首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A virus (isolate SYM) obtained from spinach plants in England with a severe yellow mottle disease induced symptoms resembling those of tobacco rattle virus (TRV) in several indicator species but caused systemic necrosis in Chenopodium amaranticolor and C. quinoa. It was transmitted to bait plants grown in soil containing the nematode Trichodorus primitivus. Purified virus preparations contained rod-shaped particles that were predominantly of four modal lengths: 188 nm (L particles), 101 nm (S particles), 57 nm and 48 nm (together called VS particles), containing RNA with mol. wts of 2.4, 1.5, 0.7 and 0.6 million, respectively. L particles (s°20= 300 S) and S particles (230 S) greatly outnumbered VS particles (c. 150 S). All particles contained a single polypeptide species with estimated mol wt of 24 700, slightly larger than those previously reported for tobraviruses. Purified L particles were infective but both L and S particles were needed to induce the production of virus nucleoprotein particles. VS particles were not infective and apparently had no qualitative or quantitative effect on infection by L or by L plus S particles. S particles carried determinants for serological specificity and ability to invade C. amaranticolor systemically. Isolate SYM produced pseudo-recombinants with isolate PRN of TRV. Also, isolates CAM, OR and PRN of TRV, and isolate SYM, were found to be distantly related by three kinds of serological test. No relationship was detected between these isolates and pea early-browning virus in gel-diffusion precipitin tests or electron microscope serological tests, but a distant relationship between isolate SYM and pea early-browning virus was found by micro-precipitin tests. Isolate SYM therefore has closer affinities with TRV than with pea early-browning virus and is considered to be a distinctive strain of TRV.  相似文献   

2.
Purified preparations of an isolate of black raspberry latent virus (BRLV) contained quasispherical particles with a mean diameter of 28·5 nm; these particles were resolved into three sedimenting components (s20, w= 82S, 95S and 104S), but when centrifuged to equilibrium in caesium chloride solution they formed a single infective band (σ= 1·35 g/cm3). During electrophoresis in polyacrylamide gels, virus particles separated into three classes, and virus RNA was resolved into three major (mol. wt 1·35, 1·10 and 0·85 × 106) and one minor (mol. wt 0·4 × 106) component. The protein from virus particles had an estimated mol. wt of 28000. Isolates of BRLV were found to be serologically related but not identical to some strains of tobacco streak virus. No symptoms developed in black raspberry seedlings infected with BRLV by mechanical inoculation, nor in eight red raspberry cultivars infected by graft inoculation. However, graft inoculation of BRLV to Rubus henryi, R. phoenicolasius and Himalaya blackberry induced symptoms typical of necrotic shock disease.  相似文献   

3.
A mechanically transmissible virus obtained from symptomless plants of a red raspberry selection imported into Scotland from Quebec, Canada was indistinguishable serologically from a cherry isolate of cherry rasp leaf virus (CRLV). The raspberry isolate, CRLV-R, was graft transmitted to several virus indicator species and cultivars of Rubus without inducing noticeable symptoms. In Chenopodium quinoa sap, CRLV-R lost infectivity after dilution to 10-5 or heating for 10 min at 60°C but was infective after 16 days (the longest period tested) at 18°, 4° or - 15°C. The virus particles are isometric, c. 28 nm in diameter, and were purified with difficulty from infected C. murale and C. quinoa plants. The particles comprise two nucleoprotein components with sedimentation coefficients of 89 and 115 S and are prone to aggregate during purification. When centrifuged to equilibrium in CS2SO4 solution, purified virus preparations formed two major components with p= 1·28 and 1·36 g/cm3. Virus particles contained two RNA species which, when denatured in glyoxal and electrophoresed in agarose gels, had estimated mol. wt of 2·56 × 106 (RNA-1) and 1·26 × 106 (RNA–2). Infectivity of CRLV-R RNA was abolished by treatment with proteinase K, suggesting that the RNA is linked to protein necessary for infectivity; RNA molecules contained polyadenylate. In reticulocyte lysates, CRLV-R RNA stimulated the incorporation of 3H-leucine, mainly into two polypeptides of estimated mol. wt 200 000 and 102 000. When electrophoresed in polyacrylamide gels, protein obtained from CRLV-R particles purified by centrifugation to equilibrium in Cs2SO4 separated into three bands with estimated mol. wt 26 000 , 23 000 and 21 000.  相似文献   

