首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthropogenic habitats are increasingly prevalent in coastal marine environments. Previous research on sessile epifauna suggests that artificial habitats act as a refuge for nonindigenous species, which results in highly homogenous communities across locations. However, vertebrate assemblages that live in association with artificial habitats are poorly understood. Here, we quantify the biodiversity of small, cryptic (henceforth “cryptobenthic”) fishes from marine dock pilings across six locations over 35° of latitude from Maine to Panama. We also compare assemblages from dock pilings to natural habitats in the two southernmost locations (Panama and Belize). Our results suggest that the biodiversity patterns of cryptobenthic fishes from dock pilings follow a Latitudinal Diversity Gradient (LDG), with average local and regional diversity declining sharply with increasing latitude. Furthermore, a strong correlation between community composition and spatial distance suggests distinct regional assemblages of cryptobenthic fishes. Cryptobenthic fish assemblages from dock pilings in Belize and Panama were less diverse and had lower densities than nearby reef habitats. However, dock pilings harbored almost exclusively native species, including two species of conservation concern absent from nearby natural habitats. Our results suggest that, in contrast to sessile epifaunal assemblages on artificial substrates, artificial marine habitats can harbor diverse, regionally characteristic assemblages of vertebrates that follow macroecological patterns that are well documented for natural habitats. We therefore posit that, although dock pilings cannot function as a replacement for natural habitats, dock pilings may provide cost‐effective means to preserve native vertebrate biodiversity, and provide a habitat that can be relatively easily monitored to track the status and trends of fish biodiversity in highly urbanized coastal marine environments.  相似文献   

2.
Abstract We compared nekton and benthos densities and community compositions in a natural mixed seagrass bed dominated by Halodule wrightii (shoalgrass) with those found in three shoalgrass transplant sites and adjoining sand habitats in western Galveston Bay, Texas, U.S.A. Quantitative drop traps and cores were used to compare communities up to seven times over 36 months post‐transplant where transplant beds survived. Total densities of fishes, decapods, annelids, benthic crustaceans, and most dominant species were significantly higher in natural seagrass than in transplanted shoalgrass or sand habitats during most sampling periods. On occasion, fish and decapod densities were significantly higher in transplanted shoalgrass than in adjoining sand habitats. No consistent faunal differences were found among transplant sites before two of three sites failed. Taxonomic comparison of community compositions indicated that nekton and benthos communities in natural seagrass beds were usually distinct from those in transplanted beds or sand habitats, which were similar. We conclude that reestablishing a shoalgrass bed that resembles a natural seagrass bed and its faunal communities in the Galveston Bay system will take longer than 3 years, provided that transplants persist.  相似文献   

3.
Understanding trophic relationships of fish in estuarine ecosystem is an important element for sustainable resource management. This study examined the feeding habits of 29 dominant fish species, characterized the trophic guilds, assessed the impact of season and clarified the role of diets in structuring the fish community in the mouth region of Pattani Bay, Thailand. Samples of 5792 fishes collected monthly by gillnets from March 2019 to February 2020 were used for stomach content analyses. It was found that the number of food types and fullness index differed between fish taxa (P < 0.001). Most fishes were specialist feeders feeding on specific food components and were categorized into five trophic guilds: piscivore, shrimp-fish feeder, polychaete feeder, zooplanktivore and planktivore. Six species were piscivorous, considered as apex predators, that fed almost entirely on fishes. High diet overlaps among some species (>0.6) were recorded. Not much variation in seasonal guilds was observed: four guilds in the dry season, three in the moderate rainy season and four in the rainy season. Some species remained in the same guild the whole year round, but some fishes changed seasonally. Two fish communities from different regions of the bay were segregated based on feeding habits. The inner bay community comprised mainly copepod and plankton feeders, but there were more piscivores in the deeper bay mouth area. Results from this study help us to understand the feeding habits and trophic guilds of dominant fish species at the mouth of this tropical estuarine bay.  相似文献   

