首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genomic DNA of 191 strains of the family Pseudomonadaceae, including 187 strains of the genus Xanthomonas, was cleaved by EcoRI endonuclease. After hybridization of Southern transfer blots with 2-acetylamino-fluorene-labelled Escherichia coli 16+23S rRNA probe, 27 different patterns were obtained. The strains are clearly distinguishable at the genus, species, and pathovar levels. The variability of the rRNA gene restriction patterns was determined for four pathovars of Xanthomonas campestris species. The 16 strains of X. campestris pv. begoniae analyzed gave only one pattern. The variability of rRNA gene restriction patterns of X. campestris pv. manihotis strains could be related to ecotypes. In contrast, the variability of patterns observed for X. campestris pv. malvacearum was not correlated with pathogenicity or with the geographical origins of the strains. The highest degree of variability of DNA fingerprints was observed within X. campestris pv. dieffenbachiae, which is pathogenic to several hosts of the Araceae family. In this case, variability was related to both host plant and pathogenicity.  相似文献   

2.
Analyses of DNA polymorphism and virulence variation were used to evaluate the population structure of Xanthomonas axonopodis pv. manihotis, the pathogen causing cassava bacterial blight in Colombia. We collected strains from the major cassava-growing regions which can be grouped into different edaphoclimatic zones (ECZs) according to environmental conditions, production constraints, and economic parameters. DNA polymorphism was assessed by a restriction fragment length polymorphism analysis, using an X. axonopodis pv. manihotis plasmid DNA sequence (pthB) as a probe to evaluate the genetic relatedness among 189 Colombian strains. The sampling intensity permitted the estimation of genetic differentiation within and among ECZs, sites, and fields and even within an individual plant. A multiple correspondence analysis indicated that the Colombian X. axonopodis pv. manihotis population showed a high degree of diversity relative to X. axonopodis pv. manihotis populations studied previously, and the entire collection was grouped into seven clusters. A general correlation was observed between the clusters and the geographical origin of the strains, as each cluster was largely composed of strains from the same ECZ. Representative strains, identified with pthB, were further characterized by ribotyping, hybridization to two repetitive genomic probes (pBS6 and pBS8), and restriction analysis of plasmid contents to evaluate the complementarity of these markers. Virulence variation was observed within the Colombian collection. Strains of different aggressiveness were found in all ecological zones, but no correlation between virulence variation and DNA polymorphism was observed. The genetic and virulence analyses contribute to understanding the X. axonopodis pv. manihotis population structure in Colombia.  相似文献   

3.
Xanthomonas campestris strains that cause disease in citrus were compared by restriction endonuclease analysis of DNA fragments separated by pulsed-field gel electrophoresis and by DNA reassociation. Strains of X. campestris pv. citrumelo, which cause citrus bacterial spot, were, on average, 88% related to each other by DNA reassociation, although these strains exhibited diverse restriction digest patterns. In contrast, strains of X. campestris pv. citri groups A and B, which cause canker A and canker B, respectively, had relatively homogeneous restriction digest patterns. The groups of strains causing these three different citrus diseases were examined by DNA reassociation and were found to be from 55 to 63% related to one another. Several pathovars of X. campestris, previously shown to cause weakly aggressive symptoms on citrus, ranged from 83 to 90% similar to X. campestris pv. citrumelo by DNA reassociation. The type strain of X. campestris pv. campestris ranged from 30 to 40% similar in DNA reassociation experiments to strains of X. campestris pv. citrumelo and X. campestris pv. citri groups A and B. Whereas DNA reassociation quantified the difference between relatively unrelated groups of bacterial strains, restriction endonuclease analysis distinguished between closely related strains.  相似文献   

4.
Restriction fragment length polymorphisms (RFLPs) were used to study the population genetics and temporal dynamics of the cassava bacterial pathogen Xanthomonas axonopodis pv. manihotis. The population dynamics were addressed by comparing samples collected from 1995 to 1999 from six locations, spanning four different edaphoclimatic zones (ECZs). Forty-five different X. axonopodis pv. manihotis RFLP types or haplotypes were identified between 1995 and 1999. High genetic diversity of the X. axonopodis pv. manihotis strains was evident within most of the fields sampled. In all but one site, diversity decreased over time within fields. Haplotype frequencies significantly differed over the years in all but one location. Studies of the rate of change of X. axonopodis pv. manihotis populations during the cropping cycle in two sites showed significant changes in the haplotype frequencies but not composition. However, variations in pathotype composition were observed from one year to the next at a single site in ECZs 1 and 2 and new pathotypes were described after 1997 in these ECZs, thus revealing the dramatic change in the pathogen population structure of X. axonopodis pv. manihotis. Disease incidence was used to show the progress of cassava bacterial blight in Colombia during the 5-year period in different ecosystems. Low disease incidence values were correlated with low rainfall in 1997 in ECZ 1.  相似文献   

