首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Fas (CD95) belongs to the superfamily of the tumor necrosis factor (TNF) receptors. Besides its key role in apoptosis, Fas contributes to non-apoptotic pathways such as cell proliferation and inflammation. In 3T3-L1 adipocytes, activation of Fas by Fas ligand decreased insulin-stimulated glucose uptake, without affecting cell viability. This decrease in glucose uptake was accompanied by reduced protein expression and diminished phosphorylation of Akt. Similarly, insulin-stimulated glucose incorporation and protein levels of Akt were increased in isolated adipocytes from Fas deficient mice when compared to wild-type mice. In conclusion, Fas activation in adipocytes decreases Akt expression and thereby impairs insulin sensitivity.  相似文献   

2.
The molecular bases underlying burn- or critical illness-induced insulin resistance still remain unclarified. Muscle protein catabolism is a ubiquitous feature of critical illness. Akt/PKB plays a central role in the metabolic actions of insulin and is a pivotal regulator of hypertrophy and atrophy of skeletal muscle. We therefore examined the effects of burn injury on insulin-stimulated Akt/PKB activation in skeletal muscle. Insulin-stimulated phosphorylation of Akt/PKB was significantly attenuated in burned compared with sham-burned rats. Insulin-stimulated Akt/PKB kinase activity, as judged by immune complex kinase assay and phosphorylation status of the endogenous substrate of Akt/PKB, glycogen synthase kinase-3beta (GSK-3beta), was significantly impaired in burned rats. Furthermore, insulin consistently failed to increase the phosphorylation of p70 S6 kinase, another downstream effector of Akt/PKB, in rats with burn injury, whereas phosphorylation of p70 S6 kinase was increased by insulin in controls. The protein expression of Akt/PKB, GSK-3beta, and p70 S6 kinase was unaltered by burn injury. However, insulin-stimulated activation of ERK, a signaling pathway parallel to Akt/PKB, was not affected by burn injury. These results demonstrate that burn injury impairs insulin-stimulated Akt/PKB activation in skeletal muscle and suggest that attenuated Akt/PKB activation may be involved in deranged metabolism and muscle wasting observed after burn injury.  相似文献   

3.
Previous studies suggested that protein-tyrosine phosphatase 1B (PTP1B) antagonizes insulin action by catalyzing dephosphorylation of the insulin receptor (IR) and/or other key proteins in the insulin signaling pathway. In adipose tissue and muscle of obese humans and rodents, PTP1B expression is increased, which led to the hypothesis that PTP1B plays a role in the pathogenesis of insulin resistance. Consistent with this, mice in which the PTP1B gene was disrupted exhibit increased insulin sensitivity. To test whether increased expression of PTP1B in an insulin-sensitive cell type could contribute to insulin resistance, we overexpressed wild-type PTP1B in 3T3L1 adipocytes using adenovirus-mediated gene delivery. PTP1B expression was increased approximately 3-5-fold above endogenous levels at 16 h, approximately 14-fold at 40 h, and approximately 20-fold at 72 h post-transduction. Total protein-tyrosine phosphatase activity was increased by 50% at 16 h, 3-4-fold at 40 h, and 5-6-fold at 72 h post-transduction. Compared with control cells, cells expressing high levels of PTP1B showed a 50-60% decrease in maximally insulin-stimulated tyrosyl phosphorylation of IR and insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K) activity associated with IRS-1 or with phosphotyrosine. Akt phosphorylation and activity were unchanged. Phosphorylation of p42 and p44 MAP kinase (MAPK) was reduced approximately 32%. Overexpression of PTP1B had no effect on basal, submaximally or maximally (100 nm) insulin-stimulated glucose transport or on the EC(50) for transport. Our results suggest that: 1) insulin stimulation of glucose transport in adipocytes requires 相似文献   