4.
To improve understanding of reef fish communities of Vietnam’s first dedicated marine protected area, visual censuses were conducted seasonally from 2003–05 in Nha Trang Bay, south-central Vietnam using SCUBA. Results from this study show that species richness were usually higher in summer than winter and that decreased from summer to winter in both shallow and deep areas in this MPA, but this apparent decrease was not significant. There were significant variations in density of reef fish communities between seasons with higher densities in summer (from April to September) and lower densities in winter (from October to March). The families contributing most to the higher density during summer in the 3 years were acanthurids, chaetodontids, labrids, pomacentrids, scarids, siganids, pomacanthids and caesionids. The increased density of these families in summer was mostly due to increases of juveniles. Recruitment of acanthurids, chaetodontids, labrids, pomacentrids, scarids and siganids occurred primarily in shallow waters whereas caesionids and pomacanthids were mainly recruiting in deeper areas. There were no differences in spatial variations in both species richness and density within the same time periods over several years.  相似文献   

5.
Snags are important to fish communities in small rivers and streams, but their importance to fishes in large rivers has not been investigated. This study examined snag use by fishes during autumn in backwater and channel border habitats in the upper Mississippi River, and compared these to fish communities in reference sites without snags. Species assemblages differed significantly between backwater and channel border habitats, and between snag and reference sites within the channel border, likely responding to differences in substrate, depth, and current velocity. In both habitats, average fish biomass and abundance were higher (2 to 50 ×) at snag sites than at reference sites, but these differences were significant only for channel border biomass. Fish taxa richness differed between backwater and channel border habitats, but not between snag and reference sites. Most large piscivorous fishes (e.g., Micropterus spp., Stizostedion spp.), several insectivorous fishes (Lepomis macrochirus, Ambloplites rupestris, Minytrema melanops), and a few prey fishes (L. macrochirus, Notropis atherinoides) were significantly more abundant at snag sites than at reference sites, suggesting active selection of snags for foraging or protection. Snag quality, as assessed by a snag rating index, had a direct effect on attracting fish communities with greater biomass, especially within the channel border habitat. These results indicate that snags are important habitat for fish communities in both backwaters and channel border habitats of the upper Mississippi River.  相似文献   

6.
During the 1960s, water management practices resulted in the conversion of the wetlands that fringe northeastern Florida Bay (USA) from freshwater/oligohaline herbaceous marshes to dwarf red mangrove forests. Coincident with this conversion were several ecological changes to Florida Bay’s fauna, including reductions in the abundances of top trophic-level consumers: piscivorous fishes, alligators, crocodiles, and wading birds. Because these taxa rely on a common forage base of small demersal fishes, food stress has been implicated as playing a role in their respective declines. In the present study, we monitored the demersal fishes seasonally at six sites over an 8-year time period. During monitoring, extremely high rainfall conditions occurred over a 3.5-year period leading to salinity regimes that can be viewed as “windows” to the area’s natural past and future restored states. In this paper, we: (1) examine the changes in fish communities over the 8-year study period and relate them to measured changes in salinity; (2) make comparisons among marine, brackish and freshwater demersal fish communities in terms of species composition, density, and biomass; and (3) discuss several implications of our findings in light of the intended and unintended water management changes that are planned or underway as part of Everglades restoration. Results suggest the reduction in freshwater flow to Florida Bay over the last several decades has reduced demersal fish populations, and thus prey availability for apex consumers in the coastal wetlands compared to the pre-drainage inferred standard. Furthermore, greater discharge of freshwater toward Florida Bay may result in the re-establishment of pre-1960s fauna, including a more robust demersal-fish community that should prompt increases in populations of several important predatory species.  相似文献   

7.
东海大陆架鱼类群落的空间结构   总被引:15,自引:1,他引:14  
李圣法  程家骅  严利平 《生态学报》2007,27(11):4377-4386
根据1997~2000年东海大陆架水深30~200米海域4个航次的底拖网调查资料,运用多元分析(聚类分析和非度量多维标度(NMDS))、SIMPER以及BIO-ENV方法分析了东海鱼类群落的空间格局以及与非生物环境因子之间的关系。结果表明,东海大陆架海域鱼类群落在空间上可分为3个群落类型,分别为东海近海群落、东海大陆架外缘群落以及这两个群落之间的东海大陆架混合群落。东海大陆架鱼类群落的种类组成沿着水深梯度的变化明显,每种鱼类均有一定的水深范围。不同的流系具有不同的温盐特征,影响了鱼类的分布及其洄游,从而控制了不同鱼类群落类型的种类组成。东海大陆架鱼类群落类型中,大陆架外缘群落类型各调查季节在空间分布和种类组成上相对稳定,而东海近海群落类型和东海大陆架混合群落类型在夏季融合在一起,其它季节保持各自的空间结构。同时东海陆架区只在一种群落类型中出现的鱼类相对较少,多数鱼类同时出现在两个群落类型中或3个群落类型中,但是它们相对较集中的区域明显不同,在不同群落类型中的生物量和出现频率有很大的差异,这些鱼类在其不同的生长发育阶段由于对海洋环境的不同需求,它们根据繁殖或摄食需求而在东海陆架区范围内洄游以寻找最适的海洋环境,因此对3个群落类型定义是相对的,很难严格确定一个永久的鱼类群落地理区域,以形成相互隔离的鱼类群落,而且鱼类群落之间的边界随着季节不同发生变化。  相似文献   

