共查询到20条相似文献,搜索用时 9 毫秒
1.
Capture and analysis of quantitative proteomic data 总被引:1,自引:0,他引:1
Whilst the array of techniques available for quantitative proteomics continues to grow, the attendant bioinformatic software tools are similarly expanding in number. The data capture and analysis of such quantitative data is obviously crucial to the experiment and the methods used to process it will critically affect the quality of the data obtained. These tools must deal with a variety of issues, including identification of labelled and unlabelled peptide species, location of the corresponding MS scans in the experiment, construction of representative ion chromatograms, location of the true peptide ion chromatogram start and end, elimination of background signal in the mass spectrum and chromatogram and calculation of both peptide and protein ratios/abundances. A variety of tools and approaches are available, in part restricted by the nature of the experiment to be performed and available instrumentation. Currently, although there is no single consensus on precisely how to calculate protein and peptide abundances, many common themes have emerged which identify and reduce many of the key sources of error. These issues will be discussed, along with those relating to deposition of quantitative data. At present, mature data standards for quantitative proteomics are not yet available, although formats are beginning to emerge. 相似文献
2.
Differential proteomic analysis of HeLa cells treated with Honokiol using a quantitative proteomic strategy 总被引:1,自引:0,他引:1
Ling B Liang SF Xu YH Zhao XY Tang MH Liu XY Zhao X Huang CH Chen LJ Wei YQ 《Amino acids》2008,35(1):115-122
Honokiol (HNK) is an active component purified from Magnolia officinalis. HNK exhibits antitumor effects by inducing apoptosis and inhibiting the growth of many cancer cell lines, while proteins involved in antitumor effects in proteomic level are still unclear. In our study, HNK could inhibit HeLa cell proliferation and induce apoptosis in a concentration- and time-dependent manner. We utilized a quantitative proteomic technique termed SILAC (Stable isotope labeling with amino acids in cell culture)-MS (mass spectrometry) to study the differential proteomic profiling of HeLa cells treated by HNK. A total of 85 proteins were changed after HeLa cells were treated with 12 microg/ml HNK for 8 h, and 8 proteins showed up-regulation while 77 proteins down-regulated. The changed proteins were classified into 9 different categories, which covered a broad variety of cellular functions. In conclusion, HNK performs cytotoxicity to HeLa cells through co-operating of many proteins and different pathways. 相似文献
3.
Mapping quantitative trait loci from a single-tail sample of the phenotype distribution including survival data 总被引:2,自引:0,他引:2
A new effective Bayesian quantitative trait locus (QTL) mapping approach for the analysis of single-tail selected samples of the phenotype distribution is presented. The approach extends the affected-only tests to single-tail sampling with quantitative traits such as the log-normal survival time or censored/selected traits. A great benefit of the approach is that it enables the utilization of multiple-QTL models, is easy to incorporate into different data designs (experimental and outbred populations), and can potentially be extended to epistatic models. In inbred lines, the method exploits the fact that the parental mating type and the linkage phases (haplotypes) are known by definition. In outbred populations, two-generation data are needed, for example, selected offspring and one of the parents (the sires) in breeding material. The idea is to statistically (computationally) generate a fully complementary, maximally dissimilar, observation for each offspring in the sample. Bayesian data augmentation is then used to sample the space of possible trait values for the pseudoobservations. The benefits of the approach are illustrated using simulated data sets and a real data set on the survival of F2 mice following infection with Listeria monocytogenes. 相似文献
4.
Synthetic genetic arrays have been very effective at measuring genetic interactions
in yeast in a high-throughput manner and recently have been expanded to measure
quantitative changes in interaction, termed ''differential interactions'', across
multiple conditions. Here, we present a strategy that leverages statistical
information from the experimental design to produce a novel, quantitative
differential interaction score, which performs favorably compared to previous
differential scores. We also discuss the added utility of differential
genetic-similarity in differential network analysis. Our approach is preferred for
differential network analysis, and our implementation, written in MATLAB, can be
found at http://chianti.ucsd.edu/~gbean/compute_differential_scores.m. 相似文献
5.