4.
Hop latent virus (HLV) occurs in virtually all commercial hop plants in England, without causing apparent symptoms. It was transmitted between hop plants in a non-persistent manner by the aphid Phorodon humuli, but was not seed-borne in hop. The virus infected six species in four families out of 40 in 13 families which were inoculated, but infection was systemic only in Dianthus deltoides and hop. Only Phaseolus vulgaris and Chenopodium murale developed symptoms. Purification of HLV from hop extracts was hampered by aggregation of virus particles but this was minimised either by resuspending pellets in phosphate-buffered saline containing Tween 20 or by avoiding ultra-centrifugation. Virus was purified from extracts treated with Triton X-100 by precipitation with polyethylene glycol (PEG) followed either by centrifugation through sucrose density gradients or by exclusion chromatography through columns of Sephadex G-25 and Sepharose 4B. Purified preparations contained filamentous particles c. 675 × 14 nm composed of c. 6% single stranded RNA of mol. wt c. 2.9 × 106 and a single protein species of mol. wt c 33 000. Immunosorbent electron microscopy (IEM) decoration tests suggested that HLV was serologically related to carnation latent, Helenium virus S, lily symptomless and Nerine latent viruses. American hop latent virus (AHLV) was found in two introductions to England from Corvallis, USA in 1975 and 1976. It was transmitted between hop plants in the non-persistent manner by P. humuli. The virus infected 17 species in seven families out of 41 species in 13 families which were mechanically inoculated and was systemic in nine species. It did not cause symptoms in any of five English hop cultivars. C. quinoa was a convenient propagation host and countable local necrotic lesions and ringspots occurred in leaves of Datura stramonium. AHLV was purified by PEG precipitation and centrifugation in sucrose density gradients. Preparations contained filamentous particles c. 680 × 15 nm composed of c. 6% single-stranded RNA of mol. wt c. 3.0 × 106 and a single protein species of mol. wt c. 33 000. In IEM decoration tests AHLV was serologically related to Nerine latent virus but did not react with antisera to 14 other carlaviruses.  相似文献   

5.
An Australian isolate of tomato yellow top virus (TYTV-A) was transmitted in the persistent manner by the aphid Myzus persicae. Its host range was mainly restricted to the Solanaceae, though Capsella bursa-pastoris and Gomphrena globosa were symptomlessly infected. TYTV-A was purified from Physalis Joridana, using an enzyme-assisted method in which the initial tissue homogenate was incubated with cellulase. Yields of purified virus were 100–900 μg/kg tissue and depended on the age of the infected plants. Maximum yields were obtained 4–5 wk after inoculation. The particles of TYTV-A were c. 24 nm in diameter, had a buoyant density of 1.34 in caesium sulphate and a coat protein mol. wt of c. 25.7 × 103. TYTV-A was shown to be closely related serologically to potato leafroll virus (PLRV), TYTV from New Zealand and more distantly related to several other luteoviruses. An antiserum to TYTV-A was used in enzyme-linked immunosorbent assay tests to detect TYTV in field-infected tomato plants and also luteoviruses from potato plants with leafroll symptoms. It is clear that TYTV-A is a luteovirus closely related to PLRV.  相似文献   

6.
The biological, serological and physico-chemical properties of one isolate of artichoke yellow ringspot virus (AYRV) from Greece and another from Italy were compared. Both isolates infected 56 herbaceous species and there were few differences between them in the symptoms they caused. During purification they behaved identically and both tended to aggregate. Virus particles were isometric and measured c. 30 nm in diameter. In CsCl, virus sedimented as mixed aggregates of empty and full particles with buoyant densities varying from 1.20–1.30 g/ml and from 1.40–1.53 g/ml, respectively. The coat protein of AYRV contains a single polypeptide of mol. wt 53000 and the genome consists of two species of single-stranded RNA with mol. wts 2.17 × 106 (RNA-1) and 1.85 × 106 (RNA-2) daltons, estimated under denaturing conditions. The two virus isolates are serologically very closely related but are unrelated to 28 other plant viruses with isometric particles. The characteristics of AYRV suggest that it is a possible member of the nepovirus group.  相似文献   