8.
Effects of floods on fish assemblages in an intermittent prairie stream   总被引:2,自引:0,他引:2  
1. Floods are major disturbances to stream ecosystems that can kill or displace organisms and modify habitats. Many studies have reported changes in fish assemblages after a single flood, but few studies have evaluated the importance of timing and intensity of floods on long‐term fish assemblage dynamics. 2. We used a 10‐year dataset to evaluate the effects of floods on fishes in Kings Creek, an intermittent prairie stream in north‐eastern, Kansas, U.S.A. Samples were collected seasonally at two perennial headwater sites (1995–2005) and one perennial downstream flowing site (1997–2005) allowing us to evaluate the effects of floods at different locations within a watershed. In addition, four surveys during 2003 and 2004 sampled 3–5 km of stream between the long‐term study sites to evaluate the use of intermittent reaches of this stream. 3. Because of higher discharge and bed scouring at the downstream site, we predicted that the fish assemblage would have lowered species richness and abundance following floods. In contrast, we expected increased species richness and abundance at headwater sites because floods increase stream connectivity and create the potential for colonisation from downstream reaches. 4. Akaike Information Criteria (AIC) was used to select among candidate regression models that predicted species richness and abundance based on Julian date, time since floods, season and physical habitat at each site. At the downstream site, AIC weightings suggested Julian date was the best predictor of fish assemblage structure, but no model explained >16% of the variation in species richness or community structure. Variation explained by Julian date was primarily attributed to a long‐term pattern of declining abundance of common species. At the headwater sites, there was not a single candidate model selected to predict total species abundance and assemblage structure. AIC weightings suggested variation in assemblage structure was associated with either Julian date or local habitat characteristics. 5. Fishes rapidly colonised isolated or dry habitats following floods. This was evidenced by the occurrence of fishes in intermittent reaches and the positive association between maximum daily discharge and colonisation events at both headwater sites. 6. Our study suggests floods allow dispersal into intermittent habitats with little or no downstream displacement of fishes. Movement of fishes among habitats during flooding highlights the importance of maintaining connectivity of stream networks of low to medium order prairie streams.  相似文献   

9.
Resource partitioning among the fishes of rainforest streams in Sri Lanka   总被引:1,自引:0,他引:1  
The fish assemblage typical of small rainforest streams of Sri Lanka was investigated to see if the fishes were characterized by a high degree of specialization, expected of equilibrium communities, or if they were relatively unspecialized, expected of more stochastic (non-equilibrium) communities. Morphological features, habitats, microhabitats and diets of the 20 most abundant fish species were measured. The fishes included 11 Cyprinidae (including seven Barbus spp. and two Rasbara spp.), two Gobiidae, two Channidae, and one species each in the Cobitidae, Cyprinodontidae, Belontidae, Belonidae, and Mastacembelidae. Microhabitats were determined by measuring (for 6760 fish) water column depth, distance of fish from bottom, mean water column velocity, water velocity at fish, and substrate. Morphologically, the species showed a high degree of specialization, especially in structures related to feeding. Although several species were habitat generalists, most species occurred in distinct habitats. Within habitats, microhabitat overlap among co-occuring species was low, particularly in relation to position in the water column. Principal component analysis of the microhabitat measurements produced three new variables. Most species not clearly segregated by the overlap analysis showed segregation on the new variables. Fishes not segregated by habitat or microhabitat tended to show low dietary overlaps. Specialization in feeding habits was more pronounced among the Sri Lankan fishes than noted for fishes in small rainforest streams elsewhere, in part because of the greater reliance of the Sri Lanka fishes on autochthonous foods. Overall, the fish assemblage had the characteristics expected of an equilibrium (deterministic) assemblage.  相似文献   

10.