4.
Calorie restriction [CR; ~65% of ad libitum (AL) intake] improves insulin-stimulated glucose uptake (GU) and Akt phosphorylation in skeletal muscle. We aimed to elucidate the effects of CR on 1) processes that regulate Akt phosphorylation [insulin receptor (IR) tyrosine phosphorylation, IR substrate 1-phosphatidylinositol 3-kinase (IRS-PI3K) activity, and Akt binding to regulatory proteins (heat shock protein 90, Appl1, protein phosphatase 2A)]; 2) Akt substrate of 160-kDa (AS160) phosphorylation on key phosphorylation sites; and 3) atypical PKC (aPKC) activity. Isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from AL or CR (6 mo duration) 9-mo-old male F344BN rats were incubated with 0, 1.2, or 30 nM insulin and 2-deoxy-[(3)H]glucose. Some CR effects were independent of insulin dose or muscle type: CR caused activation of Akt (Thr(308) and Ser(473)) and GU in both muscles at both insulin doses without CR effects on IRS1-PI3K, Akt-PP2A, or Akt-Appl1. Several muscle- and insulin dose-specific CR effects were revealed. Akt-HSP90 binding was increased in the epitrochlearis; AS160 phosphorylation (Ser(588) and Thr(642)) was greater for CR epitrochlearis at 1.2 nM insulin; and IR phosphorylation and aPKC activity were greater for CR in both muscles with 30 nM insulin. On the basis of these data, our working hypothesis for improved insulin-stimulated GU with CR is as follows: 1) elevated Akt phosphorylation is fundamental, regardless of muscle or insulin dose; 2) altered Akt binding to regulatory proteins (HSP90 and unidentified Akt partners) is involved in the effects of CR on Akt phosphorylation; 3) Akt effects on GU depend on muscle- and insulin dose-specific elevation in phosphorylation of Akt substrates, including, but not limited to, AS160; and 4) greater IR phosphorylation and aPKC activity may contribute at higher insulin doses.  相似文献   

5.
Insulin signaling was examined in muscle made insulin resistant by short-term (24-h) denervation. Insulin-stimulated glucose transport in vitro was reduced by 28% (P < 0.05) in denervated muscle (DEN). In control muscle (SHAM), insulin increased levels of surface-detectable GLUT-4 (i.e., translocated GLUT-4) 1.8-fold (P < 0.05), whereas DEN surface GLUT-4 was not increased by insulin (P > 0.05). Insulin treatment in vivo induced a rapid appearance of phospho[Ser(473)]Akt-alpha in SHAM 3 min after insulin injection. In DEN, phospho[Ser(473)]Akt-alpha also appeared at 3 min, but Ser(473)-phosphorylated Akt-alpha was 36% lower than in SHAM (P < 0. 05). In addition, total Akt-alpha protein in DEN was 37% lower than in SHAM (P < 0.05). Akt-alpha kinase activity was lower in DEN at two insulin levels tested: 0.1 U insulin/rat (-22%, P < 0.05) and 1 U insulin/rat (-26%, P < 0.01). These data indicate that short-term (24-h) denervation, which lowers insulin-stimulated glucose transport, is associated with decreased Akt-alpha activation and impaired insulin-stimulated GLUT-4 appearance at the muscle surface.  相似文献   

6.
Epinephrine inhibits insulin-stimulated muscle glucose transport.   总被引:2,自引:0,他引:2  
We recently demonstrated that epinephrine could inhibit the activation by insulin of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase (PI3-kinase) in skeletal muscle (Hunt DG, Zhenping D, and Ivy JL. J Appl Physiol 92: 1285-1292, 2002). Activation of PI3-kinase is recognized as an essential step in the activation of muscle glucose transport by insulin. We therefore investigated the effect of epinephrine on insulin-stimulated glucose transport in both fast-twitch (epitrochlearis) and slow-twitch (soleus) muscle of the rat by using an isolated muscle preparation. Glucose transport was significantly increased in the epitrochlearis and soleus when incubated in 50 and 100 microU/ml insulin, respectively. Activation of glucose transport by 50 microU/ml insulin was inhibited by 24 nM epinephrine in both muscle types. This inhibition of glucose transport by epinephrine was accompanied by suppression of IRS-1-associated PI3-kinase activation. However, when muscles were incubated in 100 microU/ml insulin, 24 nM epinephrine was unable to inhibit IRS-1-associated PI3-kinase activation or glucose transport. Even when epinephrine concentration was increased to 500 nM, no attenuating effect was observed on glucose transport. Results of this study indicate that epinephrine is capable of inhibiting glucose transport activated by a moderate, but not a high, physiological insulin concentration. The inhibition of glucose transport by epinephrine appears to involve the inhibition of IRS-1-associated PI3-kinase activation.  相似文献   

