首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethanol-mediated inhibition of hepatic sirtuin 1 (SIRT1) plays a crucial role in the pathogenesis of alcoholic fatty liver disease. Here, we investigated the underlying mechanisms of this inhibition by identifying a new hepatic target of ethanol action, microRNA-217 (miR-217). The role of miR-217 in the regulation of the effects of ethanol was investigated in cultured mouse AML-12 hepatocytes and in the livers of chronically ethanol-fed mice. In AML-12 hepatocytes and in mouse livers, chronic ethanol exposure drastically and specifically induced miR-217 levels and caused excess fat accumulation. Further studies revealed that overexpression of miR-217 in AML-12 cells promoted ethanol-mediated impairments of SIRT1 and SIRT1-regulated genes encoding lipogenic or fatty acid oxidation enzymes. More importantly, miR-217 impairs functions of lipin-1, a vital lipid regulator, in hepatocytes. Taken together, our novel findings suggest that miR-217 is a specific target of ethanol action in the liver and may present as a potential therapeutic target for treating human alcoholic fatty liver disease.  相似文献   

2.
3.
P62 is capable of binding the polyubiquitin chain that targets proteins for degradation by the proteasome through its ubiquitin associated domain (UBA). Immunostaining of hepatocytes from human liver with alcoholic hepatitis showed colocalization of ubiquitin and P62 in Mallory bodies. Rats fed ethanol chronically and their controls showed that P62 is colocalized with the proteasome in hepatocytes as shown by confocal microscopy. P62 cosedimented with 26S proteasomes isolated from livers of control and alcohol fed rats. P62 was increased in the 26S proteasome fraction when the proteasome chymotrypsin-like (ChT-L) activity decreased in rats fed ethanol. PS-341, a potent proteasome inhibitor was used to compare the inhibition of the proteasome with the inhibition which occurs with ethanol feeding. P62 protein levels were also increased in the purified proteasome fraction of rats given PS-341. This data indicates that modifications in P62 occur due to proteasome inhibition in experimental alcoholic liver disease.  相似文献   

4.
5.
The incidence of non-alcoholic fatty liver disease (NAFLD) has been increasing, and there is a shortage of liver donors, which has led to the acceptance of steatotic livers for transplantation. However, steatotic livers are known to experience more severe acute ischemia-reperfusion (I/R) injury than normal livers upon transplantation. In the present study, we investigated the role of theaflavin, a polyphenol substance extracted from black tea, in attenuating acute I/R injury in a fatty liver model. We induced I/R in normal and steatotic livers treated with or without theaflavin. We also separated primary hepatocytes from the normal and steatotic livers, and applied RAW264.7 cells, a mouse macrophage cell line, that was pretreated with theaflavin. We observed that liver steatosis, oxidative stress, inflammation and hepatocyte apoptosis were increased in the steatotic liver compared to the normal liver, however, these changes were significantly decreased by theaflavin treatment. In addition, theaflavin significantly diminished the ROS production of steatotic hepatocytes and TNF-α production by LPS-stimulated RAW264.7 cells. We concluded that theaflavin has protective effects against I/R injury in fatty livers by anti-oxidant, anti-inflammatory, and anti-apoptotic mechanisms.  相似文献   

6.
7.
Alcoholic fatty liver is associated with inhibition of sirtuin 1 (SIRT1) and AMP-activated kinase (AMPK), two critical signaling molecules regulating the pathways of hepatic lipid metabolism in animals. Resveratrol, a dietary polyphenol, has been identified as a potent activator for both SIRT1 and AMPK. In the present study, we have carried out in vivo animal experiments that test the ability of resveratrol to reverse the inhibitory effects of chronic ethanol feeding on hepatic SIRT1-AMPK signaling system and to prevent the development of alcoholic liver steatosis. Resveratrol treatment increased SIRT1 expression levels and stimulated AMPK activity in livers of ethanol-fed mice. The resveratrol-mediated increase in activities of SIRT1 and AMPK was associated with suppression of sterol regulatory element binding protein 1 (SREBP-1) and activation of peroxisome proliferator-activated receptor gamma coactivator alpha (PGC-1alpha). In parallel, in ethanol-fed mice, resveratrol administration markedly increased circulating adiponectin levels and enhanced mRNA expression of hepatic adiponectin receptors (AdipoR1/R2). In conclusion, resveratrol treatment led to reduced lipid synthesis and increased rates of fatty acid oxidation and prevented alcoholic liver steatosis. The protective action of resveratrol is in whole or in part mediated through the upregulation of a SIRT1-AMPK signaling system in the livers of ethanol-fed mice. Our study suggests that resveratrol may serve as a promising agent for preventing or treating human alcoholic fatty liver disease.  相似文献   

