首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transforming growth factor-beta (TGF-beta) signaling plays an important regulatory role during lung fibrogenesis. Smad3 was identified in the pathway for transducing TGF-beta signals from the cell membrane to the nucleus. Using mice without Smad3 gene expression, we investigated whether Smad3 could regulate bleomycin-induced pulmonary fibrosis in vivo. Mice deficient in Smad3 demonstrated suppressed type I procollagen mRNA expression and reduced hydroxyproline content in the lungs compared with wild-type mice treated with bleomycin. Furthermore, loss of Smad3 greatly attenuated morphological fibrotic responses to bleomycin in the mouse lungs, suggesting that Smad3 is implicated in the pathogenesis of pulmonary fibrosis. These results show that Smad3 contributes to bleomycin-induced lung injury and that Smad3 may serve as a novel target for potential therapeutic treatment of lung fibrosis.  相似文献   

3.
TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis   总被引:6,自引:0,他引:6  
Transient adenovirus-mediated gene transfer of IL-1beta (AdIL-1beta), a proinflammatory cytokine, induces marked inflammation and severe and progressive fibrosis in rat lungs. This is associated with an increase in TGF-beta1 concentration in bronchoalveolar lavage (BAL) fluid. TGF-beta1 is a key cytokine in the process of fibrogenesis, using intracellular signaling pathways involving Smad2 and Smad3. In this study we investigate whether inflammation induced by IL-1beta is able to independently induce lung fibrosis in mice deficient in the Smad3 gene. Seven days after AdIL-1beta administration, similar levels of IL-1beta transgene are seen in BAL in both wild-type (WT) and knockout (KO) mice, and BAL cell profiles demonstrated a similar marked neutrophilic inflammation. Phospho-Smad2 staining was positive in areas of inflammation in both WT and KO mice at day 7. By day 35 after transient IL-1beta expression, WT mice showed marked fibrosis in peribronchial areas, quantified by picrosirius red staining and morphometry. However, there was no evidence of fibrosis or collagen accumulation in IL-1beta-treated KO mice, and peribronchial areas were not different from KO mice treated with the control adenovector. TGF-beta1 and phospho-Smad2 were strongly positive at day 35 in fibrotic areas observed in WT mice, but no such staining was detectable in KO mice. The IL-1beta-induced chronic fibrotic response in mouse lungs is dependent on Smad3. KO and WT animals demonstrated a similar inflammatory response to overexpression of IL-1beta indicating that inflammation must link to the Smad3 pathway, likely through TGF-beta, to induce progressive fibrosis.  相似文献   

4.
Although fibroblast growth factor (FGF) signaling is required for the formation of the lung in the embryonic period, it is unclear whether FGF receptor activity influences lung morphogenesis later in development. We generated transgenic mice expressing a soluble FGF receptor (FGFR-HFc) under conditional control of the lung-specific surfactant protein C promoter (SP-C-rtTA), to inhibit FGF activity at various times in late gestation and postnatally. Although expression of FGFR-HFc early in development caused severe fetal lung hypoplasia, activation of the transgene in the postnatal period did not alter alveolarization, lung size, or histology. In contrast, expression of the transgene at post-conception day E14.5 decreased lung tubule formation before birth and caused severe emphysema at maturity. FGFR-HFc caused mild focal emphysema when expressed from E16.5 but did not alter alveolarization when expressed after birth. Although FGF signaling was required for branching morphogenesis early in lung development, postnatal alveolarization was not influenced by FGFR-HFc.  相似文献   

5.
Hypoxia causes abnormal neonatal pulmonary artery remodeling (PAR) and inhibition of alveolar development (IAD). Transforming growth factor (TGF)-beta is an important regulator of lung development and repair from injury. We tested the hypothesis that inhibition of TGF-beta signaling attenuates hypoxia-induced PAR and IAD. Mice with an inducible dominant-negative mutation of the TGF-beta type II receptor (DNTGFbetaRII) and nontransgenic wild-type (WT) mice were exposed to hypoxia (12% O(2)) or air from birth to 14 days of age. Expression of DNTGFbetaRII was induced by 20 microg/g ZnSO(4) given intraperitoneally daily from birth. PAR, IAD, cell proliferation, and expression of extracellular matrix (ECM) proteins were assessed. In WT mice, hypoxia led to thicker, more muscularized resistance pulmonary arteries and impaired alveolarization, accompanied by increases in active TGF-beta and phosphorylated Smad2. Hypoxia-induced PAR and IAD were greatly attenuated in DNTGFbetaRII mice given ZnSO(4) compared with WT control mice and DNTGFbetaRII mice not given ZnSO(4). The stimulatory effects of hypoxic exposure on pulmonary arterial cell proliferation and lung ECM proteins were abrogated in DNTGFbetaRII mice given ZnSO(4). These data support the conclusion that TGF-beta plays an important role in hypoxia-induced pulmonary vascular adaptation and IAD in the newborn animal model.  相似文献   