7.
Botulinum toxin A (botox) is a toxin used for spasticity treatment and cosmetic purposes. Botox blocks the excitation of skeletal muscle fibers by preventing the release of acetylcholine from motor nerves, a process termed chemical denervation. Surgical denervation is associated with increased expression of the canonical insulin-activated kinase Akt, lower expression of glucose handling proteins GLUT4 and hexokinase II (HKII) and insulin resistant glucose uptake, but it is not known if botox has a similar effect. To test this, we performed a time-course study using supra-maximal insulin-stimulation in mouse soleus ex vivo. No effect was observed in the glucose transport responsiveness at day 1, 7 and 21 after intramuscular botox injection, despite lower expression of GLUT4, HKII and expression and phosphorylation of TBC1D4. Akt protein expression and phosphorylation of the upstream kinase Akt were increased by botox treatment at day 21. In a follow-up study, botox decreased submaximal insulin-stimulated glucose transport. The marked alterations of insulin signaling, GLUT4 and HKII and submaximal insulin-stimulated glucose transport are a potential concern with botox treatment which merit further investigation in human muscle. Furthermore, the botox-induced chemical denervation model may be a less invasive alternative to surgical denervation.  相似文献   

8.
Regulation of hormone action with aging has been extensively studied; adipocytes provide an interesting model for some of these questions. We have compared the ability of insulin to stimulate glucose uptake and suppress lipolysis in adipocytes isolated from two month and twelve month-old rats. The ability of insulin to stimulate maximal glucose transport was decreased in adipocytes from the older rats (P less than 0.001); as well, insulin's EC50 was also higher (P less than 0.01) in these cells. Furthermore, these defects were present when insulin-stimulated glucose transport was measured in the presence or absence of adenosine deaminase which metabolizes endogenously released adenosine. Endogenously released adenosine is a stimulator of glucose transport and an inhibitor of lipolysis. Maximal suppression of isoproterenol-induced lipolysis by insulin was similar when adipocytes isolated from the two age groups were incubated in the absence of adenosine deaminase. However, maximal insulin-mediated suppression of lipolysis was found to be significantly decreased (P less than 0.001) in adipocytes isolated from older rats when the experiments were done in the presence of adenosine deaminase; also, insulin's EC50 was increased in these cells under these conditions (P less than 0.001). These results emphasize the importance of the adenosine receptor in modulating the response of isolated adipocytes to insulin, particularly for lipolysis, and document the presence of age-associated defects in insulin regulation of both glucose transport and lipolysis.  相似文献   

9.
Sensitivity of glucose transport to stimulation by insulin has been shown to occur concomitant with activation of the AMP-activated protein kinase (AMPK) in skeletal muscle, suggesting a role of AMPK in regulation of insulin action. The purpose of the present study was to evaluate a possible role of AMPK in potentiation of insulin action in muscle cells. The experimental model involved insulin-responsive C2C12 myotubes that exhibit a twofold increase in glucose transport in the presence of insulin. Treatment of myotubes with the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), followed by a 2-h recovery, augmented the ability of insulin to stimulate glucose transport. Similarly, incubation in hyperosmotic medium, another AMPK-activating treatment, acted synergistically with insulin to stimulate glucose transport. Furthermore, the increase in insulin action caused by hyperosmotic stress was prevented by inclusion of compound C, an AMPK inhibitor, in hyperosmotic medium. In addition, iodotubercidin, a general kinase inhibitor that is effective against AMPK, also prevented the combined effects of insulin and hyperosmotic stress on glucose transport. The new information provided by these data is that previously reported AICAR effects on insulin action are generalizable to myotubes, hyperosmotic stress and insulin synergistically increase glucose transport, and AMPK appears to mediate potentiation of insulin action.  相似文献   