8.
The mechanisms by which ethanol consumption causes accumulation of hepatic triacylglycerols are complex. AMP-activated protein kinase (AMPK) plays a central role in the regulation of lipid metabolism. Therefore, in the present study we investigated whether AMPK may have a role in the development of ethanol-induced fatty liver. Hepatocytes isolated from rats fed with an ethanol-containing liquid diet showed higher rates of fatty acid and triacylglycerol syntheses, but a decreased rate of fatty acid oxidation, concomitant to a lower activity of carnitine palmitoyltransferase I. Hepatocytes from both ethanol-fed and pair-fed control rats were incubated with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an AMPK activator in intact cells. In both hepatocyte preparations AICAR strongly inhibited the activity of acetyl-CoA carboxylase in parallel to fatty acid synthesis, but cells from ethanol-fed rats showed significantly lower sensitivity to inhibition by AICAR. Moreover, AICAR strongly decreased triacylglycerol synthesis and increased fatty acid oxidation in control hepatocytes, but these effects were markedly attenuated in hepatocytes from ethanol-fed rats. In parallel, AMPK in liver of ethanol-fed rats showed a decreased specific activity and a lower sensitivity to changes in the AMP/ATP ratio, compared to the enzyme of control rats. These effects are consistent with the impairment of AMPK-mediated regulation of fatty acid metabolism after ethanol consumption, that will facilitate triacylglycerol accumulation. Taken together, these findings suggest that a decreased AMPK activity may have an important role in the development of alcoholic fatty liver.  相似文献   

9.
10.
11.
《Organogenesis》2013,9(2):208-215
Liver stem/progenitor cells (LPCs) are defined as cells that supply two types of liver epithelial cells, hepatocytes and cholangiocytes, during development, cellular turnover, and regeneration. Hepatoblasts, which are fetal LPCs derived from endoderm stem cells, robustly proliferate and differentiate into hepatocytes and cholangiocytes during fetal life. Between mid-gestation and the neonatal period, some cholangiocytes function as LPCs. Although LPCs in adult livers can be enriched in cells positive for cholangiocyte markers, their tissue localization and functions in cellular turnover remain obscure. On the other hand, it is well known that liver regeneration under conditions suppressing hepatocyte proliferation is supported by LPCs, though their origin has not been clearly identified. Recently many groups took advantage of new techniques including prospective isolation of LPCs by fluorescence-activated cell sorting and genetic lineage tracing to facilitate our understanding of epithelial supply in normal and injured livers. Those works suggest that, in normal livers, the turnover of hepatocytes mostly depends on duplication of hepatocytes. It is also demonstrated that liver epithelial cells as well as LPCs have great plasticity and flexible differentiation capability to respond to various types of injuries by protecting or repairing liver tissues.  相似文献   

12.
Older age is a major risk factor for damage to many tissues, including liver. Aging undermines resiliency and impairs liver regeneration. The mechanisms whereby aging reduces resiliency are poorly understood. Hedgehog is a signaling pathway with critical mitogenic and morphogenic functions during development. Recent studies indicate that Hedgehog regulates metabolic homeostasis in adult liver. The present study evaluates the hypothesis that Hedgehog signaling becomes dysregulated in hepatocytes during aging, resulting in decreased resiliency and therefore, impaired regeneration and enhanced vulnerability to damage. Partial hepatectomy (PH) was performed on young and old wild‐type mice and Smoothened (Smo)‐floxed mice treated with viral vectors to conditionally delete Smo and disrupt Hedgehog signaling specifically in hepatocytes. Changes in signaling were correlated with changes in regenerative responses and compared among groups. Old livers had fewer hepatocytes proliferating after PH. RNA sequencing identified Hedgehog as a top downregulated pathway in old hepatocytes before and after the regenerative challenge. Deleting Smo in young hepatocytes before PH prevented Hedgehog pathway activation after PH and inhibited regeneration. Gene Ontogeny analysis demonstrated that both old and Smo‐deleted young hepatocytes had activation of pathways involved in innate immune responses and suppression of several signaling pathways that control liver growth and metabolism. Hedgehog inhibition promoted telomere shortening and mitochondrial dysfunction in hepatocytes, consequences of aging that promote inflammation and impair tissue growth and metabolic homeostasis. Hedgehog signaling is dysregulated in old hepatocytes. This accelerates aging, resulting in decreased resiliency and therefore, impaired liver regeneration and enhanced vulnerability to damage.  相似文献   