Differential media for quantitative recovery of waterborne Aeromonas hydrophila. 总被引:1,自引:0,他引:1 下载免费PDF全文
Because of the ubiquity of Aeromonas spp., their prevalence in drinking water, and the increasing number of reports on Aeromonas sp.-related infections, a standard method for routine and quantitative recovery had to be defined. On the basis of a survey of 10 media for recovery analysis and subsequent differentiation assays in mixed cultures, we conclude that ampicillin-dextrin agar performed the best for the recovery of Aeromonas spp. in drinking water and the differentiation by simple criteria of that genus from other common waterborne bacteria. 相似文献
6.
Quantitative high-throughput mass spectrometry has become an established tool to measure relative gene expression proteome-wide. The output of such an experiment usually consists of a list of expression ratios (fold changes) for several thousand proteins between two conditions. However, we observed that individual peptide fold changes may show a significantly different behavior than other peptides from the same protein and that these differences cannot be explained by imprecise measurements. Such outlier peptides can be the consequence of several technical (misidentifications, misquantifications) or biological (post-translational modifications, differential regulation of isoforms) reasons. We developed a method to detect outlier peptides in mass spectrometry data which is able to delineate imprecise measurements from real outlier peptides with high accuracy when the true difference is as small as 1.4 fold. We applied our method to experimental data and investigated the different technical and biological effects that result in outlier peptides. Our method will assist future research to reduce technical bias and can help to identify genes with differentially regulated protein isoforms in high throughput mass spectrometry data. 相似文献
7.
Molloy MP Donohoe S Brzezinski EE Kilby GW Stevenson TI Baker JD Goodlett DR Gage DA 《Proteomics》2005,5(5):1204-1208
Strategies employing non-gel based methods for quantitative proteomic profiling such as isotope coded affinity tags coupled with mass spectrometry (ICAT-MS) are gaining attention as alternatives to two-dimensional gel electrophoresis (2-DE). We have conducted a large-scale investigation to determine the degree of reproducibility and depth of proteome coverage of a typical ICAT-MS experiment by measuring protein changes in Escherichia coli treated with triclosan, an inhibitor of fatty acid biosynthesis. The entire ICAT-MS experiment was conducted on four independent occasions where more than 24 000 peptides were quantitated using an ion-trap mass spectrometer. Our results demonstrated that quantitatively, the technique provided good reproducibility (median coefficient of variation of ratios was 18.6%), and on average identified more than 450 unique proteins per experiment. However, the method was strongly biased to detect acidic proteins (pI < 7), under-represented small proteins (<10 kDa) and failed to show clear superiority over 2-DE methods in monitoring hydrophobic proteins from cell lysates. 相似文献
8.
9.
10.
Proteomic technologies have matured to a level enabling accurate and reproducible quantitation of peptides and proteins from complex biological matrices. Analysis of samples as diverse as assembled protein complexes, whole cell lysates or sub-cellular proteomes from cell cultures, and direct analysis of animal and human tissues and fluids demonstrate the incredible versatility of the fundamental nature of the technique that forms the basis of most proteomic applications today (mass spectrometry). Determining the mass of biomolecules and their fragments or related products with high accuracy can convey a highly specific assay for detection and identification. Importantly, ion currents representative of these specifically identified analytes can be accurately quantified with the correct application of smart isobaric tagging chemistries, heavy and light isotopically derivatised samples or standards, or by careful application of workflows to compare unlabelled samples in so-called 'label-free' and targeted selected reaction monitoring experiments. In terms of exploring biology, a myriad of protein changes and modifications are being increasingly probed and quantified, including diverse chemical changes from relatively decisive modifications such as protein splicing and truncation, to more transient dynamic modifications such as phosphorylation, acetylation and ubiquitination. Proteomic workflows can be complex beasts and several key considerations to ensure effective applications have been outlined in the recent literature. The past year has witnessed the publication of several excellent reviews that thoroughly describe the fundamental principles underlying the state of the art. This review further elaborates on specific critical issues introduced by these publications and raises other important unaddressed considerations and new developments that directly impact on the effectiveness of proteomic technologies, in particular for, but not necessarily exclusive to peptide-centric experiments. These factors are discussed both in terms of qualitative analyses, including dynamic range and sampling issues, and developments to improve the translation of peptide fragmentation data into peptide and protein identities, as well as quantitative analyses, including data normalisation and the utility of ontology or functional annotation, the effects of modified peptides, and considered experimental design to facilitate the use of robust statistical methods. 相似文献
11.