10.
Previous studies suggest that the stimulation of glucose transport by insulin involves the tyrosine phosphorylation of c-Cbl and the translocation of the c-Cbl/CAP complex to lipid raft subdomains of the plasma membrane. We now demonstrate that Cbl-b also undergoes tyrosine phosphorylation and membrane translocation in response to insulin in 3T3-L1 adipocytes. Ectopic expression of APS facilitated insulin-stimulated phosphorylation of tyrosines 665 and 709 in Cbl-b. The phosphorylation of APS produced by insulin drove the translocation of both c-Cbl and Cbl-b to the plasma membrane. Like c-Cbl, Cbl-b associates constitutively with CAP and interacts with Crk upon insulin stimulation. Cbl proteins formed homo- and heterodimers in vivo, which required the participation of a conserved leucine zipper domain. A Cbl mutant incapable of dimerization failed to interact with APS and to undergo tyrosine phosphorylation in response to insulin, indicating an essential role of Cbl dimerization in these processes. Thus, both c-Cbl and Cbl-b can initiate a phosphatidylinositol 3-kinase/protein kinase B-independent signaling pathway critical to insulin-stimulated GLUT4 translocation.  相似文献   

11.
In isolated rat adipocytes, basal as well as insulin-stimulated 3-O-methylglucose transport was inhibited nearly completely (maximal inhibition: 95%) by the nucleoside transport inhibitors dipyridamole (IC50 = 5 microM), nitrobenzylthioguanosine (20 microM), nitrobenzylthioinosine (35 microM) and papaverine (130 microM). Transport kinetics in the presence of 10 microM dipyridamole revealed a significant increase in the transport Km value of 3-O-methylglucose (3.45 +/- 0.6 vs 2.36 +/- 0.29 mM in the controls) as well as a decrease in the Vmax value (4.84 +/- 0.95 vs 9.03 +/- 1.19 pmol/s per microliter lipid in the controls). Half-maximally inhibiting concentrations of dipyridamole were one order of magnitude higher than those inhibiting nucleoside (thymidine) uptake (0.48 microM). The inhibitory effect of dipyridamole (5 microM) reached its maximum within 30 s. The agent failed to affect insulin's half-maximally stimulating concentration (0.075 nM) indicating that it did not interfere with the mechanism by which insulin stimulates glucose transport. Further, dipyridamole fully suppressed the glucose-inhibitable cytochalasin B binding (IC50 = 1.65 +/- 0.05 microM). The data indicate that nucleoside transport inhibitors reduce glucose transport by a direct interaction with the transporter or a closely related protein. It is suggested that glucose and nucleoside transporters share structural, and possibly functional, features.  相似文献   

12.
There seems to be an association between increased concentrations of malonyl coenzyme A (malonyl CoA) in skeletal muscle and diabetes and/or insulin resistance. The purpose of the current study was to test the hypothesis that treatments designed to manipulate malonyl CoA concentrations would affect insulin-stimulated glucose transport in cultured C2C12 myotubes. We assessed glucose transport after polyamine-mediated delivery of malonyl CoA to myotubes, after incubation with dichloroacetate (which reportedly increases malonyl CoA levels), or after exposure of myotubes to 2-bromopalmitate, a carnitine palmitoyl transferase I inhibitor. All three of these treatments prevented stimulation of glucose transport by insulin. We also assayed glucose transport after 30 min of inhibition of acetyl coenzyme A carboxylase (ACC), the enzyme which catalyzes the production of malonyl CoA. Three unrelated ACC inhibitors (diclofop, clethodim, and Pfizer CP-640186) all enhanced insulin-stimulated glucose transport. However, none of the treatments designed to manipulate malonyl CoA concentrations altered markers of proximal insulin signaling through Akt. The findings support the hypothesis that acute changes in malonyl CoA concentrations affect insulin action in muscle cells but suggest that the effects do not involve alterations in proximal insulin signaling.  相似文献   