13.
Liver stem/progenitor cells (LPCs) are defined as cells that supply two types of liver epithelial cells, hepatocytes and cholangiocytes, during development, cellular turnover, and regeneration. Hepatoblasts, which are fetal LPCs derived from endoderm stem cells, robustly proliferate and differentiate into hepatocytes and cholangiocytes during fetal life. Between mid-gestation and the neonatal period, some cholangiocytes function as LPCs. Although LPCs in adult livers can be enriched in cells positive for cholangiocyte markers, their tissue localization and functions in cellular turnover remain obscure. On the other hand, it is well known that liver regeneration under conditions suppressing hepatocyte proliferation is supported by LPCs, though their origin has not been clearly identified. Recently many groups took advantage of new techniques including prospective isolation of LPCs by fluorescence-activated cell sorting and genetic lineage tracing to facilitate our understanding of epithelial supply in normal and injured livers. Those works suggest that, in normal livers, the turnover of hepatocytes mostly depends on duplication of hepatocytes. It is also demonstrated that liver epithelial cells as well as LPCs have great plasticity and flexible differentiation capability to respond to various types of injuries by protecting or repairing liver tissues.  相似文献   

14.
Diabetes mellitus is one of the most severe endocrine metabolic disorders in the world that has serious medical consequences with substantial impacts on the quality of life. Type 2 diabetes is one of the main causes of diabetic liver diseases with the most common being non‐alcoholic fatty liver disease. Several factors that may explain the mechanisms related to pathological and functional changes of diabetic liver injury include: insulin resistance, oxidative stress and endoplasmic reticulum stress. The realization that these factors are important in hepatocyte damage and lack of donor livers has led to studies concentrating on the role of stem cells (SCs) in the prevention and treatment of liver injury. Possible avenues that the application of SCs may improve liver injury include but are not limited to: the ability to differentiate into pancreatic β‐cells (insulin producing cells), the contribution for hepatocyte regeneration, regulation of lipogenesis, glucogenesis and anti‐inflammatory actions. Once further studies are performed to explore the underlying protective mechanisms of SCs and the advantages and disadvantages of its application, there will be a greater understand of the mechanism and therapeutic potential. In this review, we summarize the findings regarding the role of SCs in diabetic liver diseases.  相似文献   

15.
The present paper is devoted to overview the basic concepts of ethanol-induced hepatic injury and therapeutic modalities by which alcoholic liver disease can be alleviated. The role of alcohol dehydrogenase of both hepatic and gastric origin as well as the importance of the number one metabolite acetaldehyde are discussed, furthermore the effects of microsomal ethanol oxidizing system are also described. The features of the major clinicopathological consequences of alcohol abuse fatty liver, alcoholic hepatitis are briefly outlined, and the basic pathogenetic mechanisms that lead to cirrhosis--cell necrosis, regeneration and fibroplasia--are shown. The understanding of the pathophysiology of alcohol-induced liver injury may improve the therapy with drugs and nutritional factors, and allow successful prevention through the early recognition of heavy drinkers before their social or medical disintegration. In the management of alcoholic liver diseases, among the true hepatoprotective agents a naturally occurring flavonoid silymarin and an active methyl-donor metabolite S-adenosyl-L-methionine seem to be promising. An antifibrotic treatment with colchicine might also be of importance. Further prospective, well-designed, controlled clinical trials are still warranted to evaluate real efficacy of these drugs. The hepatic consequences of alcohol abuse may be treatable, however, prevention would be the true resolution of the major global health problem of alcoholism.  相似文献   

16.
The liver possesses the capacity to restore its function and mass after injury. Liver regeneration is controlled through complicated mechanisms, in which the phosphoinositide (PI) cycle is shown to be activated in hepatocytes. Using a rat partial hepatectomy (PH) model, the authors investigated the expression of the diacylglycerol kinase (DGK) family, a key enzyme in the PI cycle, which metabolizes a lipid second-messenger diacylglycerol (DG). RT-PCR analysis shows that DGKζ and DGKα are the major isozymes in the liver. Results showed that in the process of regeneration, the DGKζ protein, which is detected in the nucleus of a small population of hepatocytes in normal liver, is significantly increased in almost all hepatocytes. However, the mRNA levels remain largely unchanged. Double labeling with bromodeoxyuridine (BrdU), an S phase marker, reveals that DGKζ is expressed independently of DNA synthesis or cell proliferation. However, DGKα protein localizes to the cytoplasm in normal and regenerating livers, but immunoblot analysis reveals that the expected (80 kDa) and the lower (70 kDa) bands are detected in normal liver, whereas at day 10 after PH, the expected band is solely recognized, showing a different processing pattern of DGKα in liver regeneration. These results suggest that DGKζ and DGKα are involved, respectively, in the nucleus and the cytoplasm of hepatocytes in regenerating liver.  相似文献   