5.
A collection of 51 Xanthomonas campestris strains from throughout the world was studied to detect and assess genetic diversity among pathogens of small grains. Isolates from barley, bread wheat, bromegrass, canary grass, cassava, maize, orchard grass, rice, rough-stalked meadow grass, rye, timothy, and triticale were analyzed by pathogenicity tests on bread wheat cv. Alondra and barley cv. Corona, indirect immunofluorescence, and restriction fragment length polymorphism (RFLP). Three probes were used for the RFLP analysis. They were an acetylaminofluorene-labelled 16S+23S rRNA probe from Escherichia coli and two (sup32)P-labelled restriction fragments from either plasmidic (pBSF2) or chromosomal (pBS8) DNA of X. campestris pv. manihotis. Strains clustered in 9 and 20 groups with the rRNA probe and the pBSF2 DNA probe, respectively. Strains of X. campestris pv. graminis, X. campestris pv. phleipratensis, and X. campestris pv. poae are shown to be related but are also distinguishable by RFLP patterns, serology, and pathogenicity on bread wheat. Strains pathogenic only for barley and not for wheat grouped together. Another group is temporarily designated deviant X. campestris pv. undulosa. These South American isolates from bread wheat did not react by indirect immunofluorescence and produced atypical lesions in pathogenicity tests. The results stress the need to perform pathogenicity tests before strains are named at the pathovar level. The importance of the different probes used for epidemiological studies or phylogenetic studies of closely related strains is underlined.  相似文献   

6.
Genomic DNA was prepared from 16 strains of Xanthomonas campestris pv. graminis and Xanthomonas campestris pv. phlei isolated from six species of forage grasses in four countries. The two pathovars could be distinguished clearly by genomic fingerprints generated by EcoRI, BamHI or HindIII digestion. DNA profiles produced by HindIII digestion could differentiate not only between the two pathoars but also among strains within the same pahtovar from different countries. A 1.6 kb EcoRI fragment was cloned from genomic DNA of strain LMG726 and used to detect restriction fragment-length polymorphism among the same strains. EcoRI and BamHI polymorphisms were seen between the two pathovars probed with this 1.6 kb EcoRI fragment (p726EI probe). These polymorphisms appeared to be highly conserved and unique for each pathovar, consistent with previous grouping of the strains based on other criteria.  相似文献   

7.
A gene involved in quinate metabolism was cloned from Xanthomonas campestris pv. juglandis strain C5. The gene, qumA, located on a 4. 2-kb KpnI-EcoRV fragment in plasmid pQM38, conferred quinate metabolic activity to X. c. pv. celebensis. Tn3-spice insertional analyses further located the qumA gene on a region of about 3.0 kb within pQM38. Nucleotide sequencing of this 3.0-kb fragment reveals that the coding region of qumA is 2373 bp, the deduced amino acid sequence of which closely resembles a pyrrolo-quinoline quinone-dependent quinate dehydrogenase of Acinetobacter calcoaceticus. A 0.7 kb SalI-PstI fragment internal to qumA was used as a probe to hybridize against total genomic DNA from 43 pathovars of X. campestris. The fragment hybridized only to total genomic DNA from the four pathovars of DNA homology group 6, X. c. pv. celebensis, X. c. pv. corylina, X. c. pv. juglandis and X. c. pv. pruni, and from X. c. pv. carotae, which belongs to DNA homology group 5. This 0.7 kb fragment was also used as a probe to hybridize BamHI-digested total genomic DNAs from the four pathovars of DNA homology group 6 and X. c. pv. carotae. The restriction fragment length polymorphism pattern of DNA homology group 6 was different from that of X. c. pv. carotae. The probe hybridized to a 5.7-kb BamHI fragment in all four pathovars of group 6 and to a 6.1-kb BamHI fragment in three of four pathovars. It hybridized only to a 9. 9-kb BamHI fragment in X. c. pv. carotae. Quinate metabolism has previously been reported as a phenotypic property specific to X. campestris DNA homology group 6. Accordingly, a combination of the quinate metabolism phenotypic test and Southern hybridization using a qumA-derived probe will be very useful in the identification of pathovars in DNA homology group 6.  相似文献   

