首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium-binding proteins regulate ion metabolism and vital signalling pathways in all living organisms. Our aim is to rationalize the molecular basis of their function by studying their evolution using computational biology techniques. Phylogenetic analysis is of primary importance for classifying cognate orthologs; profile hidden Markov models (HMM) of individual subfamilies discern functionally relevant sites by conservation probability analysis; and 3-dimensional structures display the integral protein in context. The major classifications of calcium-binding proteins, viz. EF-hand, C2 and ANX, exhibit structural diversity in their HMM fingerprints at the subfamily level, with functional consequences for protein conformation, exposure of receptor interaction sites and/or binding to membrane phospholipids. Calmodulin, S100 and annexin families were characterized in Petromyzon marinus (sea lamprey) to document genome duplication and gene creation events during the key evolutionary transition to primitive vertebrates. Novel annexins from diverse organisms revealed calcium-binding domains with accessory structural features that define their unique molecular fingerprints, protein interactivity and functional specificity. These include the first single-domain, bacterial annexin in Cytophaga hutchinsonii, the 21 tetrad annexins from the unicellular protist Giardia intestinalis, an ancestor to land plant annexins from the green alga Ostreococcus lucimarinus, invertebrate octad annexins and a critical polymorphism in human ANXA7. Receptor docking models supported the hypothesis of a potential interaction between annexin and C2 domains as a propitious mechanism for ensuring membrane translocation during signal transduction.  相似文献   

2.
The annexins   总被引:3,自引:0,他引:3  
Annexins are traditionally thought of as calcium-dependent phospholipid-binding proteins, but recent work suggests a more complex set of functions. More than a thousand proteins of the annexin superfamily have been identified in major eukaryotic phyla, but annexins are absent from yeasts and prokaryotes. The unique annexin core domain is made up of four similar repeats approximately 70 amino acids long, each of which usually contains a characteristic 'type 2' motif for binding calcium ions. Animal and fungal annexins also have non-homologous amino-terminal domains of varying length and sequence, which are responsible for the distinct localizations and specialized functions of the proteins through post-translational modification and binding to other proteins. Annexins interact with various cell-membrane components that are involved in the structural organization of the cell, intracellular signaling by enzyme modulation and ion fluxes, growth control, and they can act as atypical calcium channels. Analysis of site-specific conservation in the core domain suggests a role for certain buried residues in the calcium-channel activity of vertebrate annexins and in the structural stability of their core domains. Evolutionarily significant differences between subfamilies are preferentially localized to accessible sites on the protein surface that determine membrane binding and interactions with cytosolic proteins.  相似文献   

3.
Cadherins comprise a superfamily of calcium-dependent cell-cell adhesion molecules. Within the superfamily are six subfamilies including type I and type II cadherins. Both type I and type II cadherins are composed of five extracellular repeat domains with conserved calcium-binding motifs, a single pass transmembrane domain, and a highly conserved cytoplasmic domain that interacts with beta-catenin and p120 catenin. In this study, we describe a novel cadherin, cadherin-24. It is a type II cadherin with a 781-codon open reading frame, which encodes a type II cadherin protein complete with five extracellular repeats containing calcium-binding motifs, a transmembrane domain, and a conserved cytoplasmic domain. Cadherin-24 has the unusual feature of being alternatively spliced in extracellular repeat 4. This alternative exon encodes 38 in-frame amino acids, resulting in an 819-amino-acid protein. Sequence analysis suggests the presence of beta-catenin and p120 catenin-binding sequences, and immunoprecipitation experiments confirm the ability of both forms of the novel cadherin to associate with alpha-catenin, beta-catenin, and p120 catenin. In addition, aggregation assays show that both forms of cadherin-24 mediate strong cell-cell adhesion.  相似文献   

4.
Liu Z  Xiao XJ  Fan FY  Sun YM  Li YM  Yang FJ 《生理学报》2005,57(3):346-348
Homo sapiens Kv channel interacting protein 1(KCHIP1)基因表达蛋白是新,发现的神经钙离子结合蛋白超家族中的一个新成员。本文利用定点突变和荧光定位等技术,证实KCHIP1蛋白具有钙离子结合域和肉豆蔻酰化位点两个显著的结构特点,同时发现了KCHIP1蛋白两个对肉豆蔻酰化有重要意义的肉豆蔻酰化位点G2A和G6A。  相似文献   