17.
Although ethanol is known to sensitize hepatocytes to tumor necrosis factor (TNF) lethality, the mechanisms involved remain controversial. Recently, others have shown that adding TNFalpha to cultures of ethanol-pretreated hepatocytes provokes the mitochondrial permeability transition, cytochrome c release, procaspase 3 activation, and apoptosis. Although this demonstrates that ethanol can sensitize hepatocytes to TNF-mediated apoptosis, the hepatic inflammation and ballooning hepatocyte degeneration that typify alcohol-induced liver injury suggest that other mechanisms might predominate in vivo. To evaluate this possibility, acute responses to lipopolysaccharide (LPS), a potent inducer of TNFalpha, were compared in mice that had been fed either an ethanol-containing or control diet for 5 weeks. Despite enhanced induction of cytokines such as interleukin (IL)-10, IL-15, and IL-6 that protect hepatocytes from apoptosis, ethanol-fed mice exhibited a 4-5-fold increase in serum alanine aminotransferase after LPS, confirming increased liver injury. Six h post-LPS histology also differed notably in the two groups, with control livers demonstrating only scattered apoptotic hepatocytes, whereas ethanol-exposed livers had large foci of ballooned hepatocytes, inflammation, and scattered hemorrhage. No caspase 3 activity was noted during the initial 6 h after LPS in ethanol-fed mice, but this tripled by 1.5 h after LPS in controls. Procaspase 8 cleavage and activity of the apoptosis-associated kinase, Jun N-terminal kinase, were also greater in controls. In contrast, ethanol exposure did not inhibit activation of cytoprotective mitogen-activated protein kinases and AKT or attenuate induction of the anti-apoptotic factors NF-kappaB and inducible nitric oxide synthase. Consistent with these responses, neither cytochrome c release, an early apoptotic response, nor hepatic oligonucleosomal DNA fragmentation, the ultimate consequence of apoptosis, was increased by ethanol. Thus, ethanol exacerbates TNF-related hepatotoxicity in vivo without enhancing caspase 3-dependent apoptosis.  相似文献   

18.
目的:本研究是为了观察饮食补充锌减轻酒精性肝病损伤的作用及与HNF-4α的关系。方法:选用成年C57BL/6小鼠40只,按随机数字表分为4组(n=10):正常对照组、酒精中毒组、正常补锌组及酒精补锌组,用不同饮食喂养6个月处死,在正常补锌组和酒精补锌组小鼠饮用水中加入硫酸锌,使锌的含量达到75 mg/L。取各组小鼠肝组织进行病理切片及增殖细胞核抗原(PCNA)免疫组织化学染色,RT-PCR检测肝细胞核因子-4α(HNF-4α)含量,Western blot检测肝组织HNF-4α蛋白表达,检测"肝组织超氧化物歧化酶(SOD)活性及丙二醛(MDA)含量"。结果:酒精中毒组小鼠HNF-4α转录及表达均明显低于正常对照组,差异具有统计学意义(P<0.05),该组小鼠MDA含量增高,SOD活性下降与正常对照组相比差异有统计学意义(P<0.05);而酒精补锌组小鼠PCNA阳性肝细胞数目及HNF-4α蛋白表达水平明显高于酒精中毒组,差异有统计学意义(P<0.05),该组小鼠SOD活性增加,MDA下降,与酒精中毒组相比差异有统计学意义(P<0.05)。结论:长期酒精喂养导致小鼠氧化还原失衡,而补锌可逆转该状态。我们推测饮食补锌可能是通过增加HNF-4α的转录及表达而增强酒精喂养小鼠的肝再生,因此,饮食补锌可能对酒精性肝病有较好的影响。  相似文献   

19.
The liver has a marked capacity for regeneration. In most cases the liver regeneration is determined by hepatocytes. The regenerative capacity of hepatocytes is significantly reduced in acute or chronic damage. For example, in patients with alcoholic cirrhosis repair mechanisms are not activated and only organ transplantation or advanced methods of regenerative medicine can help such patients. Clinical trials including patients with various forms of liver disease have shown promising results of transplantation of autologous bone marrow stem cells. However, improvement of the effectiveness of such treatment requires optimization of sources of progenitor cells. In this study we have isolated stromal cells from the liver biopsies of three patients with alcoholic cirrhosis, performed their morphological and phenotypic analysis, and evaluated the hepatic potential of these cells in vitro. Stromal cells isolated from the fetal liver were used for comparative evaluation. During hepatic differentiation both types of cells expressed hepatic markers and secreted albumin. These results can serve as a basis for the development of a new method for the treatment of end-stage liver disease. The stromal cells isolated from the liver biopsies proliferate for a long time in a culture and this provides opportunity to produce them in large amounts for subsequent differentiation into hepatocyte-like cells and autologous transplantation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号