首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:通过研究硒对流感病毒悬液滴鼻处理的小鼠的体重变化、死亡率、血清硒水平和细胞因子的影响,探讨硒对感染流感病毒小鼠的保护作用。方法:将60只昆明小鼠分为5组,每组12只,分别为缺硒组(0 mg/kg)、正常给硒组(0.2 mg/kg)、补充硒组(0.3 mg/kg)、补充硒组(0.4 mg/kg)、补充硒组(0.5 mg/kg)。给5周龄的小鼠滴鼻接种50μL的A/NWS/33(H1N1)病毒悬液并观察21天,监测每组小鼠的体重变化和死亡率;并在接种病毒后的第3天、第5天,检测小鼠的血清硒、TNF-α和IFN-γ水平。结果:缺硒组小鼠的死亡率高于正常给硒组和补充硒组(P0.05);缺硒组小鼠的血清硒水平明显低于正常给硒组和补充硒组(P0.05);在病毒感染第5天,缺硒组小鼠的TNF-α和IFN-γ含量低于正常给硒组和补充硒组(P0.05),差异均有统计学意义。结论:硒可以提高机体对抗流感病毒的免疫反应。  相似文献   

2.
F Krammer  N Pica  R Hai  GS Tan  P Palese 《Journal of virology》2012,86(19):10302-10307
Previously, it has been shown that infection in humans with the pandemic swine influenza virus induces antibodies with specificity to the stalk domain of the viral hemagglutinin. Following the generation of these data, we sought to recapitulate these findings in the mouse model by sequential influenza virus infection. Mice that were inoculated with a seasonal influenza H1N1 virus followed by infection with a pandemic H1N1 strain produced higher antihemagglutinin stalk antibody titers than mice sequentially infected with drifted seasonal strains. In order to achieve antibody titers of comparable magnitude using sequential infection, mice had to be infected with 100- to 1,000-fold more of the drifted seasonal virus. The antistalk antibodies produced by these infections were influenza virus neutralizing, which illustrates the utility of the mouse model in which to study this interaction between virus and host.  相似文献   

3.
The proapoptotic PB1-F2 protein of influenza A viruses has been shown to contribute to pathogenesis in the mouse model. Expression of full-length PB1-F2 increases the pathogenesis of the influenza A virus, causing weight loss, slower viral clearance, and increased viral titers in the lungs. After comparing viruses from the Hong Kong 1997 H5N1 outbreak, one amino acid change (N66S) was found in the PB1-F2 sequence at position 66 that correlated with pathogenicity. This same amino acid change (N66S) was also found in the PB1-F2 protein of the 1918 pandemic A/Brevig Mission/18 virus. Two isogenic recombinant chimeric viruses were created with an influenza A/WSN/33 virus background containing the PB1 segment from the HK/156/97: WH and WH N66S. In mice infected with WH N66S virus there was increased pathogenicity as measured by weight loss and decreased survival, and a 100-fold increase in virus replication when compared to mice infected with the WH virus. The 1918 pandemic strain A/Brevig Mission/18 was reconstructed with a pathogenicity-reducing mutation in PB1-F2 (S66N). The resultant 1918 S66N virus was attenuated in mice having a 3-log lower 50% lethal dose and caused less morbidity and mortality in mice than the wild-type virus. Viral lung titers were also decreased in 1918 S66N-infected mice compared with wild-type 1918 virus-infected mice. In addition, both viruses with an S at position 66 (WH N66S and wt 1918) induced elevated levels of cytokines in the lungs of infected mice. Together, these data show that a single amino acid substitution in PB1-F2 can result in increased viral pathogenicity and could be one of the factors contributing to the high lethality seen with the 1918 pandemic virus.  相似文献   

4.
5.

