首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Wu HY  Brian DA 《Journal of virology》2007,81(7):3206-3215
Coronaviruses have a positive-strand RNA genome and replicate through the use of a 3' nested set of subgenomic mRNAs each possessing a leader (65 to 90 nucleotides [nt] in length, depending on the viral species) identical to and derived from the genomic leader. One widely supported model for leader acquisition states that a template switch takes place during the generation of negative-strand antileader-containing templates used subsequently for subgenomic mRNA synthesis. In this process, the switch is largely driven by canonical heptameric donor sequences at intergenic sites on the genome that match an acceptor sequence at the 3' end of the genomic leader. With experimentally placed 22-nt-long donor sequences within a bovine coronavirus defective interfering (DI) RNA we have shown that matching sites occurring anywhere within a 65-nt-wide 5'-proximal genomic acceptor hot spot (nt 33 through 97) can be used for production of templates for subgenomic mRNA synthesis from the DI RNA. Here we report that with the same experimental approach, template switches can be induced in trans from an internal site in the DI RNA to the negative-strand antigenome of the helper virus. For these, a 3'-proximal 89-nt acceptor hot spot on the viral antigenome (nt 35 through 123), largely complementary to that described above, was found. Molecules resulting from these switches were not templates for subgenomic mRNA synthesis but, rather, ambisense chimeras potentially exceeding the viral genome in length. The results suggest the existence of a coronavirus 5'-proximal partially double-stranded template switch-facilitating structure of discrete width that contains both the viral genome and antigenome.  相似文献   

4.
5.
6.
Tra2β regulates a number of splicing switches including activation of the human testis-specific exon HIPK3-T in the Homeodomain Interacting Protein Kinase 3 gene. By testing HIPK3-T exons of different intrinsic strengths, we found Tra2β most efficiently activated splicing inclusion of intrinsically weak exons, although these were spliced at a lower overall level. Both the RRM and N-terminal RS-rich region of Tra2β were required for splicing activation. Bioinformatic searches for splicing enhancers and repressors mapped four physically distinct exonic splicing enhancers (ESEs) within HIPK3-T, each containing the known Tra2β AGAA-rich binding site. Surprisingly disruption of each single ESE prevented Tra2β-mediated activation, although single mutated exons could still bind Tra2β protein by gel shifts and functional splicing analyses. Titration experiments indicate an additive model of HIPK3-T splicing activation, requiring availability of an array of four distinct ESEs to enable splicing activation. To enable this efficient Tra2β-mediated splicing switch to operate, a closely adjacent downstream and potentially competitive stronger 5'-splice site is actively repressed. Our data indicate that a novel arrangement of multiple mono-specific AGAA-rich ESEs coupled to a weak 5'-splice site functions as a responsive gauge. This gauge monitors changes in the specific nuclear concentration of the RNA binding protein Tra2β, and co-ordinately regulates HIPK3-T exon splicing inclusion.  相似文献   

7.
8.
Toehold switches are de novo designed riboregulators that contain two RNA components interacting through linear-linear RNA interactions, regulating the gene expression. These are highly versatile, exhibit excellent orthogonality, wide dynamic range, and are highly programmable, so can be used for various applications in synthetic biology. In this review, we summarized and discussed the design characteristics and benefits of toehold switch riboregulators over conventional riboregulators. We also discussed applications and recent advancements of toehold switch riboregulators in various fields like gene editing, DNA nanotechnology, translational repression, and diagnostics (detection of microRNAs and some pathogens). Toehold switches, therefore, furnished advancement in synthetic biology applications in various fields with their prominent features.  相似文献   

9.
Engineered allosteric ribozymes as biosensor components   总被引:11,自引:0,他引:11  
RNA and DNA molecules can be engineered to function as molecular switches that trigger catalytic events when a specific target molecule becomes bound. Recent studies on the underlying biochemical properties of these constructs indicate that a significant untapped potential exists for the practical application of allosteric nucleic acids. Engineered molecular switches can be used to report the presence of specific analytes in complex mixtures, making possible the creation of new types of biosensor devices and genetic control elements.  相似文献   

10.
11.
Microarrays are used to study gene expression in a variety of biological systems. A number of different platforms have been developed, but few studies exist that have directly compared the performance of one platform with another. The goal of this study was to determine array variation by analyzing the same RNA samples with three different array platforms. Using gene expression responses to benzo[a]pyrene exposure in normal human mammary epithelial cells (NHMECs), we compared the results of gene expression profiling using three microarray platforms: photolithographic oligonucleotide arrays (Affymetrix), spotted oligonucleotide arrays (Amersham), and spotted cDNA arrays (NCI). While most previous reports comparing microarrays have analyzed pre-existing data from different platforms, this comparison study used the same sample assayed on all three platforms, allowing for analysis of variation from each array platform. In general, poor correlation was found with corresponding measurements from each platform. Each platform yielded different gene expression profiles, suggesting that while microarray analysis is a useful discovery tool, further validation is needed to extrapolate results for broad use of the data. Also, microarray variability needs to be taken into consideration, not only in the data analysis but also in specific probe selection for each array type.  相似文献   