8.
The efficacy of copper bactericides for control of Xanthomonas campestris pv. vesicatoria in eastern Oklahoma tomato fields was evaluated. Copper bactericides did not provide adequate control, and copper-resistant (Cur) strains of the pathogen were isolated. The Cur genes in these strains were located on a large indigenous plasmid designated pXV10A. The host range of pXV10A was investigated; this plasmid was efficiently transferred into 8 of 11 X. campestris pathovars. However, the transfer of pXV10A to other phytopathogenic genera was not detected. DNA hybridization experiments were performed to characterize the Cur genes on pXV10A. A probe containing subcloned Cur genes from X. campestris pv. vesicatoria E3C5 hybridized to pXV10A; however, a subclone containing Cur genes from P. syringae pv. tomato PT23 failed to hybridize to pXV10A. Further DNA hybridization experiments were performed to compare pXV10A with pXvCu plasmids, a heterogenous group of Cur plasmids present in strains of X. campestris pv. vesicatoria from Florida. These studies indicated that the Cur genes on pXV10A and pXvCu plasmids share nucleotide sequence homology and may have a common origin. Further experiments showed that these plasmids are distinctly different because pXV10A did not contain sequences homologous to IS476, an insertion sequence present on pXvCu plasmids.  相似文献   

9.
Variations in the outer membrane proteins (OMPs) and lipopolysaccharides (LPSs) of 54 isolates belonging to 16 different pathovars of Xanthomonas campestris were characterized. OMP samples prepared by sarcosyl extraction of cell walls and LPS samples prepared by proteinase K treatment of sonicated cells were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 4 M urea. In general, the OMP and LPS profiles within each pathovar were very similar but different from the profiles of other pathovars. Heterogeneity in OMP and LPS profiles was observed within X. campestris pv. campestris, X. campestris pv. translucens, and X. campestris pv. vesicatoria. LPSs were isolated from six X. campestris pathovars, which fell into two major groups on the basis of O antigenicity. The O antigens of X. campestris pv. begoniae, X. campestris pv. graminis, and X. campestris pv. translucens cross-reacted with each other; the other group consisted of X. campestris pv. campestris, X. campestris pv. pelargonii, and X. campestris pv. vesicatoria. A chemical analysis revealed a significant difference between the compositions of the neutral sugars of the LPSs of those two groups; the LPSs of the first group contained xylose and a 6-deoxy-3-O-methyl hexose, whereas the LPSs of the other group lacked both sugars.  相似文献   

10.
Polymerase chain reaction (PCR) amplification of total DNA was evaluated as a method to distinguish Xanthomonas campestris pv. pelargonii from other pathovars within this species. Two sets of highly conserved enterobacterial consensus sequences were used as targets for PCR amplification: (a) enterobacterial repetitive intergenic consensus [ERIC] and (b) repetitive extragenic palindromic [REP] sequences. Nucleic acid was extracted from a total of 37 isolates of bacteria: 19 isolates ofX campestris pv. pelargonii and 18 isolates representing 10 other pathovars of X. campestris. After PCR amplification using the ERIC primer pair the DNA fingerprints of X. campestris pv, pelargonii contained two major DNA products (estimated size 500 and 740 pp) that were conserved among all 19 isolates. With the REP primer pair, the fingerprints were more complex and major DNA products ranging from -690 to 1650 bp were detected. Using information from both ERIC- and REP-primed Imgerprints, the X. campestris pv. pelargonii fingerprints were distinguishable from the fingerprints of the other pathovars examined: pvs. citrumelo. citri, beganiae, vittans B and C. phaseoli. campestris, manihotis, juglandis, carotae and pruni.  相似文献   

11.
Two monoclonal antibodies specific for lipopolysaccharide antigens of Xanthomonas campestris pv. begoniae and pv. pelargonii reacted with all of their respective pathovar strains and not with 130 strains of other xanthomonads or 89 nonxanthomonads tested. These results, as well as previous results, indicate that pathovar-specific monoclonal antibodies were readily generated to strains of X. campestris pathovars that generally infect single hosts.  相似文献   