Planktivorous reef-associated fishes provide a significant nutrient input to the reef, linking pelagic and reef environments. Highly mobile and relatively large body-sized fusiliers (Lutjanidae) often dominate reef fish biomass, but their role in ecosystem processes is poorly understood. We therefore combined fish counts and behavioural observations at Lizard Island, Great Barrier Reef, to investigate: (1) the spatial distribution and biology of fusiliers on a lagoonal coral reef system, and (2) how does fusilier behaviour and size distribution change from exposed to sheltered locations. We found higher abundances of large-sized fusiliers (≥ 20 cm total length) on exposed reef sites. Sheltered sites had almost exclusively small individuals (< 20 cm total length). We interpret this pattern as indicative of an ontogenetic habitat shift. This shift was estimated to occur at about 11.15 cm total length; the size at which the likelihood of an individual being in exposed or sheltered locations was equal. The age corresponding to this length was 1.01 years, based on a von Bertalanffy growth model using size-at-age data from otolith rings of Caesio cuning, the most abundant fusilier species in this location. This suggested that the shift in distribution occurred prior to the onset of sexual maturity. This apparent ontogenetic shift to more exposed habitats with increasing size, especially in C. cuning, was also associated with a distinct behavioural profile: larger fish at the exposed sites travelled further off reef, occupied deeper habitats, and formed larger schools compared to smaller individuals. This study provides the first evidence of seascape-scale ontogenetic habitat shifts in a planktivorous reef fish, providing a foundation for future detailed analyses of the ecological roles of fusiliers.

  相似文献   

11.
为了解胶州湾海域鱼类群落结构特征,根据2016—2017年间对胶州湾海域进行的4个航次底拖网调查数据,采用相对重要性指数、生态多样性指数和典范对应分析(canonical correspondence analysis,CCA)、非线性多维标度排序(non-metric multidimensional scaling,NMDS)等方法分析了胶州湾海域鱼类群落的种类组成和多样性特征。结果表明:调查共采集到鱼类46种,隶属2纲10目30科41属,以硬骨鱼纲鱼类为主(45种,97.83%)。其中,鲈形目(Perciformes)最多(22种,47.83%),其次是鲉形目(Scorpaeniformes),占15.22%。种类数季节变化明显,以夏季最高,23种;秋季最低,16种。优势种组成以赤鼻棱鳀(Thryssa kammalensis)、褐菖鲉(Sebastiscus marmoratus)、褐牙鲆(Paralichthys olivaceus)、大泷六线鱼(Hexagrammos otakii)、许氏平鮋(Sebastes schlegeli)和矛尾鰕虎鱼(Chaeturichthys stigmatias)等鱼类为主。多样性分析显示,鱼类物种多样性存在明显的季节差异。多样性指数(H′)季节变化范围为1.668—2.453,以夏季最高,春季最低;均匀度指数(J′)季节变化范围为0.577—0.808,以秋季最高,春季最低;丰富度指数(D′)季节变化范围为2.431—3.123,以冬季最高,秋季最低。典范对应分析表明,水温、盐度、水深和pH是影响胶州湾海域鱼类群落物种组成的主要环境因子,且水温和pH是影响鱼类群落结构及多样性时空变化的主要因子。与历史调查资料相比,由于人类活动对胶州湾生态系统的干扰,鱼类群落结构发生了较大变化,优势种组成更替明显,多样性水平降低,鱼类群落结构趋向简单化。  相似文献   