5.
The amino acid sequence of vitamin D-dependent calcium-binding protein from bovine cerebellum has been determined. It is composed of 260 amino acid residues and its N-terminus is acetylated. The molecular mass is calculated to be 29 851 Da. The presence of six calcium-binding sites (I-VI) has been proposed, two of them (sites II and VI) have lost their calcium-binding function through amino acid replacements, and the other four are able to bind calcium. Six calcium-binding domains are supposed to be derived from two gene duplications of the two ancestral calcium-binding domains. In comparison with the sequence of chick intestinal calcium-binding protein deduced from a cDNA sequence [(1985) Nucleic Acids Res. 13, 8867-8881], the bovine calcium-binding protein is two amino acid residues shorter at the N-terminus and the other parts show 78.5% identity.  相似文献   

6.
Betagamma-crystallin is a superfamily with diverse members from vertebrate lens to microbes. However, not many members have been identified and studied. Here, we report the identification of a putative exported protein from Yersinia pestis as a member of the betagamma-crystallin superfamily. Even though calcium has been known to play an important role in the physiology and virulence of the Yersinia genus, calcium-binding proteins have not yet been identified. We have studied the calcium-binding properties of two of the three crystallin domains present in this putative exported protein designated "Yersinia crystallin." These two domains (D1 and D2) have unique AA and BB types of arrangement of their Greek key motifs unlike the domains of other members of the betagamma-crystallin superfamily, which are either AB or BA types. These domains bind two calcium ions with low and high affinity-binding sites. We showed their calcium-binding properties using various probes for calcium and the effect of calcium on their secondary and tertiary structures. Although both domains bind calcium, D1 underwent drastic changes in secondary and tertiary structure and hydrodynamic volume upon calcium binding. Domain D1, which is intrinsically unstructured in the apo form, requires calcium for the typical betagamma-crystallin fold. Calcium exerted an extrinsic stabilization effect on domain D1 but not on D2, which is also largely unstructured. We suggest that this protein might be involved in calcium-dependent processes, such as stress response or physiology in the Yersinia genus, similar to its microbial relatives and mammalian lens crystallins.  相似文献   

7.
Synaptotagmins are synaptic vesicle proteins containing two calcium-binding C2 domains which are involved in coupling calcium influx through voltage-gated channels to vesicle fusion and exocytosis of neurotransmitters. The interaction of synaptotagmins with native P/Q-type calcium channels was studied in solubilized synaptosomes from rat cerebellum. Antibodies against synaptotagmins I and II, but not IV co-immunoprecipitated [125I]omega-conotoxin MVIIC-labelled calcium channels. Direct interactions were studied between in vitro-translated [35S]synaptotagmin I and fusion proteins containing cytoplasmic loops of the alpha1A subunit (BI isoform). Gel overlay revealed the association of synaptotagmin I with a single region (residues 780-969) located in the intracellular loop connecting homologous domains II and III. Saturable calcium-independent binding occurred with equilibrium dissociation constants of 70 nM and 340 nM at 4 degrees C and pH 7.4, and association was blocked by addition of excess recombinant synaptotagmin I. Direct synaptotagmin binding to the pore-forming subunit of the P/Q-type channel may optimally locate the calcium-binding sites that initiate exocytosis within a zone of voltage-gated calcium entry.  相似文献   