12.
13.
Stains presumed to be of Xanthomonas campestris pv. vasculorum (Cobb.) Dye, obtained from sugarcane and other gramineae in Réunion Island, were compared in terms of cultural aspects, pathogenic and physiological reactions, fatty acid profiles and restriction fragment length polymorphism (RFLP) of genomic DNA. The strains could be divided into two separate groups (G1 and G2). The G1 strains were identical to strains described as X. campestris pv. vasculorum; they showedan important variability in their cultural characteristics and in their aggressiveness. The G2 strains did not induce the usual symptoms of gumming disease on sugarcane cultivars infected under natural conditions or inoculated in the greenhouse. The G2 strains grew faster on agar medium, their colonies were more pigmented and less fluidal and had a different morphology on agar slant. Unlike the G1 strains, G2 strains hydrolyzed starch weakly and casein strongly; they utilized L-fucose and, to a lesser extent, melibioze. The fatty acid and genomic DNA profiles differed between the groups. Differences seemed large enough to support separation of G1 and G2 strains into distinct taxonomic entities, namely G1 as Xanthomonas campestris pv. vasculorum and G2 as a different pathovar of X. campestris. The taxonomic position of G2 strains is discussed.  相似文献   

14.
The chemotaxis towards sucrose and yeast extract of nine strains of Xanthomonas campestris representing pathovars campestris, armoraciae, translucens, vesicatoria, and pelargonii was analyzed by using swarm plates. Unexpectedly, each of these strains formed small or reduced swarms typical of nonmotile or nonchemotactic bacteria. With time, however, chemotactic cells appeared on the swarm plates as blebs of bacteria. These cells were strongly chemotactic and were concomitantly deficient in exopolysaccharide production. The switch from the wild type (exopolysaccharide producing and nonchemotactic) to the swarmer type (exopolysaccharide deficient and chemotactic) appeared irreversible ex planta in bacteriological medium. However, in radish leaves swarmer-type strains of X. campestris pv. campestris were able to revert to the wild type. Swarmer-type derivatives of two X. campestris pv. campestris wild-type isolates showed reduced virulence and growth in the host plants cauliflower and radish. However, exocellular complementation of X. campestris pv. campestris Hrp (nonpathogenic) mutant was achieved by coinoculation with a swarmer-type strain.  相似文献   

15.
Strains of Pseudomonas syringae pv. syringae were isolated from healthy and diseased stone fruit tissues sampled from 43 orchard sites in California in 1995 and 1996. These strains, together with P. syringae strains from other hosts and pathovars, were tested for pathogenicity and the presence of the syrB and syrC genes and were genetically characterized by using enterobacterial repetitive intergenic consensus (ERIC) primers and PCR. All 89 strains of P. syringae pv. syringae tested were moderately to highly pathogenic on Lovell peach seedlings regardless of the host of origin, while strains of other pathovars exhibited low or no pathogenicity. The 19 strains of P. syringae pv. syringae examined by restriction fragment length polymorphism analysis contained the syrB and syrC genes, whereas no hybridization occurred with 4 strains of other P. syringae pathovars. The P. syringae pv. syringae strains from stone fruit, except for a strain from New Zealand, generated ERIC genomic fingerprints which shared four fragments of similar mobility. Of the P. syringae pv. syringae strains tested from other hosts, only strains from rose, kiwi, and pear generated genomic fingerprints that had the same four fragments as the stone fruit strains. Analysis of the ERIC fingerprints from P. syringae pv. syringae strains showed that the strains isolated from stone fruits formed a distinct cluster separate from most of the strains isolated from other hosts. These results provide evidence of host specialization within the diverse pathovar P. syringae pv. syringae.  相似文献   

16.
Xanthomonas axonopodis pv manihotis is the causal agent of cassava bacterial blight (CBB) worldwide. CBB disease is a major constraint to cassava cultivation, and losses can be extremely severe in regions where highly susceptible cultivars are grown. To develop an efficient disease management policy, the genetic diversity of the pathogens population must be known. There is dearth of information on the genetic diversity of X. axonopodis pv manihotis population in Nigeria. We used RAPD (random amplified polymorphic DNA) and AFLP (amplified fragment length polymorphism), a PCR-based technique, to characterize the X. axonopodis pv manihotis isolates from the western States of Nigeria. Thirteen strains Xam and 2 reference strains were tested with eight primers combination of AFLP and 4 RAPD primers. RAPD amplified DNA fragment data showed four major clusters at 80 % similarity coefficient level and two strains were not clustered by this analysis. Strains Kwa76A and Ond48A were also separated in the principal component analysis of the same data. Numerical analysis differentiated the AFLP patterns into four distinct clusters and grouped two strains separately at 66 % similarity. PCA assembly grouped the bacterial strains into 4 and one of the strains was singled out from the others. The two DNA analyses techniques seem to be complimentary to one another and informative on the genomic structure of Xam population in Western Nigeria. The genetic analysis presented here contributes to understanding of the Xam population structure in Western Nigeria.  相似文献   