Background

Patients with influenza virus infection can develop severe pneumonia and acute respiratory distress syndrome (ARDS) which have a high mortality. Influenza virus infection is treated worldwide mainly by neuraminidase inhibitors (NAIs). However, monotherapy with NAIs is insufficient for severe pneumonia secondary to influenza virus infection. We previously demonstrated that mice infected with a lethal dose of influenza virus develop diffuse alveolar damage (DAD) with alveolar collapse similar to that seen in ARDS in humans. Additionally, pulmonary surfactant proteins were gradually increased in mouse serum, suggesting a decrease in pulmonary surfactant in the lung. Therefore, the present study examined whether combination therapy of NAI with exogenous artificial surfactant affects mortality of influenza virus-infected mice.

Methodology/Principal Findings

BALB/c mice were inoculated with several viral doses of influenza A/Puerto Rico/8/34 (PR8) virus (H1N1). The mice were additionally administered exogenous artificial surfactant in the presence or absence of a new NAI, laninamivir octanoate. Mouse survival, body weight and general condition were observed for up to 20 days after inoculation. Viral titer and cytokine/chemokine levels in the lungs, lung weight, pathological analysis, and blood O2 and CO2 pressures were evaluated. Infected mice treated with combination therapy of laninamivir octanoate with artificial surfactant showed a significantly higher survival rate compared with those that received laninamivir octanoate monotherapy (p = 0.003). However, virus titer, lung weight and cytokine/chemokine responses were not different between the groups. Histopathological examination, a hydrostatic lung test and blood gas analysis showed positive results in the combination therapy group.

Conclusions/Significance

Combination therapy of laninamivir octanoate with artificial surfactant reduces lethality in mice infected with influenza virus, and eventually suppresses DAD formation and preserves lung function. This combination could be effective for prevention of severe pneumonia secondary to influenza virus infection in humans, which is not improved by NAI monotherapy.  相似文献   

6.
We explored the immunogenic properties of influenza A viruses with altered NS1 genes (NS1 mutant viruses). NS1 mutant viruses expressing NS1 proteins with an impaired RNA-binding function or insertion of a longer foreign sequence did not replicate in murine lungs but still were capable of inducing a Th1-type immune response resulting in significant titers of virus-specific serum and mucosal immunoglobulin G2 (IgG2) and IgA, but with lower titers of IgG1. In contrast, replicating viruses elicited high titers of serum and mucosal IgG1 but less serum IgA. Replication-deficient NS1 mutant viruses induced a rapid local release of proinflammatory cytokines such as interleukin-1beta (IL-1beta) and IL-6. Moreover, these viruses also elicited markedly higher levels of IFN-alpha/beta in serum than the wild-type virus. Comparable numbers of virus-specific primary CD8(+) T cells were determined in all of the groups of immunized mice. The most rapid onset of the recall CD8(+)-T-cell response upon the wild-type virus challenge was detected in mice primed with NS1 mutant viruses eliciting high levels of cytokines. It is noteworthy that there was one NS1 mutant virus encoding NS1 protein with a deletion of 40 amino acids predominantly in the RNA-binding domain that induced the highest levels of IFN-alpha/beta, IL-6 and IL-1beta after infection. Mice that were immunized with this virus were completely protected from the challenge infection. These findings indicate that a targeted modification of the RNA-binding domain of the NS1 protein is a valuable technique to generate replication-deficient, but immunogenic influenza virus vaccines.  相似文献   

7.
The influence of cyclophosphamide (Cy) on the establishment and duration of the intestinal resistance against enteric infection with a mouse adenovirus, strain K87, was examined in inbred mice, strain DK1. When Cy (40 mg/kg/day) was administered to mice for 17 days from the time of virus challenge, a clear prolongation of viral growth and a delayed appearance of neutralizing (NT) antibody in the intestinal wall as well as in the serum were observed. When Cy (40 mg/kg/day, for 14 days) was administered after cessation of viral growth (4 to 6 weeks after virus challenge) and part of the mice were rechallenged with the virus, titers of NT antibody and immunoglobulins became significantly lower than those in control mice not treated with Cy, and regrowth of the virus was observed in eight out of twenty-five Cy-treated mice, regardless of the presence or absence of re-challenge. In this experiment, antibody titers in the intestinal contents of eight virus-positive mice were significantly lower than those of the remaining seventeen virus-negative mice. The time when the decrease of intestinal NT antibody was maximum coincided with the time of the maximal frequency of viral regrowth. It was discussed that these facts might present an evidence to support the idea that the intestinal resistance was acquired through local NT antibody belonging to IgA in the intestinal tract.  相似文献   