12.
Artificial reefs are often promoted as mitigating human impacts in coastal ecosystems and enhancing fisheries; however, evidence supporting their benefits is equivocal. Such structures must be compared with natural reefs in order to assess their performance, but past comparisons typically examined artificial structures that were too small, or were immature, relative to the natural reefs. We compared coral and fish communities on two large (>400,000 m3) and mature (>25 year) artificial reefs with six natural coral patches. Coral cover was higher on artificial reefs (50%) than in natural habitats (31%), but natural coral patches contained higher species richness (29 vs. 20) and coral diversity (H′ = 2.3 vs. 1.8). Multivariate analyses indicated strong differences between coral communities in natural and artificial habitats. Fish communities were sampled seasonally for 1 year. Multivariate fish communities differed significantly among habitat types in the summer and fall, but converged in the winter and spring. Univariate analysis indicated that species richness and abundance were stable throughout the year on natural coral patches but increased significantly in the summer on artificial reefs compared with the winter and spring, explaining the multivariate changes in community structure. The increased summer abundance on artificial reefs was mainly due to adult immigration. Piscivores were much more abundant in the fall than in the winter or spring on artificial reefs, but had low and stable abundance throughout the year in natural habitats. It is likely that the decreased winter and spring abundance of fish on the artificial reefs resulted from both predation and emigration. These results indicate that large artificial reefs can support diverse and abundant coral and fish communities. However, these communities differ structurally and functionally from those in natural habitats, and they should not be considered as replacements for natural coral and fish communities.  相似文献   

13.
Aim We evaluated variation in fish assemblages on the basis of taxonomic composition and functional groups based on Pleistocene glacial boundaries in the Ohio River basin. We tested for the influence of habitat and hydrology on fish assemblage variation. Location Ohio River basin of North America, including the states of Ohio, Indiana and Illinois. Methods Fish collection sites were identified as Wisconsinan, pre‐Wisconsinan or unglaciated regions. Multivariate analyses, multi‐response permutation procedures, discriminant analysis and indicator species analyses were used to test whether taxonomic and functional assemblages were distinct among regions with varying glacial histories. Principal components analysis was used to identify habitat and water quality, as well as hydrological gradients that could be discerned by glacial region. Results We identified significant differences in both taxonomic and functional fish assemblage structure and habitat variation among regions that had different glaciation histories. The largest differences in taxonomic and functionally based fish communities were for unglaciated and pre‐Wisconsinan regions, while unglaciated and Wisconsinan regions were most similar. We correctly classified study regions in 71% and 60% of sites using taxonomy and functional analyses, respectively. Wisconsinan sites were characterized by Cyprinidae and Catostomidae assemblages with high abundances of tolerant fishes that tended to occur in habitats with reduced current velocity. Pre‐Wisconsinan sites were characterized by Cyprinidae, Catostomidae, Centrarchidae and Percidae families with increased abundances of intolerant fishes that tended to occur in habitats with coarser substrates and increased water velocity in streams of varying size. Unglaciated sites were characterized by Cyprinidae and Percidae families and were not closely associated with any habitat‐based functional group. Habitat in the unglaciated and pre‐Wisconsinan sites was significantly different from that in the Wisconsinan sites, which were characterized by increased channel structure and reduced stream size. Main conclusions Pleistocene glaciation events formed a lasting template of predictable regional differences in stream habitat and in the corresponding taxonomic and functional fish assemblage structures. While many factors impact the distribution of fishes, these results suggest that historical influences such as glaciation may be used to further explain the underlying mechanisms of spatial variation in fish assemblages.  相似文献   

14.
In tropical and subtropical estuaries, gradients of primary productivity and salinity are generally invoked to explain patterns in community structure and standing crops of fishes. We documented spatial and temporal patterns in fish community structure and standing crops along salinity and nutrient gradients in two subtropical drainages of Everglades National Park, USA. The Shark River drains into the Gulf of Mexico and experiences diurnal tides carrying relatively nutrient enriched waters, while Taylor River is more hydrologically isolated by the oligohaline Florida Bay and experiences no discernable lunar tides. We hypothesized that the more nutrient enriched system would support higher standing crops of fishes in its mangrove zone. We collected 50 species of fish from January 2000 to April 2004 at six sampling sites spanning fresh to brackish salinities in both the Shark and Taylor River drainages. Contrary to expectations, we observed lower standing crops and density of fishes in the more nutrient rich tidal mangrove forest of the Shark River than in the less nutrient rich mangrove habitats bordering the Taylor River. Tidal mangrove habitats in the Shark River were dominated by salt-tolerant fish and displayed lower species richness than mangrove communities in the Taylor River, which included more freshwater taxa and yielded relatively higher richness. These differences were maintained even after controlling for salinity at the time of sampling. Small-scale topographic relief differs between these two systems, possibly created by tidal action in the Shark River. We propose that this difference in topography limits movement of fishes from upstream marshes into the fringing mangrove forest in the Shark River system, but not the Taylor River system. Understanding the influence of habitat structure, including connectivity, on aquatic communities is important to anticipate effects of construction and operational alternatives associated with restoration of the Everglades ecosystem.  相似文献   