7.
An isolate of pea early-browning virus from Britain (PEBV (B)) has tubular particles most of which are either about 103 or 212 mμ long with sedimentation coefficients of 210 and 286 S respectively. Both types show cross-banding at intervals of 2.5 mμ. Virus preparations containing only the shorter particles were not infective. PEBV (B) was transmitted to pea seedlings by both adult and juvenile Trichodorus primitivus (de Man) (Nematoda) and persisted for 32 days in T. primitivus kept without plants. In two experiments T. primitivus failed to transmit a Dutch isolate (PEBV (D)), which is distantly related serologically to PEBV (B). PEBV (B) was transmitted by nematodes to cucumber roots more readily in soil at 20d? than at 24d? C., and more readily at 24d? than at 29d? C. When transmitted by inoculation of sap, PEBV (B) and PEBV (D) caused similar symptoms in some pea varieties but differed in virulence towards others. Thirty-one varieties resistant to natural infection with PEBV in The Netherlands were susceptible to PEBV (B) when manually inoculated with sap or when grown in naturally infested soil from one site; twenty-six of these varieties did not become infected in soil from a second site, in which several other varieties that are susceptible in The Netherlands were infected. Varieties should therefore be tested for resistance by growing them on many infested fields. All but one of the pea varieties resistant to PEBV in The Netherlands became infected with the English form of tomato black ring virus when grown in soil containing infective Longidorus attenuatus Hooper.  相似文献   

8.
An isolate of Australian lucerne latent virus (ALLV) from lucerne in New Zealand was mechanically transmitted to a few herbaceous hosts. It induced diagnostic symptoms in several species of the Chenopodiaceae, but was symptomless in most other hosts including lucerne and Trifolium subterraneum. It was seed transmitted in lucerne. When assayed to Chenopodium quinoa, infective C. quinoa sap lost infectivity after diluting to 10-4, heating for 10 min at 55°C and storage for 4 days at 4°C. ALLV was purified from infected C. quinoa or pea plants by extracting sap in 0.1 m borate buffer (pH 7) containing 0.2% 2-mercaptoethanol and clarifying with 15% bentonite suspension, high and low speed centrifugation and sucrose density gradient centrifugation. Purified virus preparations contained isometric particles about 25 nm in diameter and sedimented as three virus components with sedimentation coefficients (s20-w0) of 56 S, 128 S and 133 S. The 56 S component appeared to consist of nucleic acid-free protein shells. Polyacrylamide gel electrophoresis of virus preparations showed that ALLV contained a single protein species of mol. wt 55 000 and two RNA species of mol. wt 2.1 × 106 and 2.4 × 106. An antiserum to ALLV had an homologous titre of 1/256 to purified virus but failed to detect ALLV in infective sap of C. quinoa, pea or lucerne. Purified ALLV failed to react to antisera to 28 distinct isometric plant viruses including those to 10 nepoviruses.  相似文献   

9.
A distinctive strain of tobacco necrosis virus (TNV) of unknown source was repeatedly isolated from water of the River Avon (Warwickshire) and two of its tributaries (R. Swift and R. Alne) using a technique developed for the concentration and isolation of water-borne bacteriophages. The same strain was isolated from the rivers Cam and Thames and from Lake Esthwaite (Cumbria) together with tomato bushy stunt virus. The TNV strain, designated Chenopodium necrosis (TNV-CN) was mechanically transmissible to C. amaranticolor and C. quinoa in both of which it caused local lesions and systemic infection. TNV-CN caused no infection when inoculated to tobacco (Nicotiana tabacum cv. White Burley) plants. The virus was not adsorbed to soil, could be isolated from leachate of soil in which systemically infected C. quinoa were grown and C. quinoa plants became infected when grown in soil watered with suspensions of the virus. The virus was not transmitted by Myzus persicae but was vectored by the zoospores of a lettuce isolate of Olpidium brassicae. TNV-CN was infective after 10 min at 85 °C., 3 wk at 20 °C and when diluted to 10-8 but not 10-9. Purified virus preparations contained c. 26 nm isometric virus particles. TNV-CN contained single-stranded RNA (mol. wt 1·5 × 106) and one protein (mol. wt c. 26·4 × 103) which co-electrophoresed in polyacrylamide gels with the protein of the D strain of TNV (TNV-D). Analytical centrifugation of TNV-CN indicated a single component virus with the same sedimentation coefficient (s20, w= 115S) and buoyant density (1·385) in a CsCl gradient as those of TNV-D. TNV-CN and TNV-D were indistinguishable serologically.  相似文献   