13.
Data from the use of activators and inhibitors of the AMP-activated protein kinase (AMPK) suggest that AMPK increases sensitivity of glucose transport to stimulation by insulin in muscle cells. We assayed insulin action after adenoviral (Ad) transduction of constitutively active (CA; a truncated form of AMPK1) and dominant-negative (DN; which depletes endogenous AMPK) forms of AMPK (Ad-AMPK-CA and Ad-AMPK-DN, respectively) into C2C12 myotubes. Compared with control (Ad-green fluorescent protein), Ad-AMPK-CA increased the ability of insulin to stimulate glucose transport. The increased insulin action in cells expressing AMPK-CA was suppressed by compound C (an AMPK inhibitor). Exposure of cells to 5-aminoimidazole-4-carboxamide-1-D-ribofuranoside (an AMPK activator) increased insulin action in uninfected myotubes and myotubes transduced with green fluorescent protein but not in Ad-AMPK-DN-infected myotubes. In Ad-AMPK-CA-transduced cells, serine phosphorylation of insulin receptor substrate 1 was decreased at a mammalian target of rapamycin (or p70 S6 kinase) target site that has been reported to be associated with insulin resistance. These data suggest that, in myotubes, activated AMPK1 is sufficient to increase insulin action and that the presence of functional AMPK is required for 5-aminoimidazole-4-carboxamide-1,D-ribofuranoside-related increases in insulin action. compound C; AMPK; insulin sensitivity; Akt; mTOR  相似文献   

14.
We investigated the possible regulatory role of glycogen in insulin-stimulated glucose transport and insulin signaling in skeletal muscle. Rats were preconditioned to obtain low (LG), normal, or high (HG) muscle glycogen content, and perfused isolated hindlimbs were exposed to 0, 100, or 10,000 microU/ml insulin. In the fast-twitch white gastrocnemius, insulin-stimulated glucose transport was significantly higher in LG compared with HG. This difference was less pronounced in the mixed-fiber red gastrocnemius and was absent in the slow-twitch soleus. In the white gastrocnemius, insulin activation of insulin receptor tyrosine kinase and phosphoinositide 3-kinase was unaffected by glycogen levels, whereas protein kinase B activity was significantly higher in LG compared with HG. In additional incubation experiments on fast-twitch epitrochlearis muscles, insulin-stimulated cell surface GLUT-4 content was significantly higher in LG compared with HG. The data indicate that, in fast-twitch muscle, the effect of insulin on glucose transport and cell surface GLUT-4 content is modulated by glycogen content, which does not involve initial but possibly more downstream signaling events.  相似文献   

15.
Cycloheximide, a potent inhibitor of protein synthesis, has been used to examine the relationship between recruitment of hexose carriers and the activation of glucose transport by insulin in rat adipocytes. Adipocytes were preincubated +/- cycloheximide for 90 min then +/- insulin for a further 30 min. We measured 3-O-methylglucose uptake in intact cells and in isolated plasma membrane vesicles. The concentration of glucose transporters in plasma membranes and low density microsomes was measured using a cytochalasin B binding assay. Cycloheximide had no affect on basal or insulin-stimulated 3-O-methylglucose uptake in intact cells or in plasma membrane vesicles. However, the number of glucose carriers in plasma membranes prepared from cells incubated with cycloheximide and insulin was markedly reduced compared to that from cells incubated with insulin alone (14 and 34 pmol/mg protein, respectively). Incubation of cells with cycloheximide alone did not change the concentration of glucose carriers in either plasma membranes or in low density microsomes compared to control cells. When isolated membranes were analyzed with an antiserum prepared against human erythrocyte glucose transporter, decreased cross-reactivity was observed in plasma membranes prepared from cycloheximide/insulin-treated cells compared to those from insulin cells. The present findings indicate that incubation of adipocytes with cycloheximide greatly reduces the number of hexose carriers in the plasma membrane of insulin-stimulated cells. Despite this reduction, insulin is still able to maximally stimulate glucose uptake. Thus, these data suggest an apparent dissociation between insulin stimulation of glucose transport activity and the recruitment of glucose carriers by the hormone.  相似文献   