15.
This study aimed to investigate the spatial structure of nocturnal fish communities at settlement on coral reefs in Moorea Island lagoon, French Polynesia; and the temporal consistency of habitat selection between winter (April to June 2001) and summer (November 2001). The Moorea lagoon was divided into 12 habitat zones (i.e., coral reef zones), which were distinct in terms of depth, wave exposure, and substratum composition. Nocturnal visual censuses among the 12 habitats found that the recently settled juveniles of 25 species recorded were dispatched among three communities spatially distributed according to the distance from the reef crest (reef crest, barrier reef, and fringing reef communities). This spatial communities structure of nocturnal juveniles was consistent in both winter and summer and would be explained primarily by a current gradient in Moorea lagoon (current speed was high near the reef crest and decreased towards the beach) and by the topographic characteristics of reef zones. Among the 25 species, 13 were recorded in both winter and summer. A comparison of the spatial distribution between summer and winter for 13 species that occurred during both seasons found that only 4 differed between the two seasons. For these species, habitat selection would be organized primarily by some stochastic processes such as inter- and intraspecific competition, predation, and food availability. Overall, the present study allowed us to highlight that most nocturnal coral reef fish juveniles at Moorea Island exhibited striking patterns in their distribution and current and topographic characteristics of reef zones might exert considerable influence on the distribution of fishes.  相似文献   

16.
Blue catfish Ictalurus furcatus and channel catfish Ictalurus punctatus , two large-bodied piscivore-omnivores in Lake Texoma, Texas-Oklahoma, U.S.A., showed very high overlap in food use, but substantial differences in use of habitat during the year. Both species primarily ate fishes, aquatic insects, vegetation and detritus, terrestrial insects, seeds and zooplankton, with overall overlap = 98%. Diet breadth indices were very similar (blue catfish=4.31, channel catfish = 4.53). Quantitative and qualitative feeding varied seasonally and food habits changed ontogenetically. Feeding intensity was greatest in winter and lowest in late summer. Aquatic insects were eaten more from May to October and fishes more in winter. At body sizes from 100 to 299 mm Ls , both species primarily ate aquatic insects, terrestrial insects, fishes or zooplankton, whereas the diets of individuals >300 mm Ls of both species were dominated by fishes. Overall, their overlap in distribution across major habitat types was only 58%, with blue catfish most abundant in deep water offshore, and channel catfish more common in shallow cove habitats. Blue catfish that did occur in coves were in the deeper parts of those habitats, essentially not occurring in the littoral zone. In lakes without blue catfish, channel catfish are widely dispersed in various habitats and it is suspected that displacement of channel catfish by blue catfish may influence habitat differences of the two species in Lake Texoma. Because the spatial separation of the species also reflects their typical interspecific differences in unimpounded drainages, however, the habitat differences observed in Lake Texoma probably also reflect evolved, historical differences in ecology of the two species.  相似文献   

17.
The relative importance of bay habitats, consisting of mangrove creeks and channel, seagrass beds, and mud and sand flats, as feeding grounds for a number of fish species was studied in Chwaka Bay, Zanzibar, Tanzania, using gut content analysis and stable isotope analysis of carbon and nitrogen. Gut content analysis revealed that within fish species almost the same food items were consumed regardless of the different habitats in which they were caught. Crustaceans (mainly copepods, crabs and shrimps) were the preferred food for most zoobenthivores and omnivores, while fishes and algae were the preferred food for piscivores and herbivores, respectively. The mean δ13C values of fishes and food items from the mangrove habitats were significantly depleted to those from the seagrass habitats by 6·9 and 9·7‰ for fishes and food items, respectively, and to those from the mud and sand flats by 3·5 and 5·8‰, respectively. Fishes and food items from the mud and sand flats were significantly depleted as compared to those of the seagrass habitats by 3·4 and 3·9‰, for fishes and food, respectively. Similar to other studies done in different geographical locations, the importance of mangrove and seagrass themselves as a primary source of carbon to higher trophic levels is limited. The different bay habitats were all used as feeding grounds by different fish species. Individuals of the species Gerres filamentosus , Gerres oyena , Lethrinus lentjan , Lutjanus fulviflamma , Pelates quadrilineatus and Siganus sutor appeared to show a connectivity with respect to feeding between different habitats by having δ13C values which were in-between those of food items from two neighbouring habitats. This connectivity could be a result of either daily tidal migrations or recent ontogenetic migration.  相似文献   