17.
Strains presumed to be of Xanthomonas campestris pv. vasculorum (Cobb.) Dye, obtained from sugarcane and other gramineae in Réunion Island, were compared in terms of cultural aspects, pathogenic and physiological reactions, fatty acid profiles and restriction fragment length polymorphism (RFLP) of genomic DNA. The strains could be divided into two separate groups (G1 and G2). The G1 strains were identical to strains described as X. campestris pv. vasculorum; they showed an important variability in their cultural characteristics and in their aggressiveness. The G2 strains did not induce the usual symptoms of gumming disease on sugarcane cultivars infected under natural conditions or inoculated in the greenhouse. The G2 strains grew faster on agar medium, their colonies were more pigmented and less fluidal and had a different morphology on agar slant. Unlike the G1 strains, G2 strains hydrolyzed starch weakly and casein strongly; they utilized L-fucose and, to a lesser extent, melibioze. The fatty acid and genomic DNA profiles differed between the groups. Differences seemed large enough to support separation of G1 and G2 strains into distinct taxonomic entities, namely G1 as Xanthomonas campestris pv. vasculorum and G2 as a different pathovar of X. campestris. The taxonomic position of G2 strains is discussed.  相似文献   

18.
Restriction fragment length polymorphisms (RFLPs) were used to study the population genetics and temporal dynamics of the cassava bacterial pathogen Xanthomonas axonopodis pv. manihotis. The population dynamics were addressed by comparing samples collected from 1995 to 1999 from six locations, spanning four different edaphoclimatic zones (ECZs). Forty-five different X. axonopodis pv. manihotis RFLP types or haplotypes were identified between 1995 and 1999. High genetic diversity of the X. axonopodis pv. manihotis strains was evident within most of the fields sampled. In all but one site, diversity decreased over time within fields. Haplotype frequencies significantly differed over the years in all but one location. Studies of the rate of change of X. axonopodis pv. manihotis populations during the cropping cycle in two sites showed significant changes in the haplotype frequencies but not composition. However, variations in pathotype composition were observed from one year to the next at a single site in ECZs 1 and 2 and new pathotypes were described after 1997 in these ECZs, thus revealing the dramatic change in the pathogen population structure of X. axonopodis pv. manihotis. Disease incidence was used to show the progress of cassava bacterial blight in Colombia during the 5-year period in different ecosystems. Low disease incidence values were correlated with low rainfall in 1997 in ECZ 1.  相似文献   

19.
20.
The streptomycin resistance gene of Pseudomonas syringae pv. papulans Psp36 was cloned into Escherichia coli and used to develop a 500-bp DNA probe that is specific for streptomycin resistance in P. syringae pv. papulans. The probe is a portion of a 1-kb region shared by three different DNA clones of the resistance gene. In Southern hybridizations, the probe hybridized only with DNA isolated from streptomycin-resistant strains of P. syringae pv. papulans and not with the DNA of streptomycin-sensitive strains. Transposon insertions within the region of DNA shared by the three clones resulted in loss of resistance to streptomycin. Colony hybridization of bacteria isolated from apple leaves and orchard soil indicated that 39% of 398 streptomycin-resistant bacteria contained DNA that hybridized to the probe. These included all strains of P. syringae pv. papulans and some other fluorescent pseudomonads and nonfluorescent gram-negative bacteria, but none of the gram-positive bacteria. The same-size restriction fragments hybridized to the probe in P. syringae pv. papulans. Restriction fragment length polymorphism of this region was occasionally observed in strains of other taxonomic groups of bacteria. In bacteria other than P. syringae pv. papulans, the streptomycin resistance probe hybridized to different-sized plasmids and no relationship between plasmid size and taxonomic group or between plasmid size and orchard type, soil association, or leaf association could be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号