12.
We have undertaken a large scale study of the proteins expressed in the procyclic form of the parasite Trypanosoma brucei, which causes African sleeping sickness, using 2-DE and MS. The complete data set encompasses over 2000 identifications, of which 770 are distinct proteins. We have discovered that multiple protein isoforms appear to be common in T. brucei, as most proteins have been matched to more than one gel spot. We have developed visualisation software to investigate the differences between isoforms, based on the information from the results of database searches with MS data. We are able to highlight instances where PTMs are the most likely cause of variant forms. In other cases, spots that appear reproducibly across replicates contain fragments of proteins, arising either as experimental artefacts or as part of protein degradation. We are also able to classify clusters of gel spots into different groups based on the pattern of peptides that have been matched from MS data. The entire data set is stored within a relational database system that allows complex queries ( http://www.gla.ac.uk/functionalgenomics). Using specific proteins as examples, we demonstrate how the visualisation software and the database query facilities can be used. 相似文献
13.
14.
Background
An imprecise quantitative sense for the oscillating levels of proteins and their modifications, interactions, and translocations as a function of the cell cycle is fundamentally important for a cartoon/narrative understanding for how the cell cycle works. Mathematical modeling of the same cartoon/narrative models would be greatly enhanced by an open-ended methodology providing precise quantification of many proteins and their modifications, etc. Here we present methodology that fulfills these features.Methodology
Multiparametric flow cytometry was performed on Molt4 cells to measure cyclins A2 and B1, phospho-S10-histone H3, DNA content, and light scatter (cell size). The resulting 5 dimensional data were analyzed as a series of bivariate plots to isolate the data as segments of an N-dimensional “worm” through the data space. Sequential, unidirectional regions of the data were used to assemble expression profiles for each parameter as a function of cell frequency.Results
Analysis of synthesized data in which the true values where known validated the approach. Triplicate experiments demonstrated exceptional reproducibility. Comparison of three triplicate experiments stained by two methods (single cyclin or dual cyclin measurements with common DNA and phospho-histone H3 measurements) supported the feasibility of combining an unlimited number of epitopes through this methodology. The sequential degradations of cyclin A2 followed by cyclin B1 followed by de-phosphorylation of histone H3 were precisely mapped. Finally, a two phase expression rate during interphase for each cyclin was robustly identified.Conclusions
Very precise, correlated expression profiles for important cell cycle regulating and regulated proteins and their modifications can be produced, limited only by the number of available high-quality antibodies. These profiles can be assembled into large information libraries for calibration and validation of mathematical models. 相似文献15.
Bateman NW Sun M Bhargava R Hood BL Darfler MM Kovatich AJ Hooke JA Krizman DB Conrads TP 《Journal of proteome research》2011,10(3):1323-1332
The heterogeneity of breast cancer requires the discovery of more incisive molecular tools that better define disease progression and prognosis. Proteomic analysis of homogeneous tumor cell populations derived by laser microdissection from formalin-fixed, paraffin-embedded (FFPE) tissues has proven to be a robust strategy for conducting retrospective cancer biomarker investigations. We describe an MS-based analysis of laser microdissected cancerous epithelial cells derived from twenty-five breast cancer patients at defined clinical disease stages with the goal of identifying protein abundance characteristics indicative of disease progression and recurrence. Comparative analysis of stage 0 and stage III patients revealed 113 proteins that significantly differentiated these groups and included known factors associated with disease pathogenesis, such as CDH1 and CTNNB1, as well as those previously implicated in breast cancer, such as TSP-1. Similar analyses of patients presenting with stage II disease that did or did not exhibit recurrence two years postdiagnosis revealed 42 proteins that significantly differentiated these subgroups and included IRS-1 and PARK7. These data provide evidence supporting the utility of FFPE tissues for functional proteomic analyses and protein biomarker discovery and yielded protein candidates indicative of disease stage and recurrence in breast cancer that warrant further investigation for diagnostic utility and biological relevance. 相似文献
16.