18.
We characterized demersal fish and decapod crustacean habitats in 14 shallow (< 12m) areas in Penobscot Bay, Maine, by mapping the distribution of subtidal substrata with an acoustic sea bottom profiler. We identified the aquatic vegetation and the fishes and decapods associated with these habitats. Samples of fishes and decapods in each habitat were collected with a small beam trawl. The seabed at most of the stations sampled was composed of a mosaic of substrata. More species of fishes tow-1 and higher abundances of fishes and decapods were found in stations with vegetation present, particularly eelgrass, Zostera marina. Decapod species richness tow-1 was similar between vegetated and unvegetated habitats. Shallow habitats in Penobscot Bay were dominated by juvenile fishes and function as nursery areas. The greater species diversity and higher abundances of epibenthic fishes and decapod crustaceans observed in vegetated habitats, particularly beds of Zostera marina, compared with unvegetated areas in Penobscot Bay conform to the hypothesis that increased habitat complexity results in increased species richness and abundance.The first author is also senior author  相似文献   

19.
The extent to which fish communities are structured by spatial variability in coral reef habitats versus stochastic processes (such as larval supply) is very important in predicting responses to sustained and ongoing habitat degradation. In this study, butterflyfish and benthic communities were surveyed annually over 15 years on 47 reefs (spanning 12° of latitude) of the Great Barrier Reef (GBR). Spatial autocorrelation in the structure of butterflyfish communities versus key differences in reef habitats was investigated to assess the extent to which the structure of these fish communities is influenced by habitat conditions. Benthic communities on each of the 47 reefs were broadly categorised as either: 1. Poritidae/Alcyoniidae, 2. mixed taxa, 3. soft coral or 4. Acropora-dominated habitats. These habitat types most reflected increases in water clarity and wave exposure, moving across the GBR shelf from coastal to outer-shelf environments. In turn, each habitat type also supported very distinct butterflyfish communities. Hard coral feeders were always the dominant butterflyfish species in each community type. However, the numerically dominant species changed according to habitat type, representing spatial replacement of species across the shelf. This study reveals clear and consistent differences in the structure of fish communities among reefs associated with marked differences in habitat structure.  相似文献   

20.
Aim We examined data on corals and reef fishes to determine how particular local habitat types contribute to variation in community structure across regions covering gradients in species richness and how consistent this was over time. Location Great Barrier Reef (GBR), Australia. Methods We compared large‐scale (1300 km), long‐term (11 years) data on fishes and corals that were collected annually at fixed sites in three habitats (inshore, mid‐shelf and outer‐shelf reefs) and six regions (latitudinal sectors) along a gradient of regional species richness in both communities. We used canonical approaches to partition variation in community structure (sites × species abundance data matrices) into components associated with habitat, region and time and Procrustes analyses to assess the degree of concordance between coral and fish community structure. Results Remarkably similar patterns emerged for both fish and coral communities occupying the same sites. Reefs that had similar coral communities also had similar fish communities. The fraction of the community data that could be explained by regional effects, independent of pure habitat effects, was similar in both fish (33%) and coral (36.9%) communities. Pure habitat effects were slightly greater in the fish (31.3%) than in the coral (20.1%) community. Time explained relatively little variation (fish = 7.9%, corals = 9.6%) compared with these two spatial factors. Conclusions Our results indicate either that fish and coral communities were structured in similar ways by processes associated with region, habitat and time, or that the variation in fish community structure tracked variation associated with the coral communities at these sites and thereby reflects an indirect link between the environment and the structure of fish communities mediated by corals. Irrespective of the causes of such commonality, we demonstrate that community structure, not just species richness, can be related to both habitat differences and regional setting simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号