6.
CC-chemokine receptor 2 required for bleomycin-induced pulmonary fibrosis   总被引:7,自引:0,他引:7  
MCP-1, which signals via the CC chemokine receptor 2 (CCR2), is induced in lung fibrosis that is accompanied by mononuclear cell recruitment and activation of lung fibroblasts. To evaluate the role of CCR2 in lung fibrosis, CCR2 knockout (ko) mice were used in a model of bleomycin-induced lung fibrosis. Wild type (wt) and ko mice were injected endotracheally with bleomycin to induce lung injury and fibrosis, and then analyzed for degree of lung fibrosis and cytokine expression. The results showed significantly reduced fibrosis in ko mice as evidenced by decreased lung type I collagen gene expression and hydroxyproline content relative to those in wt mice. Lung TNF-alpha and TGF-beta1 expression was significantly lower in ko vs. wt mice, while MCP-1 expression was unaffected. Interestingly, lung alpha-smooth muscle actin (alpha-SMA) expression, a marker for myofibroblast differentiation, was also decreased in ko mice, which was confirmed by analysis of isolated lung fibroblasts. Fibroblasts from ko mice exhibited decreased responsiveness to TGF-beta1 induced alpha-SMA expression, which was associated with reduced expression of TGF-beta receptor II (TbetaRII) and Smad3. These findings suggest that CCR2 signaling plays a key role in bleomycin-induced pulmonary fibrosis by regulating fibrogenic cytokine expression and fibroblast responsiveness to TGF-beta.  相似文献   

7.
8.
Transforming growth factor-beta 1 plays a key role in the pathogenesis of pulmonary fibrosis, mediating extracellular matrix (ECM) gene expression through a series of intracellular signaling molecules, including Smad2 and Smad3. We show that Smad3 null mice (knockout (KO)) develop progressive age-related increases in the size of alveolar spaces, associated with high spontaneous presence of matrix metalloproteinases (MMP-9 and MMP-12) in the lung. Moreover, transient overexpression of active TGF-beta 1 in lungs, using adenoviral vector-mediated gene transfer, resulted in progressive pulmonary fibrosis in wild-type mice, whereas no fibrosis was seen in the lungs of Smad3 KO mice up to 28 days. Significantly higher levels of matrix components (procollagen 3A1, connective tissue growth factor) and antiproteinases (plasminogen activator inhibitor-1, tissue inhibitor of metalloproteinase-1) were detected in wild-type lungs 4 days after TGF-beta 1 administration, while no such changes were seen in KO lungs. These data suggest a pivotal role of the Smad3 pathway in ECM metabolism. Basal activity of the pathway is required to maintain alveolar integrity and ECM homeostasis, but excessive signaling through the pathway results in fibrosis characterized by inhibited degradation and enhanced ECM deposition. The Smad3 pathway is involved in pathogenic mechanisms mediating tissue destruction (lack of repair) and fibrogenesis (excessive repair).  相似文献   

9.
10.
Prematurely born infants who require oxygen therapy often develop bronchopulmonary dysplasia (BPD), a debilitating disorder characterized by pronounced alveolar hypoplasia. Hyperoxic injury is believed to disrupt critical signaling pathways that direct lung development, causing BPD. We investigated the effects of normobaric hyperoxia on transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP) signaling in neonatal C57BL/6J mice exposed to 21% or 85% O(2) between postnatal days P1 and P28. Growth and respiratory compliance were significantly impaired in pups exposed to 85% O(2), and these pups also exhibited a pronounced arrest of alveolarization, accompanied by dysregulated expression and localization of both receptor (ALK-1, ALK-3, ALK-6, and the TGF-beta type II receptor) and Smad (Smads 1, 3, and 4) proteins. TGF-beta signaling was potentiated, whereas BMP signaling was impaired both in the lungs of pups exposed to 85% O(2) as well as in MLE-12 mouse lung epithelial cells and NIH/3T3 and primary lung fibroblasts cultured in 85% O(2). After exposure to 85% O(2), primary alveolar type II cells were more susceptible to TGF-beta-induced apoptosis, whereas primary pulmonary artery smooth muscle cells were unaffected. Exposure of primary lung fibroblasts to 85% O(2) significantly enhanced the TGF-beta-stimulated production of the alpha(1) subunit of type I collagen (Ialpha(1)), tissue inhibitor of metalloproteinase-1, tropoelastin, and tenascin-C. These data demonstrated that hyperoxia significantly affects TGF-beta/BMP signaling in the lung, including processes central to septation and, hence, alveolarization. The amenability of these pathways to genetic and pharmacological manipulation may provide alternative avenues for the management of BPD.  相似文献   