8.
We investigated the importance of the host Mx1 gene in protection against highly pathogenic H5N1 avian influenza virus. Mice expressing the Mx1 gene survived infection with the lethal human H5N1 isolate A/Vietnam/1203/04 and with reassortants combining its genes with those of the non-lethal virus A/chicken/Vietnam/C58/04, while all Mx1–/– mice succumbed. Mx1-expressing mice showed lower organ virus titers, fewer lesions, and less pulmonary inflammation. Our data support the hypothesis that Mx1 expression protects mice against the high pathogenicity of H5N1 virus through inhibition of viral polymerase activity ultimately resulting in reduced viral growth and spread. Drugs that mimic this mechanism may be protective in humans.  相似文献   

9.

Background

We previously demonstrated that cyclooxygenase (COX)-1 deficiency results in greater morbidity and inflammation, whereas COX-2 deficiency leads to reduced morbidity, inflammation and mortality in influenza infected mice.

Methodology/Principal Findings

We investigated the effects of COX-1 and COX-2 inhibitors in influenza A viral infection. Mice were given a COX-1 inhibitor (SC-560), a COX-2 inhibitor (celecoxib) or no inhibitor beginning 2 weeks prior to influenza A viral infection (200 PFU) and throughout the course of the experiment. Body weight and temperature were measured daily as indicators of morbidity. Animals were sacrificed on days 1 and 4 post-infection and bronchoalveolar lavage (BAL) fluid was collected or daily mortality was recorded up to 2 weeks post-infection. Treatment with SC-560 significantly increased mortality and was associated with profound hypothermia and greater weight loss compared to celecoxib or control groups. On day 4 of infection, BAL fluid cells were modestly elevated in celecoxib treated mice compared to SC-560 or control groups. Viral titres were similar between treatment groups. Levels of TNF-α and G-CSF were significantly attenuated in the SC-560 and celecoxib groups versus control and IL-6 levels were significantly lower in BAL fluid of celecoxib treated mice versus control and versus the SC-560 group. The chemokine KC was significantly lower in SC-560 group versus control.

Conclusions/Significance

Treatment with a COX-1 inhibitor during influenza A viral infection is detrimental to the host whereas inhibition of COX-2 does not significantly modulate disease severity. COX-1 plays a critical role in controlling the thermoregulatory response to influenza A viral infection in mice.  相似文献   

10.
The roles of IgG and secretory IgA in the protection of the respiratory tract (RT) against influenza infection remain unclear. Passive immunization with Ab doses resulting in serum IgG anti-influenza virus Ab titers far in excess of those observed in immune mice has compounded the problem. We compared the effects of i.v. anti-influenza virus IgG and i.v. anti-influenza virus polymeric IgA (pIgA) mAb administered in amounts designed to replicate murine convalescent serum or nasal Ab titers, respectively. A serum anti-influenza virus IgG titer 2.5 times the normal convalescent serum anti-influenza virus IgG titer was required for detectible Ab transudation into nasal secretions, and a serum IgG titer 7 times normal was needed to lower nasal viral shedding by 98%. Anti-influenza virus pIgA at a nasal Ab titer comparable to that seen in convalescent mice eliminated nasal viral shedding. The RT of influenza-infected pIgA- or IgG-protected mice were studied by scanning electron microscopy. Only pIgA was found to prevent virally induced pathology in the upper RT, suggesting that IgG did not prevent viral infection of the nose, but neutralized newly replicated virus after infection had been initiated. In contrast, IgG, but not pIgA, was found to prevent viral pathology in the murine lung. Our results help to resolve the controversy of IgA- vs IgG-mediated protection of the RT; both Abs are important, with plasma IgG Ab serving as the back-up for secretory IgA-mediated protection in the nasal compartment, and IgG being the dominant Ab in protection of the lung.  相似文献   