8.
Most annexins are calcium-dependent, phospholipid-binding proteins with suggested functions in response to environmental stresses and signaling during plant growth and development. They have previously been identified and characterized in Arabidopsis and rice, and constitute a multigene family in plants. In this study, we performed a comparative analysis of annexin gene families in the sequenced genomes of Viridiplantae ranging from unicellular green algae to multicellular plants, and identified 149 genes. Phylogenetic studies of these deduced annexins classified them into nine different arbitrary groups. The occurrence and distribution of bona fide type II calcium binding sites within the four annexin domains were found to be different in each of these groups. Analysis of chromosomal distribution of annexin genes in rice, Arabidopsis and poplar revealed their localization on various chromosomes with some members also found on duplicated chromosomal segments leading to gene family expansion. Analysis of gene structure suggests sequential or differential loss of introns during the evolution of land plant annexin genes. Intron positions and phases are well conserved in annexin genes from representative genomes ranging from Physcomitrella to higher plants. The occurrence of alternative motifs such as K/R/HGD was found to be overlapping or at the mutated regions of the type II calcium binding sites indicating potential functional divergence in certain plant annexins. This study provides a basis for further functional analysis and characterization of annexin multigene families in the plant lineage.  相似文献   

9.
Biomineralization is a highly regulated process that plays a major role during the development of skeletal tissues. Despite its obvious importance, little is known about its regulation. Previously, it has been demonstrated that retinoic acid (RA) stimulates terminal differentiation and mineralization of growth plate chondrocytes (Iwamoto, M., I.M. Shapiro, K. Yagumi, A.L. Boskey, P.S. Leboy, S.L. Adams, and M. Pacifici. 1993. Exp. Cell Res. 207:413-420). In this study, we provide evidence that RA treatment of growth plate chondrocytes caused a series of events eventually leading to mineralization of these cultures: increase in cytosolic calcium concentration, followed by up-regulation of annexin II, V, and VI gene expression, and release of annexin II-, V-, VI- and alkaline phosphatase-containing matrix vesicles. Cotreatment of growth plate chondrocytes with RA and BAPTA-AM, a cell permeable Ca2+ chelator, inhibited the up-regulation of annexin gene expression and mineralization of these cultures. Interestingly, only matrix vesicles isolated from RA-treated cells that contained annexins, were able to take up Ca2+ and mineralize, whereas vesicles isolated from untreated or RA/BAPTA-treated cells, that contained no or only little annexins were not able to take up Ca2+ and mineralize. Cotreatment of chondrocytes with RA and EDTA revealed that increases in the cytosolic calcium concentration were due to influx of extracellular calcium. Interestingly, the novel 1,4-benzothiazepine derivative K-201, a specific annexin Ca2+ channel blocker, or antibodies specific for annexin II, V, or VI inhibited the increases in cytosolic calcium concentration in RA-treated chondrocytes. These findings indicate that annexins II, V, and VI form Ca2+ channels in the plasma membrane of terminally differentiated growth plate chondrocytes and mediate Ca2+ influx into these cells. The resulting increased cytosolic calcium concentration leads to a further up-regulation of annexin II, V, and VI gene expression, the release of annexin II-, V-, VI- and alkaline phosphatase-containing matrix vesicles, and the initiation of mineralization by these vesicles.  相似文献   

10.
The beta- and gamma-crystallins are closely related lens proteins that are members of the betagamma-crystallin superfamily, which also include many non-lens members. Although beta-crystallin is known to be a calcium-binding protein, this property has not been reported in gamma-crystallin. We have studied the calcium binding properties of gamma-crystallin, and we show that it binds 4 mol eq of calcium with a dissociation constant of 90 microm. It also binds the calcium-mimic spectral probes, terbium and Stains-all. Calcium binding does not significantly influence protein secondary and tertiary structures. We present evidence that the Greek key crystallin fold is the site for calcium ion binding in gamma-crystallin. Peptides corresponding to Greek key motif of gamma-crystallin (42 residues) and their mutants were synthesized and studied for calcium binding. These peptides adopt beta-sheet conformation and form aggregates producing beta-sandwich. Our results with peptides show that, in Greek key motif, the amino acid adjacent to the conserved aromatic corner in the "a" strand and three amino acids of the "d" strand participate in calcium binding. We suggest that the betagamma superfamily represents a novel class of calcium-binding proteins with the Greek key betagamma-crystallin fold as potential calcium-binding sites. These results are of significance in understanding the mechanism of calcium homeostasis in the lens.  相似文献   