11.
Smad7 has been shown to negatively regulate fibrosis and inflammation, but its role in angiotensin II (Ang II)-induced hypertensive cardiac remodeling remains unknown. Therefore, the present study investigated the role of Smad7 in hypertensive cardiopathy induced by angiotensin II infusion. Hypertensive cardiac disease was induced in Smad7 gene knockout (KO) and wild-type (WT) mice by subcutaneous infusion of Ang II (1.46 mg/kg/day) for 28 days. Although equal levels of high blood pressure were developed in both Smad7 KO and WT mice, Smad7 KO mice developed more severe cardiac injury as demonstrated by impairing cardiac function including a significant increase in left ventricular (LV) mass (P<0.01),reduction of LV ejection fraction(P<0.001) and fractional shortening(P<0.001). Real-time PCR, Western blot and immunohistochemistry detected that deletion of Smad7 significantly enhanced Ang II-induced cardiac fibrosis and inflammation, including upregulation of collagen I, α-SMA, interleukin-1β, TNF-α, and infiltration of CD3+ T cells and F4/80+ macrophages. Further studies revealed that enhanced activation of the Sp1-TGFβ/Smad3-NF-κB pathways and downregulation of miR-29 were mechanisms though which deletion of Smad7 promoted Ang II-mediated cardiac remodeling. In conclusions, Smad7 plays a protective role in AngII-mediated cardiac remodeling via mechanisms involving the Sp1-TGF-β/Smad3-NF.κB-miR-29 regulatory network.  相似文献   

12.
The members of the TGF-beta superfamily, i.e., TGF-beta isoforms, activins, and bone morphogenetic proteins, regulate growth, differentiation, and apoptosis, both during embryonic development and during postnatal life. Smad7 is induced by the TGF-beta superfamily members and negatively modulates their signaling, thus acting in a negative, autocrine feedback manner. In addition, Smad7 is induced by other stimuli. Thus, it can fine-tune and integrate TGF-beta signaling with other signaling pathways. To investigate the functional role(s) of Smad7 in vivo, we generated mice deficient in exon I of Smad7, leading to a partial loss of Smad7 function. Mutant animals are viable, but significantly smaller on the outbred CD-1 mouse strain background. Mutant B cells showed an overactive TGF-beta signaling measured as increase of phosphorylated Smad2-positive B cells compared with B cells from wild-type mice. In agreement with this expected increase in TGF-beta signaling, several changes in B cell responses were observed. Mutant B cells exhibited increased Ig class switch recombination to IgA, significantly enhanced spontaneous apoptosis in B cells, and a markedly reduced proliferative response to LPS stimulation. Interestingly, LPS treatment reverted the apoptotic phenotype in the mutant cells. Taken together, the observed phenotype highlights a prominent role for Smad7 in development and in regulating the immune system's response to TGF-beta.  相似文献   

13.
14.
Transforming growth factor-beta1 is essential to maintain T cell homeostasis, as illustrated by multiorgan inflammation in mice deficient in TGF-beta1 signaling. Despite the physiological importance, the mechanisms that TGF-beta1 uses to regulate T cell expansion remain poorly understood. TGF-beta1 signals through transmembrane receptor serine/threonine kinases to activate multiple intracellular effector molecules, including the cytosolic signaling transducers of the Smad protein family. We used Smad3(-/-) mice to investigate a role for Smad3 in IL-2 production and proliferation in T cells. Targeted disruption of Smad3 abrogated TGF-beta1-mediated inhibition of anti-CD3 plus anti-CD28-induced steady state IL-2 mRNA and IL-2 protein production. CFSE labeling demonstrated that TGF-beta1 inhibited entry of wild-type anti-CD3 plus anti-CD28-stimulated cells into cycle cell, and this inhibition was greatly attenuated in Smad3(-/-) T cells. In contrast, disruption of Smad3 did not affect TGF-beta1-mediated inhibition of IL-2-induced proliferation. These results demonstrate that TGF-beta1 signals through Smad3-dependent and -independent pathways to inhibit T cell proliferation. The inability of TGF-beta1 to inhibit TCR-induced proliferation of Smad3(-/-) T cells suggests that IL-2 is not the primary stimulus driving expansion of anti-CD3 plus anti-CD28-stimulated T cells. Thus, we establish that TGF-beta1 signals through multiple pathways to suppress T cell proliferation.  相似文献   