11.
Pertussis (whooping cough) is frequently complicated by concomitant infections with respiratory viruses. Here we report the effect of Bordetella pertussis infection on subsequent influenza virus (PR8) infection in mouse models and the role of pertussis toxin (PT) in this effect. BALB/c mice infected with a wild-type strain of B. pertussis (WT) and subsequently (up to 14 days later) infected with PR8 had significantly increased pulmonary viral titers, lung pathology and mortality compared to mice similarly infected with a PT-deficient mutant strain (ΔPT) and PR8. Substitution of WT infection by intranasal treatment with purified active PT was sufficient to replicate the exacerbating effects on PR8 infection in BALB/c and C57/BL6 mice, but the effects of PT were lost when toxin was administered 24 h after virus inoculation. PT had no effect on virus titers in primary cultures of murine tracheal epithelial cells (mTECs) in vitro, suggesting the toxin targets an early immune response to increase viral titers in the mouse model. However, type I interferon responses were not affected by PT. Whole genome microarray analysis of gene expression in lung tissue from PT-treated and control PR8-infected mice at 12 and 36 h post-virus inoculation revealed that PT treatment suppressed numerous genes associated with communication between innate and adaptive immune responses. In mice depleted of alveolar macrophages, increase of pulmonary viral titers by PT treatment was lost. PT also suppressed levels of IL-1β, IL-12, IFN-γ, IL-6, KC, MCP-1 and TNF-α in the airways after PR8 infection. Furthermore PT treatment inhibited early recruitment of neutrophils and NK cells to the airways. Together these findings demonstrate that infection with B. pertussis through PT activity predisposes the host to exacerbated influenza infection by countering protective innate immune responses that control virus titers.  相似文献   

12.
Exposure to ambient levels of ozone (0.5 ppm) was shown to alter the pathogenesis of respiratory infection after aerosol infection of mice with influenza A virus. A semiquantitative method for determination of the sites of virus replication by direct immunofluorescence indicated that exposure to ozone reduced the involvement of respiratory epithelium in the infectious process and resulted in a less widespread infection of the alveolar parenchyma. Furthermore, the ozone-mediated alteration in viral antigen distribution was consistent with significantly reduced influenza disease mortality and prolonged survival time, but only when the oxidant was present during the course of infection. Reduced disease severity in ozone-exposed animals appeared to be independent of peak pulmonary virus titers, pulmonary interferon titers, and pulmonary and serum-neutralizing antibody titers. These studies suggested that the distribution of influenza virus in the murine lung was a key factor in disease severity.  相似文献   

13.
Exposure to ambient levels of ozone (0.5 ppm) was shown to alter the pathogenesis of respiratory infection after aerosol infection of mice with influenza A virus. A semiquantitative method for determination of the sites of virus replication by direct immunofluorescence indicated that exposure to ozone reduced the involvement of respiratory epithelium in the infectious process and resulted in a less widespread infection of the alveolar parenchyma. Furthermore, the ozone-mediated alteration in viral antigen distribution was consistent with significantly reduced influenza disease mortality and prolonged survival time, but only when the oxidant was present during the course of infection. Reduced disease severity in ozone-exposed animals appeared to be independent of peak pulmonary virus titers, pulmonary interferon titers, and pulmonary and serum-neutralizing antibody titers. These studies suggested that the distribution of influenza virus in the murine lung was a key factor in disease severity.  相似文献   