16.
《Cellular signalling》2014,26(7):1400-1408
Ceramide is a negative regulator of insulin activity. At the molecular level, it causes a decrease in insulin-stimulated Akt Ser473 phosphorylation in C2C12 myotubes. Interestingly, we found that the phosphorylation of S6K at Thr389 was increased under the same conditions. Utilizing both rapamycin to inhibit mTORC1 activity and shRNA to knock down Rheb, we demonstrated that the decrease in Akt Ser473 phosphorylation stimulated by insulin after C2-ceramide incubation can be prevented. The mechanism by which C2-ceramide impairs signaling would seem to involve a negative feedback of activated S6K via phosphorylation of insulin receptor substrate-1 at Ser636/639, since S6K inhibitor can block this phenomenon. Finally, rapamycin treatment was found not to affect C2-ceramide-induced PKCζ activation, suggesting that the pathway revealed in this study is parallel to the one involving PKCζ activation. We proposed a novel pathway/mechanism involving Rheb/mTORC1/S6K signaling to explain how C2-ceramide impairs insulin signaling via Akt phosphorylation. The existence of multiple pathways involved in insulin signaling impairment by C2-ceramide treatment implies that different strategies might be needed to ameliorate insulin resistance caused by C2-ceramide.  相似文献   

17.
18.
Serum proteins [molecular weight (MW) > 10,000] are essential for increased insulin-stimulated glucose transport after in vitro muscle contractions. We investigated the role of the kallikrein-kininogen system, including bradykinin, which is derived from kallikrein (MW > 10,000)-catalyzed degradation of serum protein kininogen (MW > 10,000), on this contraction effect. In vitro electrical stimulation of rat epitrochlearis muscles was performed in 1) rat serum +/- kallikrein inhibitors; 2) human plasma (normal or kallikrein-deficient); 3) rat serum +/- bradykinin receptor-2 inhibitors; or 4) serum-free buffer +/- bradykinin. 3-O-methylglucose transport (3-MGT) was measured 3.5 h later. Serum +/- kallikrein inhibitors tended (P = 0.08) to diminish postcontraction insulin-stimulated 3-MGT. Contractions in normal plasma enhanced insulin-stimulated 3-MGT vs. controls, but contractions in kallikrein-deficient plasma did not. Supplementing rat serum with bradykinin receptor antagonist HOE-140 during contraction did not alter insulin-stimulated 3-MGT. Muscles stimulated to contract in serum-free buffer plus bradykinin did not have enhanced insulin-stimulated 3-MGT. Bradykinin was insufficient for postcontraction-enhanced insulin sensitivity. However, results with kallikrein inhibitors and kallikrein-deficient plasma suggest kallikrein plays a role in this improved insulin action.  相似文献   

19.
Borst SE  Snellen HG  Lai HL 《Life sciences》2000,67(2):165-174
Although the glucose-lowering properties of metformin are well-established, its effects on glucose metabolism in skeletal muscle have not been clearly defined. We tested the effects of metformin in young adult male Sprague-Dawley rats, which have a documented reduced response to insulin in skeletal muscle. Rats were treated with metformin for 20 days (320 mg/kg/day) in the drinking water. During this period, metformin completely prevented the increase in food intake and decreased adiposity by 30%. Metformin also reduced insulin secretion by 37% following an intra-peritoneal injection of glucose. Finally, metformin enhanced transport of [3H]-2-deoxyglucose in isolated strips of soleus muscle. Metformin substantially increased insulin-stimulated transport, while having no effect on basal transport. In control rats, a maximal concentration of insulin stimulated transport 77% above basal. In metformin-treated rats, insulin stimulated transport 206% above basal. We conclude that in the Sprague-Dawley rat model, metformin causes a significant increase in insulin-responsiveness.  相似文献   

20.
Occupancy increased the affinity of the insulin receptor of the adipocyte. During the affinity change the half-maximal sensitivity of glucose transport to insulin stimulation was unaltered. Decreased maximum response of transport only occurred after the affinity change. There was not a simple relationship between receptor affinity and insulin stimulation of glucose transport in the adipocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号