), Ser-54 (GD2), Ser-78 (GD3), Leu-106, Leu-116, and Asp-122 (GD4), appear to be important for specific binding of the GHs. The GD5 domain, at the carboxyl-terminal ends of the GHs is considered to be involved mainly in the formation and stabilization of GH molecules.  相似文献   

14.
David Poger  Alan E. Mark 《Proteins》2010,78(5):1163-1174
Atomistic molecular dynamics simulations have been used to investigate the conformational changes associated with the binding of human growth hormone (hGH) to the extracellular domains (ECD) of the human growth hormone receptor (hGHR), thereby shedding light on the mechanism of activation. It is shown that the removal of hGH from the hormone‐bound receptor complex results in a counter‐clockwise rotation of the twosubunits relative to each other by 30°–64° (average 45° ± 14°), in close agreement in terms of both the magnitude and direction of the rotation with that proposed based on mutagenesis experiments. In addition to providing evidence to support a rotational activation mechanism, the simulations have enabled the nature of the interaction interfaces in both the cytokine‐bound and unliganded hGHR states to be analyzed in detail. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
The growth and metabolic actions of growth hormone (GH) are believed to be mediated through the GH receptor (GHR) by JAK2 activation. The GHR exists as a constitutive homodimer, with signal transduction by ligand-induced realignment of receptor subunits. Based on the crystal structures, we identify a conformational change in the F'G' loop of the lower cytokine module, which results from binding of hGH but not G120R hGH antagonist. Mutations disabling this conformational change cause impairment of ERK but not JAK2 and STAT5 activation by the GHR in FDC-P1 cells. This results from the use of two associated tyrosine kinases by the GHR, with JAK2 activating STAT5, and Lyn activating ERK1/2. We provide evidence that Lyn signals through phospholipase C gamma, leading to activation of Ras. Accordingly, mice with mutations in the JAK2 association motif respond to GH with activation of hepatic Src and ERK1/2, but not JAK2/STAT5. We suggest that F'G' loop movement alters the signalling choice between JAK2 and a Src family kinase by regulating TMD realignment. Our findings could explain debilitated ERK but not STAT5 signalling in some GH-resistant dwarfs and suggest pathway-specific cytokine agonists.  相似文献   

17.
Purification of duck growth hormone and cloning of the complementary DNA   总被引:12,自引:0,他引:12  
Duck growth hormone (GH) was isolated and purified from duck pituitaries by salt precipitation and HPLC on reverse-phase C18 columns. The duck GH was homogeneous as shown by SDS-polyacrylamide gel electrophoresis with a molecular weight of 22,000. The cDNA was synthesized and cloned in Escherichia coli using EcoRI linkers and pBR322 as vector. The positive clones were selected and sequenced. The full-length duck GH cDNA contains 820 nucleotide pairs with an open reading frame coding for the precursor form duck GH of 216 amino-acid residues. The partial amino-acid sequence from the protein completely agrees with that derived from the cDNA, with Phe as the first residue in mature duck GH preceded by a 27-residue hydrophobic signal peptide. The duck GH is almost completely homologous to the chicken GH, with only three conservative substitutions (Ser for Thr, His for Tyr and Lys for Arg) and one deletion (Ala) in the duck GH sequence. Comparison of amino-acid sequence of duck GH with that of various species reveals 56%, 73% and 40% homologies with GHs of human, rat and salmon, respectively.  相似文献   

18.
19.
The crystal structures of complexes of human growth hormone (hGH) with the growth hormone and prolactin receptors (hGHR and hPRLR, respectively), together with the mutational data available for these systems, suggest that an extraordinary combination of conformational adaptability, together with finely tuned specificity, governs the molecular recognition processes operative in these systems. On the one hand, in the active 1:2 ligand-receptor complexes, 2 copies of the same receptor use the identical set of binding determinants to recognize topographically different surfaces on the hormone. On the other hand, comparing the 1:1 hGH-hGHR and hGH-hPRLR complexes, 2 distinct receptors use this same set of binding determinants to interact with the identical binding site on the ligand, even though few residues among the binding determinants are conserved. The structural evidence demonstrates that this versatility is accomplished by local conformational flexibility of the binding loops, allowing adaptation to different binding environments, together with rigid-body movements of the receptor domains, necessary for the creation of specific interactions with the same binding site.  相似文献   

20.
Unlike other mammals, Old World primates have five growth hormone-like genes that are highly divergent at the amino acid level from the single growth hormone genes found in nonprimates. Additionally, there is a change in the interaction of growth hormone with its receptor in humans such that human growth hormone functions in nonprimates, whereas nonprimate growth hormone is ineffective in humans. A Southern blotting analysis of the genome of a prosimian, Galago senegalensis, revealed a single growth hormone locus. This single gene was PCR-amplified from genomic DNA and sequenced. It has a rate of nonsynonymous nucleotide substitution less than one fourth that of the human growth hormone gene, while the rates of synonymous substitution in the two species are less different. Human and rhesus monkey growth hormones exhibit variation at a number of amino acid residues that can affect receptor binding. The galago growth hormone is conservative at each of these sites, indicating that this growth hormone is functionally like nonprimate growth hormones. These observations indicate that the amplification and rapid divergence of primate growth hormones occurred after the separation of the higher primate lineage from the galago lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号