14.
Influence of Statolon on Resistance of Mice to Influenza   总被引:2,自引:1,他引:1       下载免费PDF全文
Various interferon inducers are known to elicit protection against lethal or infecting doses of certain viral agents. Because of the relatively high morbidity rate of influenza and its seasonal occurrence, we wished to determine whether statolon-induced interferon might be effective in controlling this disease. Mice were treated intraperitoneally with statolon and challenged with influenza A(2) virus by the intranasal route. Although interferon was present in the serum at the time of virus administration, no change in mortality rate was observed. There was, however, a significant increase in the mean survival time of treated animals. Similar results were obtained when Newcastle disease virus was used as the interferon inducer. To determine the effect of the route of challenge, other mice were treated with statolon or Newcastle disease virus and inoculated with mengovirus by the intranasal or intraperitoneal route. The results demonstrated that the treated mice were protected to similar degree against challenge by either route. It is suggested that the relative ineffectiveness of interferon in protecting mice against influenza is due to an intrinsic characteristic of the virus itself rather than the type of interferon induced or the route of virus challenge.  相似文献   

15.
Antibody specific for viral neuraminidase can be demonstrated in mice following (i) pulmonary infection with influenza virus, (ii) immunization with ultraviolet-in-activated influenza virus, (iii) immunization with isolated neuraminidase of influenza A(2) virus, and (iv) passive immunization with sera of rabbits immunized with isolated A(2) neuraminidase. Neuraminidase antibody produced by any of these methods exerts a profound inhibiting effect on virus replication in the lungs of mice challenged with strains of virus having homologous neuraminidase protein, even in the absence of hemagglutinating inhibiting antibody to the challenge virus, and results in markedly decreased pulmonary virus titers and diminished lung lesions. These observations suggest that antineuraminidase immunity may play a significant role in the protection against influenza virus challenge observed in mice after infection or artificial immunization.  相似文献   

16.
Annual influenza epidemics and occasional pandemics pose a severe threat to human health. Host cell factors required for viral spread but not for cellular survival are attractive targets for novel approaches to antiviral intervention. The cleavage activation of the influenza virus hemagglutinin (HA) by host cell proteases is essential for viral infectivity. However, it is unknown which proteases activate influenza viruses in mammals. Several candidates have been identified in cell culture studies, leading to the concept that influenza viruses can employ multiple enzymes to ensure their cleavage activation in the host. Here, we show that deletion of a single HA-activating protease gene, Tmprss2, in mice inhibits spread of mono-basic H1N1 influenza viruses, including the pandemic 2009 swine influenza virus. Lung pathology was strongly reduced and mutant mice were protected from weight loss, death and impairment of lung function. Also, after infection with mono-basic H3N2 influenza A virus body weight loss and survival was less severe in Tmprss2 mutant compared to wild type mice. As expected, Tmprss2-deficient mice were not protected from viral spread and pathology after infection with multi-basic H7N7 influenza A virus. In conclusion, these results identify TMPRSS2 as a host cell factor essential for viral spread and pathogenesis of mono-basic H1N1 and H3N2 influenza A viruses.  相似文献   

17.
Since the first recorded infection of humans with H5N1 viruses of avian origin in 1997, sporadic human infections continue to occur with a staggering mortality rate of >60%. Although sustained human-to-human transmission has not occurred yet, there is a growing concern that these H5N1 viruses might acquire this trait and raise the specter of a pandemic. Despite progress in deciphering viral determinants of pathogenicity, we still lack crucial information on virus/immune system interactions pertaining to severe disease and high mortality associated with human H5N1 influenza virus infections. Using two human isolates of H5N1 viruses that differ in their pathogenicity in mice, we have defined mechanistic links among the rate of viral replication, mortality, CD8 T cell responses, and immunopathology. The extreme pathogenicity of H5N1 viruses was directly linked to the ability of the virus to replicate rapidly, and swiftly attain high steady-state titers in the lungs within 48 hours after infection. The remarkably high replication rate of the highly pathogenic H5N1 virus did not prevent the induction of IFN-β or activation of CD8 T cells, but the CD8 T cell response was ineffective in controlling viral replication in the lungs and CD8 T cell deficiency did not affect viral titers or mortality. Additionally, BIM deficiency ameliorated lung pathology and inhibited T cell apoptosis without affecting survival of mice. Therefore, rapidly replicating, highly lethal H5N1 viruses could simply outpace and overwhelm the adaptive immune responses, and kill the host by direct cytopathic effects. However, therapeutic suppression of early viral replication and the associated enhancement of CD8 T cell responses improved the survival of mice following a lethal H5N1 infection. These findings suggest that suppression of early H5N1 virus replication is key to the programming of an effective host response, which has implications in treatment of this infection in humans.  相似文献   