10.
An isolate of artichoke latent virus (ALV-I) obtained from a symptomless artichoke plant in Southern Italy was characterised and compared with ALV isolates from other countries. ALV occurs in California and throughout the western part of the Mediterranean basin but of Mediterranean countries east of Italy, it was found only in Israel and Turkey. ALV-I was readily transmissible by inoculation of sap to a moderate range of hosts, was transmitted in a non-persistent manner by Aphis fabae, Brachicaudus cardui and Myzus persicae, but was not seed transmitted. The virus has flexuous rod-shaped particles measuring c. 12 nm × 746 nm with a sedimentation coefficient of 145 S and a buoyant density of 1·31 g/cm3. The particles contain single stranded RNA with a mol. wt of 3 × 106 and protein composed of a single polypeptide species with a mol. wt of 33 000. Cylindrical cytoplasmic inclusions consisting of pinwheels and laminated aggregates were present in cells of naturally and artificially infected plants. ALV isolates from different geographical origin were indistinguishable from ALV-I biologically, morphologically, serologically and ultrastructurally. These properties place ALV in the Potyvirus group, but it was serologically unrelated to 12 other potyviruses 10 of which occur commonly in Italy.  相似文献   

11.
A virus was transmitted from broad bean plants in Apulia (Southern Italy) with leaves showing yellow rings, line patterns or yellow vein banding and malformations and necrosis of pods. Symptoms in some, but not all, test plants were similar to those induced by tobraviruses. Purified virus preparations contained two classes of rod-shaped particles containing c. 5% nucleic acid with sedimentation coefficients of 186S and 276S. After centrifugation to equilibrium in CsCl gradients, two components were resolved, with buoyant densities of 1·298 and 1·316 g/cm3. Unfractionated virus preparations contained two species of single-stranded RNA with mol. wts of c. 1·06 × 106 and 2·48 × 106 and one species of coat protein with mol. wt of c. 21 300. The modal lengths of the two classes of particles, both in plant sap and in purified preparations, were 77 nm (S particles) and 202 nm (L particles). L particles accumulated in infected cells in paracrystalline aggregates, whereas S particles were randomly distributed in the cytoplasm of cells. The virus was serologically unrelated to two isolates of tobacco rattle virus and two isolates of pea early-browning virus. The virus, named broad bean yellow band, is considered a distinct tobravirus.  相似文献   

12.
Narcissus tip necrosis virus (NTNV), a previously undescribed virus, was detected in the Netherlands and the United Kingdom in plants of twenty-one cultivars of trumpet, large-cupped, small-cupped, double, tazetta and poeticus narcissus. In some cultivars distinct leaf symptoms were sometimes associated with infection but in others infected plants remained symptomless and detection was dependent on serological tests. The virus was readily transmitted by manual inoculation to narcissus, but it failed to infect any of forty-six other plant species from fourteen families. Up to 50 mg of virus/kg of tissue were obtained by differential centrifugation of narcissus leaf extracts previously clarified with either diethyl ether, n-butanol or a mixture of n-butanol and chloroform. The virus particles are isometric, c. 30 nm in diameter, have a sedimentation coefficient (s°20 w) Of 123 S a buoyant density of 1·356 g/cm3, migrate as a single component in polyacrylamide gel electrophoresis, and contain a single RNA species of mol. wt 1·6×106 and two major polypeptides of mol. wt 42000 and 39000. Although NTNV resembles tombusviruses it showed no serological relationship to the type member or six putative members of this group or to thirty-four other viruses with isometric particles. Its present cryptogram is R/*:1.6/(18):S/S:S/*.  相似文献   

13.
Garlic yellow streak virus, a potyvirus infecting garlic in New Zealand   总被引:1,自引:0,他引:1  
In New Zealand, all garlic (Allium sativum) plants tested were infected by a virus with flexuous filamentous particles 700–800 nm long. This virus, called garlic yellow streak virus (GYSV), infected only two of 12 species tested and was transmitted to garlic by the aphid Myzus persicae in a non-persistent manner. In garlic sap, GYSV was infective at a dilution of 10-4 but not 10-3, after heating for 10 min at 60°C but not 65°C, and after 2 days but not 3 days at 25°C. The yield of virus, purified from naturally infected garlic, was 3–4 mg/kg fresh leaf. Preparations had A260/A280= 1.28 and Aman/Amin= 1.08. The virus particles had a sedimentation coefficient of 149S and a buoyant density in CsCl of 1.334 g/cm3. Mol. wt estimates for the virus nucleic acid were 2.95 × 106 by electrophoresis in polyacrylamide gels and 3.46 × 106 from the sedimentation coefficient (41.4S) in linear-log sucrose density gradients. Two polypeptides were detected in virus preparations; one (mol. wt 30 500) was possibly a breakdown product of the other (mol. wt 33 000). GYSV was serologically distantly related to onion yellow dwarf and leek yellow stripe viruses but was considered to be a separate virus because it differed from them in host range.  相似文献   