12.
13.
14.
Progress in constructing biological networks will rely on the development of more advanced components that can be predictably modified to yield optimal system performance. We have engineered an RNA‐based platform, which we call an shRNA switch, that provides for integrated ligand control of RNA interference (RNAi) by modular coupling of an aptamer, competing strand, and small hairpin (sh)RNA stem into a single component that links ligand concentration and target gene expression levels. A combined experimental and mathematical modelling approach identified multiple tuning strategies and moves towards a predictable framework for the forward design of shRNA switches. The utility of our platform is highlighted by the demonstration of fine‐tuning, multi‐input control, and model‐guided design of shRNA switches with an optimized dynamic range. Thus, shRNA switches can serve as an advanced component for the construction of complex biological systems and offer a controlled means of activating RNAi in disease therapeutics.  相似文献   

15.
Morris JC  Wang Z  Drew ME  Englund PT 《The EMBO journal》2002,21(17):4429-4438
RNA interference (RNAi) is a powerful tool for identifying gene function in Trypanosoma brucei. We generated an RNAi library, the first of its kind in any organism, by ligation of genomic fragments into the vector pZJMbeta. After transfection at approximately 5-fold genome coverage, trypanosomes were induced to express double-stranded RNA and screened for reduced con canavalin A (conA) binding. Since this lectin binds the surface glycoprotein EP-procyclin, we predicted that cells would lose affinity to conA if RNAi silenced genes affecting EP-procyclin expression or modification. We found a cell line in which RNAi switches expression from glycosylated EP-procyclins to the unglycosylated GPEET-procyclin. This switch results from silencing a hexokinase gene. The relationship between procyclin expression and glycolysis was supported by silencing other genes in the glycolytic pathway, and confirmed by observation of a similar upregulation of GPEET- procyclin when parental cells were grown in medium depleted of glucose. These data suggest that T.brucei 'senses' changes in glucose level and modulates procyclin expression accordingly.  相似文献   

16.
17.
The biochemistry of most metabolic pathways is conserved from bacteria to humans, although the control mechanisms are adapted to the needs of each cell type. Oxygen depletion commonly controls the switch from respiration to fermentation. However, Saccharomyces cerevisiae also controls that switch in response to the external glucose level. We have generated an S. cerevisiae strain in which glucose uptake is dependent on a chimeric hexose transporter mediating reduced sugar uptake. This strain shows a fully respiratory metabolism also at high glucose levels as seen for aerobic organisms, and switches to fermentation only when oxygen is lacking. These observations illustrate that manipulating a single step can alter the mode of metabolism. The novel yeast strain is an excellent tool to study the mechanisms underlying glucose-induced signal transduction.  相似文献   

18.
The pentatricopeptide repeat (PPR) protein family, which is particularly prevalent in plants, includes many sequence‐specific RNA‐binding proteins involved in all aspects of organelle RNA metabolism, including RNA stability, processing, editing and translation. PPR proteins consist of a tandem array of 2‐30 PPR motifs, each of which aligns to one nucleotide in the RNA target. The amino acid side chains at two or three specific positions in each motif confer nucleotide specificity in a predictable and programmable manner. Thus, PPR proteins appear to provide an extremely promising opportunity to create custom RNA‐binding proteins with tailored specificity. We summarize recent progress in understanding RNA recognition by PPR proteins, with a particular focus on potential applications of PPR‐based tools for manipulating RNA, and on the challenges that remain to be overcome before these tools may be routinely used by the scientific community.  相似文献   

19.
Lysine epsilon-aminotransferase (LAT) is a PLP-dependent enzyme that is highly up-regulated in nutrient-starved tuberculosis models. It catalyzes an overall reaction involving the transfer of the epsilon-amino group of L-lysine to alpha-ketoglutarate to yield L-glutamate and alpha-aminoadipate-delta-semialdehyde. We have cloned and characterized the enzyme from Mycobacterium tuberculosisH37Rv. We report here the crystal structures of the enzyme, the first from any source, in the unliganded form, external aldimine with L-lysine, with bound PMP and with its C5 substrate alpha-ketoglutarate. In addition to interaction details in the active site, the structures reveal a Glu243 "switch" through which the enzyme changes substrate specificities. The unique substrate L-lysine is recognized specifically when Glu243 maintains a salt-bridge with Arg422. On the other hand, the binding of the common C5 substrates L-glutamate and alpha-ketoglutarate is enabled when Glu243 switches away and unshields Arg422. The structures reported here, sequence conservation and earlier mutational studies suggest that the "glutamate switch" is an elegant solution devised by a subgroup of fold type I aminotransferases for recognition of structurally diverse substrates in the same binding site and provides for reaction specificity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号