17.
18.
MF Leal J Chung DQ Calcagno PP Assumpção S Demachki ID da Silva R Chammas RR Burbano M de Arruda Cardoso Smith 《PloS one》2012,7(7):e42255
Gastric cancer is the second leading cause of cancer-related death worldwide. The identification of new cancer biomarkers is necessary to reduce the mortality rates through the development of new screening assays and early diagnosis, as well as new target therapies. In this study, we performed a proteomic analysis of noncardia gastric neoplasias of individuals from Northern Brazil. The proteins were analyzed by two-dimensional electrophoresis and mass spectrometry. For the identification of differentially expressed proteins, we used statistical tests with bootstrapping resampling to control the type I error in the multiple comparison analyses. We identified 111 proteins involved in gastric carcinogenesis. The computational analysis revealed several proteins involved in the energy production processes and reinforced the Warburg effect in gastric cancer. ENO1 and HSPB1 expression were further evaluated. ENO1 was selected due to its role in aerobic glycolysis that may contribute to the Warburg effect. Although we observed two up-regulated spots of ENO1 in the proteomic analysis, the mean expression of ENO1 was reduced in gastric tumors by western blot. However, mean ENO1 expression seems to increase in more invasive tumors. This lack of correlation between proteomic and western blot analyses may be due to the presence of other ENO1 spots that present a slightly reduced expression, but with a high impact in the mean protein expression. In neoplasias, HSPB1 is induced by cellular stress to protect cells against apoptosis. In the present study, HSPB1 presented an elevated protein and mRNA expression in a subset of gastric cancer samples. However, no association was observed between HSPB1 expression and clinicopathological characteristics. Here, we identified several possible biomarkers of gastric cancer in individuals from Northern Brazil. These biomarkers may be useful for the assessment of prognosis and stratification for therapy if validated in larger clinical study sets. 相似文献
19.
Danielle E. Haslam Jun Li Simon T. Dillon Xuesong Gu Yin Cao Oana A. Zeleznik Naoko Sasamoto Xuehong Zhang A. Heather Eliassen Liming Liang Meir J. Stampfer Samia Mora Zsu-Zsu Chen Kathryn L. Terry Robert E. Gerszten Frank B. Hu Andrew T. Chan Towia A. Libermann Shilpa N. Bhupathiraju 《Proteomics》2022,22(13-14):2100170
Limited data exist on the performance of high-throughput proteomics profiling in epidemiological settings, including the impact of specimen collection and within-person variability over time. Thus, the Olink (972 proteins) and SOMAscan7Kv4.1 (7322 proteoforms of 6596 proteins) assays were utilized to measure protein concentrations in archived plasma samples from the Nurses’ Health Studies and Health Professionals Follow-Up Study. Spearman's correlation coefficients (r) and intraclass correlation coefficients (ICCs) were used to assess agreement between (1) 42 triplicate samples processed immediately, 24-h or 48-h after blood collection from 14 participants; and (2) 80 plasma samples from 40 participants collected 1-year apart. When comparing samples processed immediately, 24-h, and 48-h later, 55% of assays had an ICC/r ≥ 0.75 and 87% had an ICC/r ≥ 0.40 in Olink compared to 44% with an ICC/r ≥ 0.75 and 72% with an ICC/r ≥ 0.40 in SOMAscan7K. For both platforms, >90% of the assays were stable (ICC/r ≥ 0.40) in samples collected 1-year apart. Among 817 proteins measured with both platforms, Spearman's correlations were high (r > 0.75) for 14.7% and poor (r < 0.40) for 44.8% of proteins. High-throughput proteomics profiling demonstrated reproducibility in archived plasma samples and stability after delayed processing in epidemiological studies, yet correlations between proteins measured with the Olink and SOMAscan7K platforms were highly variable. 相似文献
20.
Integral membrane proteins perform crucial cellular functions and are the targets for the majority of pharmaceutical agents. However, the hydrophobic nature of their membrane-embedded domains makes them difficult to work with. Here, we describe a shotgun proteomic method for the high-throughput analysis of the membrane-embedded transmembrane domains of integral membrane proteins which extends the depth of coverage of the membrane proteome. 相似文献