11.
Human annexin V (PP4), a member of the family of calcium, membrane binding proteins, has been crystallized in the presence of calcium and analysed by crystallography by multiple isomorphic replacement at 3 A and preliminarily refined at 2.5 A resolution. The molecule has dimensions of 64 x 40 x 30 A3 and is folded into four domains of similar structure. Each domain consists of five alpha-helices wound into a right-handed superhelix yielding a globular structure of approximately 18 A diameter. The domains have hydrophobic cores whose amino acid sequences are conserved between the domains and within the annexin family of proteins. The four domains are folded into an almost planar array by tight (hydrophobic) pair-wise packing of domains II and III and I and IV to generate modules (II-III) and (I-IV), respectively. The assembly is symmetric with three parallel approximate diads relating II to III, I to IV and the module (II-III) to (I-IV), respectively. The latter diad marks a channel through the centre of the molecule coated with charged amino acid residues. The protein has structural features of channel forming membrane proteins and a polar surface characteristic of soluble proteins. It is a member of the third class of amphipathic proteins different from soluble and membrane proteins.  相似文献   

12.
The amino acid sequences of two subunits (80K and 30K) of calcium-activated neutral protease (CANP) were examined to clarify the structure-function relationship of CANP. The 80K subunit is composed of four clear domains (I–IV from the N-terminus). Domain II is a cysteine proteinase domain homologous to cathepsins B, L, and H. Domain IV is a calcium binding domain with four consecutive EF-hand structures known as typical calcium-binding sites found in calmodulin. The 30K subunit also has a clear domain structure (two domains). The N-terminal domain, a Gly-rich hydrophobic domain, probably determines the location of CANP through association with cellular membrane. The C-terminal domain is a calmodulinlike calcium-binding domain highly homologous to IV in the 80K subunit. The protease activity ascribable to II is regulated by 2 moles of built-in calmodulins, though its precise regulation mechanism is unknown. These results are discussed together with the molecular evolution of CANP on the basis of the gene structures of the two subunits.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   

13.
Annexins are a family of calcium- and phospholipid-binding proteins involved with numerous cellular processes including membrane fusion, ion channel activity, and heterocomplex formation with other proteins. The annexin XII (ANXB12) crystal structure presented evidence that calcium mediates the formation of a hexamer through a novel intermolecular calcium-binding site [Luecke et al. (1995) Nature 378, 512-515]. In an attempt to disrupt hexamerization, we mutated a conserved key ligand in the intermolecular calcium-binding site, Glu105, to lysine. Despite its occurrence in a new spacegroup, the 1.93 A resolution structure reveals a hexamer with the Lys105 epsilon-amino group nearly superimposable with the original intermolecular calcium position. Our analysis shows that the mutation is directly involved in stabilizing the hexamer. The local residues are reoriented to retain affinity between the two trimers via a pH-dependent switch residue, Glu76, which is now protonated, allowing it to form tandem hydrogen bonds with the backbone carbonyl and nitrogen atoms of Thr103 located across the trimer interface. The loss of the intermolecular calcium-binding site is recuperated by extensive hydrogen bonding favoring hexamer stabilization. The presence of this mutant structure provides further evidence for hexameric annexin XII, and possible in vivo roles are discussed.  相似文献   

14.
Human 27-kDa calbindin cDNA clones were selected by antibody screening from lambda gt11 brain libraries. The sequence revealed an open reading frame coding for a protein of 261 amino acids, containing four active calcium-binding domains, and two modified domains that had presumably lost their calcium-binding capability. Comparison with chick and bovine calbindins showed that the protein was highly conserved in evolution (evolutionary rate: 0.3 x 10(-9) amino acid-1 year-1) and that active and inactive domains were equally conserved. From the data we postulate that calbindin has an important physiological function involving protein--protein interactions. Comparison of calcium-binding domains from various proteins suggested that all members of the troponin C superfamily derive from a common two-domained ancestor, but that duplications leading to calbindin and to the four-domained calcium-binding proteins took place independently on different branches of the evolutionary tree. Preliminary data showed that another calcium-binding protein, homologous to calbindin, is present in the brain and encoded by a different gene.  相似文献   