15.
Nonpathogenic enteric bacterial species initiate and perpetuate experimental colitis in IL-10 gene-deficient mice (IL-10(-/-)). Bacteria-specific effects on the epithelium are difficult to dissect due to the complex nature of the gut microflora. We showed that IL-10(-/-) mice compared with wild-type mice fail to inhibit proinflammatory gene expression in native intestinal epithelial cells (IEC) after the colonization with colitogenic Gram-positive Enterococcus faecalis. Interestingly, proinflammatory gene expression was transient after 1 wk of E. faecalis monoassociation in IEC from wild-type mice, but persisted after 14 wk of bacterial colonization in IL-10(-/-) mice. Accordingly, wild-type IEC expressed phosphorylated NF-kappaB subunit RelA (p65) and phosphorylated Smad2 only at day 7 after bacterial colonization, whereas E. faecalis-monoassociated IL-10(-/-) mice triggered persistent RelA, but no Smad2 phosphorylation in IEC at days 3, 7, 14, and 28. Consistent with the induction of TLR2-mediated RelA phosphorylation and proinflammatory gene expression in E. faecalis-stimulated cell lines, TLR2 protein expression was absent after day 7 from E. faecalis-monoassociated wild-type mice, but persisted in IL-10(-/-) IEC. Of note, TGF-beta1-activated Smad signaling was associated with the loss of TLR2 protein expression and the inhibition of NF-kappaB-dependent gene expression in IEC lines. In conclusion, E. faecalis-monoassociated IL-10(-/-), but not wild-type mice lack protective TGF-beta/Smad signaling and fail to inhibit TLR2-mediated proinflammatory gene expression in the intestinal epithelium, suggesting a critical role for IL-10 and TGF-beta in maintaining normal epithelial cell homeostasis in the interplay with commensal enteric bacteria.  相似文献   

16.
Smad7 is an inhibitory Smad and plays a protective role in obstructive and diabetic kidney disease. However, the role and mechanisms of Smad7 in hypertensive nephropathy remains unexplored. Thus, the aim of this study was to investigate the role and regulatory mechanisms of Smad7 in ANG II-induced hypertensive nephropathy. Smad7 gene knockout (KO) and wild-type (WT) mice received a subcutaneous infusion of ANG II or control saline for 4 weeks via osmotic mini-pumps. ANG II infusion produced equivalent hypertension in Smad7 KO and WT mice; however, Smad7 KO mice exhibited more severe renal functional injury as shown by increased proteinuria and reduced renal function (both p<0.05) when compared with Smad7 WT mice. Enhanced renal injury in Smad7 KO mice was associated with more progressive renal fibrosis with elevated TGF-β/Smad3 signalling. Smad7 KO mice also showed more profound renal inflammation including increased macrophage infiltration, enhanced IL-1β and TNF-α expression, and a marked activation of NF-κB signaling (all p<0.01). Further studies revealed that enhanced ANG II-mediated renal inflammation and fibrosis in Smad7 KO mice were also associated with up-regulation of Sp1 but downregulation of miR-29b expression. Taken together, the present study revealed that enhanced Sp1-TGF-β1/Smad3-NF-κB signaling and loss of miR-29 may be mechanisms by which deletion of Smad7 promotes ANG II-mediated renal fibrosis and inflammation. Thus, Smad7 may play a protective role in ANG II-induced hypertensive kidney disease.  相似文献   