14.
Melon necrotic leaf spot virus (MNSV) caused a major outbreak of a leaf necrosis disease of hydroponically-grown cucumber plants at Humberside in 1983. The virus had c. 33 nm diam. particles which reacted serologically with MNSV antiserum of Dutch or American origin. Virus particles, which contained a single polypeptide (mol. wt 45 × 103) and a presumed RNA species (mol. wt 1.5 × 106), had a sedimentation coefficient (s20.w) of 134 S and a buoyant density in caesium chloride of 1.35 g/cm3. The virus was mechanically transmissible, confined to species of Cucurbitaceae, transmitted by zoospores of Olpidium radicale and retained in the resting spores of the fungus. MNSV is thus both water-borne and soil-borne. O. radicale zoospores were killed in <5 min in suspensions containing 20 μg/ml of the surfactant Agral (alkyl phenol ethylene oxide). The disease did not reappear in 1984 when the cucumber crops were fed with nutrients containing 20μg/ml Agral.  相似文献   

15.
The virus responsible for tomato pale chlorosis disease in Israel was purified from Nicotiana glutinosa plants. Purified virus contained a single stranded RN A of mol. wt 2.5 × 106 and a single coat protein subunit of mol. wt 31 000. Enzyme-linked immunosorbent assay and an immunoelectron microscopy decoration test demonstrated a serological relationship with cowpea mild mottle virus (CMMV). Based on the present study and previously reported data the virus was identified as a new strain of CMMV designated CMMV/I.  相似文献   

16.
Analysis by electrophoresis in polyacrylamide gels, followed by silver staining, of dsRNA extracted from many samples of raspberry leaves infected with raspberry leaf mottle virus (RLMV) and/or raspberry leaf spot virus (RLSV) failed to detect reliably any significant quantities of dsRNA species in excess of 1·0 × 106mol. wt. This contrasts with results reported from Canada where three dsRNA species of estimated mol. wt 2·6 × 1061·6 × 106and 1·1 × 106were consistently associated with infection with RLSV but none were associated with RLMV. However, in Scotland, four dsRNA species of estimated mol. wt 2·4 × 1061·6 × 1060·7 × 106and 0·3 × 106were detected in raspberry infected with apple mosaic ilarvirus. These results suggest that the dsRNA species reported from Canada are not those of RLSV but are probably those of a second virus, possibly an ilarvirus, which occurs together with RLSV and/or induces similar symptoms. A few samples from plants infected with RLMV and RLSV contained very small amounts of two dsRNA species of estimated mol. wt 4·7 × 106and 4·5 × 106. It is not known whether these species are those of RLMV and RLSV.  相似文献   

17.
A mechanically transmissible virus with isometric particles c. 32 nm in diameter, was isolated from infected watermelons and sweet melons in the People's Democratic Republic of Yemen. Purified virus preparations contained two major sedimenting components with sedimentation coefficients of 61S and 117S. In isopycn ic centrifugation in CsCl the particles formed a single band of buoyant density 1.39 g cm-3. Preparations of virus particles comprised of a single polypeptide of mol. wt c. 22 000 and ssRNA of mol. wt 2.1 × 106. The virus was serologically related to three of six subgroups of tymoviruses tested. The name melon rugose mosaic virus is proposed for this newly described virus.  相似文献   