18.
Ginseng polysaccharide has been known to have multiple immunomodulatory effects. In this study, we investigated whether Panax ginseng polysaccharide (GP) would have a preventive effect on influenza infection. Administration of mice with GP prior to infection was found to confer a survival benefit against infection with H1N1 (A/PR/8/34) and H3N2 (A/Philippines/82) influenza viruses. Mice infected with the 2009 H1N1 virus suspended in GP solution showed moderately enhanced survival rates and lower levels of lung viral titers and the inflammatory cytokine (IL-6). Daily treatment of vaccinated mice with GP improved their survival against heterosubtypic lethal challenge. This study demonstrates the first evidence that GP can be used as a remedy against influenza viral infection.  相似文献   

19.
In contrast to the detrimental outcomes most often associated with the resolution of coinfections, the model presented here involving a localized Pneumocystis infection of the lung, followed 2 wk later by an influenza virus infection, results in a significant beneficial outcome for the host. In the week following the influenza infection, immunocompetent coinfected animals exhibited an accelerated rate of virus clearance, an accelerated appearance of higher influenza-specific neutralizing Ab titers in their serum and bronchoalveolar lavage fluid (BALF), significantly reduced inflammatory cytokine levels in their BALF, and reduced levels of morbidity relative to animals infected only with influenza virus. The beneficial outcome observed in coinfected immunocompetent animals was dependent on the ongoing resolution of a viable Pneumocystis infection. No differences in viral clearance were detected between coinfected and influenza-only-infected muMT mice or likewise for SCID mice. The accelerated anti-influenza response did not appear to be associated with influenza-specific CD8 T cell-mediated responses or NK cell responses in the lung. Rather, the increased rate of viral clearance was due to the enhancement of the influenza-specific Ab response, which in turn was transiently dependent upon the resolution of the ongoing Pneumocystis infection.  相似文献   

20.
Innate immune response is important for viral clearance during influenza virus infection. Galectin-1, which belongs to S-type lectins, contains a conserved carbohydrate recognition domain that recognizes galactose-containing oligosaccharides. Since the envelope proteins of influenza virus are highly glycosylated, we studied the role of galectin-1 in influenza virus infection in vitro and in mice. We found that galectin-1 was upregulated in the lungs of mice during influenza virus infection. There was a positive correlation between galectin-1 levels and viral loads during the acute phase of viral infection. Cells treated with recombinant human galectin-1 generated lower viral yields after influenza virus infection. Galectin-1 could directly bind to the envelope glycoproteins of influenza A/WSN/33 virus and inhibit its hemagglutination activity and infectivity. It also bound to different subtypes of influenza A virus with micromolar dissociation constant (K(d)) values and protected cells against influenza virus-induced cell death. We used nanoparticle, surface plasmon resonance analysis and transmission electron microscopy to further demonstrate the direct binding of galectin-1 to influenza virus. More importantly, we show for the first time that intranasal treatment of galectin-1 could enhance survival of mice against lethal challenge with influenza virus by reducing viral load, inflammation, and apoptosis in the lung. Furthermore, galectin-1 knockout mice were more susceptible to influenza virus infection than wild-type mice. Collectively, our results indicate that galectin-1 has anti-influenza virus activity by binding to viral surface and inhibiting its infectivity. Thus, galectin-1 may be further explored as a novel therapeutic agent for influenza.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号