17.
Transcriptional induction of Smurf2 ubiquitin ligase by TGF-beta   总被引:1,自引:0,他引:1  
Smad ubiquitination regulatory factor 2 (Smurf2), a ubiquitin ligase for Smads, plays critical roles in the regulation of transforming growth factor-beta (TGF-beta)-Smad signaling via ubiquitin-dependent degradation of Smad2 and Smad7. We found that TGF-beta stimulates Smurf2 expression. TGF-beta activated the Smurf2 promoter in a TGF-beta responsive cell lines, whereas IL-1alpha, PDGF and epidermal growth factor did not. TGF-beta-mediated Smurf2 promoter activation was inhibited by Smad7 or an activin receptor-like kinase 5 inhibitor but not by dominant negative Smad or disruption of Smad-binding elements in the promoter. Moreover, inhibition of the phosphatidil inositol 3 kinase (PI3K)/Akt pathway suppressed TGF-beta-mediated Smurf2 induction. These results suggest that TGF-beta stimulates Smurf2 expression by Smad-independent pathway such as PI3K/Akt pathway via TGF-beta receptor.  相似文献   

18.
TGF-beta signals through TGF-beta receptors and Smad proteins. TGF-beta also augments fibroblast-mediated collagen gel contraction, an in vitro model of connective tissue remodeling. To investigate the importance of Smad2 or Smad3 in this augmentation process, embryo-derived fibroblasts from mice lacking expression of Smad2 or Smad3 genes were cast into native type I collagen gels. Fibroblast-populated gels were then released into 0.2% FCS-DMEM alone or with recombinant human TGF-beta1, beta2, beta3, or recombinant rat PDGF-BB. Gel contraction was determined using an image analyzer. All three isoforms of TGF-beta significantly augmented contraction of collagen gels mediated by fibroblasts with genotypes of Smad2 knockout (S2KO), Smad2 wildtype (S2WT), and Smad3 wildtype (S3WT), but not Smad3 knockout (S3KO) mice. PDGF-BB augmented collagen gel contraction by all fibroblast types. These results suggest that expression of Smad3 but not Smad2 may be critical in TGF-beta augmentation of fibroblast-mediated collagen gel contraction. Thus, the Smad3 gene could be a target for blocking contraction of fibrotic tissue induced by TGF-beta.  相似文献   

19.
Long-term effects of hypoxia are largely due to its modulatory effects on proliferation and differentiation of epithelial and endothelial cells, processes also regulated by the transforming growth factor (TGF)-beta system. We investigated the effects of hypoxia on the TGF-beta system in rat lungs from different developmental stages. Sprague-Dawley rats were exposed to 9.5% oxygen during either the first 2 wk of life or adulthood. Analysis revealed an arrest of alveolarization in hypoxic postnatal day 14 rats. Bioactive TGF-beta levels in bronchoalveolar lavage fluid were increased in these animals, and Western blot analysis revealed upregulation of TGF-beta receptor (TbetaR) I and II. None of these changes was observed in hypoxic adults. Hypoxia did, however, lead to decreased expression of TbetaRIII in both postnatal day 14 and adult rats. Immunohistochemical analysis localized TbetaRI-III predominantly to bronchiolar and alveolar epithelium; these patterns did not change with hypoxia. Thus we observed changes in TGF-beta activity and TbetaR isotype expression in rat lung that parallel the arrest in alveolarization seen with chronic hypoxia in early development. These alterations may partly explain the morphological changes observed in hypoxia.  相似文献   

20.
Controlled proteolysis mediated by Smad ubiquitination regulatory factors (Smurfs) plays a crucial role in modulating cellular responses to signaling of the transforming growth factor-beta (TGF-beta) superfamily. However, it is not clear what influences the selectivity of Smurfs in the individual signaling pathway, nor is it clear the biological function of Smurfs in vivo. Using a mouse C2C12 myoblast cell differentiation system, which is subject to control by both TGF-beta and bone morphogenetic protein (BMP), here we examine the role of Smurf1 in myogenic differentiation. We show that increased expression of Smurf1 promotes myogenic differentiation of C2C12 cells and blocks the BMP-induced osteogenic conversion but has no effect on the TGF-beta-induced differentiation arrest. Consistent with an inhibitory role in the BMP signaling pathway, the elevated Smurf1 markedly reduces the level of endogenous Smad5, whereas it leaves unaltered that of Smad2, Smad3, and Smad7, which are components of the TGF-beta pathway. Adding back Smad5 from a different source to the Smurf1-overexpressing cells restores the BMP-mediated osteoblast conversion. Finally, by depletion of the endogenous Smurf1 through small interfering RNA-mediated RNA interference, we demonstrate that Smurf1 is required for the myogenic differentiation of C2C12 cells and plays an important regulatory role in the BMP-2-mediated osteoblast conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号