18.
As previously reported, narcissus latent virus (NLV) has flexuous filamentous particles measuring c. 650 nm × 13 nm, is manually transmissible to Nicotiana clevelandii and Tetragonia expansa, and is transmitted by the aphid Myzus persicae following brief acquisition access periods. In contrast to previous reports the virus particle protein has an apparent mol. wt of c. 45 kD. Moreover, infected cells in N. clevelandii leaves contain cytoplasmic inclusion bodies resembling those of potyviruses. In vitro translation of NLV RNA produced only one major product (mol. wt c. 25 kD) which was not precipitated by antisera to virus particle protein or to cytoplasmic inclusion protein. Antisera to 12 potyviruses and nine carlaviruses failed to react with sap containing NLV particles. Similarly antiserum to NLV particles did not react with particles of seven potyviruses or four carlaviruses. A weak reaction was detected between NLV particles and antiserum to particles of maclura mosaic virus (MMV), a virus which resembles NLV in particle morphology and particle-protein size, and in inducing pinwheel inclusions. The cytoplasmic inclusion proteins (CIPs) of NLV, MMV and from narcissus plants with yellow stripe symptoms were serologically inter-related. These proteins were also serologically related to, and had mol. wt similar to, the CIP of members of the potyvirus group. Particles with the size and antigenic specificity of those of NLV were found consistently in narcissus plants with yellow stripe disease. Narcissus latent and narcissus yellow stripe viruses therefore seem to be synonymous and, together with MMV, have properties distinct from those of any previously described virus group.  相似文献   

19.
The occurrence and distribution of tobacco rattle virus (TRV) in field plots was determined by soil bait-testing and disease incidence in tulips subsequently grown on these plots was studied. The virus occurred in patches, calculated as 1.5 m × 3.6 m. The presence of virus was not correlated with numbers of potential vector trichodorid nematodes. Of three trichodorid nematode species present, only Paratrichodorus teres transmitted TRV which, as with virus isolates obtained in bait-tests and from infected tulips, reacted in serological tests with an antiserum prepared against a Dutch isolate of pea-early browning virus (PEBV). Virus prevalence in a subsequent tulip crop was 0.8% and in a sample of tulip plants, virus was recovered only from plants showing virus symptoms. Plots from which TRV was recovered in bait-tests yielded significantly more virus diseased tulips than plots which tested negative for virus. Growing bait-plants in field-plots, as compared with greenhouse tests using soil collected as a series of sub-samples, resulted in an underestimate of the occurrence of TRV.  相似文献   

20.
Groundnut plants with chlorotic rosette disease contain a manually transmissible virus, groundnut rosette (GRV), which is also transmitted in the persistent (circulative) manner by aphids (Aphis craccivora), but only from plants that are co-infected with a manually non-transmissible luteovirus, groundnut rosette assistor virus (GRAV). Strains of GRV from plants with chlorotic or green forms of rosette are called GRV(C) and GRV(G) respectively. An isolate of GRV(C) from Nigeria remained infective in Nicotiana clevelandii leaf extracts for 1 day at room temperature and for 15 days at 4d?C, but lost infectivity after 1 day at -20d?C or after dilution to 10--4. Its infectivity and longevity in vitro were not altered by addition of 1 mg/litre bentonite to the extraction buffer. Infectivity in leaf extracts was abolished by treatment with 50% (v/v) ether, 10% (v/v) chloroform or 8% (v/v) n-butanol, but not by treatment for 30 min with RNase A at up to 100 ng/ml. In attempts to purify GRV(C), nearly all the infectivity from N. clevelandii extracts was found in the pellets from centrifugation at 65 000 g for 1. 5 h; infectivity also occurred in a cell membrane fraction that collected at the top of a 30% sucrose ‘cushion’ containing 4% polyethylene glycol and 0.2 M NaCI. However, no virus-like particles were found in either type of preparation by electron microscopy. Nucleic acid preparations made directly from GRV(C)-infected N. clevelandii leaves were very infective; this infectivity was totally inactivated by treatment for 30 min with RNase A at 10 ng/ml in buffers of both low and high ionic strength and was therefore attributed to ssRNA. When nucleic acid preparations were electrophoresed in gels no virus-specific bands were visible but the position of the infectivity indicated that the infective ssRNA has an apparent mol. wt of c. 1.55 × 106. A similar mol. wt was indicated by the rate of sedimentation of the infective ssRNA in sucrose gradients. Preparations of dsRNA made from GRV(C)-infected N. clevelandii leaves contained a species of mol. wt c. 3.0 × 106; in addition some dsRNA preparations contained an abundant component of mol. wt c. 0.6 × 106 together with several other components of intermediate mol. wt. Similar patterns of bands were observed in dsRNA preparations made from Nigerian-grown groundnut material infected with GRV(C) alone, or with GRV(C) + GRAV, or with GRV(G) + GRAV. The properties of GRV closely resemble those of two other viruses that depend on luteoviruses for transmission by aphids, carrot mottle virus and lettuce speckles mottle virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号