15.
VanScyoc WS  Newman RA  Sorensen BR  Shea MA 《Biochemistry》2006,45(48):14311-14324
Calmodulin (CaM) is an essential, eukaryotic protein comprised of two highly homologous domains (N and C). CaM binds four calcium ions cooperatively, regulating a wide array of target proteins. A genetic screen of Paramecia by Kung [Kung, C. et al. (1992) Cell Calcium 13, 413-425] demonstrated that the domains of CaM have separable physiological roles: "under-reactive" mutations affecting calcium-dependent sodium currents mapped to the N-domain, while "over-reactive" mutations affecting calcium-dependent potassium currents localized to the C-domain of CaM. To determine whether and how these mutations affected intrinsic calcium-binding properties of CaM domains, phenylalanine fluorescence was used to monitor calcium binding to sites I and II (N-domain) and tyrosine fluorescence was used to monitor sites III and IV (C-domain). To explore interdomain interactions, binding properties of each full-length mutant were compared to those of its corresponding domain fragments. The calcium-binding properties of six under-reactive mutants (V35I/D50N, G40E, G40E/D50N, D50G, E54K, and G59S) and one over-reactive mutant (M145V) were indistinguishable from those of wild-type CaM, despite their deleterious physiological effects on ion-channel regulation. Four over-reactive mutants (D95G, S101F, E104K, and H135R) significantly decreased the calcium affinity of the C-domain. Of these, one (E104K) also increased the calcium affinity of the N-domain, demonstrating that the magnitude and direction of wild-type interdomain coupling had been perturbed. This suggests that, while some of these mutations alter calcium-binding directly, others probably alter CaM-channel association or calcium-triggered conformational change in the context of a ternary complex with the affected ion channel.  相似文献   

16.
Recently, a novel type of calcium-dependent protein kinase (CDPK) that requires neither calmodulin nor phospholipids for activation, has been described in plants. We have isolated a cDNA clone for carrot CDPK by probing a library of somatic embryo cDNAs with oligonucleotides corresponding to highly conserved regions of protein kinases. The product of this gene overexpressed in Escherichia coli reacted strongly with monoclonal antibodies to soybean CDPK. The deduced amino acid sequence of carrot CDPK reveals two major functional domains. An N-terminal catalytic domain with greatest homology to calcium/calmodulin-dependent protein kinase type II from rat brain is coupled to a C-terminal calcium-binding domain resembling calmodulin. These features of the primary sequence explain how CDPK binds calcium and suggest a model for CDPK regulation based on similarities to animal calcium/calmodulin-dependent protein kinases.  相似文献   

17.
D F Seals  M L Parrish    S K Randall 《Plant physiology》1994,106(4):1403-1412
A 42-kD, calcium-dependent, membrane-binding protein (VCaB42) was associated with partially purified vacuole membrane. Membrane-dissociation assays indicated that VCaB42 binding to vacuole membranes was selective for calcium over other cations and that 50% of VCaB42 remained membrane bound at 61 +/- 11 nM free calcium. A 13-amino acid sequence obtained from VCaB42 showed 85% similarity with the endonexin fold, a sequence found in the annexin family of proteins that is thought to be essential for calcium and lipid binding. The greatest similarity in amino acid sequence was observed with annexin VIII (VAC-beta). The calcium-binding properties and sequence similarities suggest that VCaB42 is a member of the annexin family of calcium-dependent, membrane-binding proteins. Functional assays for VCaB42 on vacuole membrane transport processes indicated that it did not significantly affect the initial rate of calcium uptake into vacuole membrane vesicles. Because VCaB42 is vacuole localized (likely on the cytosolic surface of the vacuole) and is 50% dissociated within the physiological range of cytosolic free calcium, we hypothesize that this protein is a sensor that monitors cytosolic calcium levels and transmits that information to the vacuole.  相似文献   

18.
Two crystal forms (P6(3) and R3) of human annexin V have been crystallographically refined at 2.3 A and 2.0 A resolution to R-values of 0.184 and 0.174, respectively, applying very tight stereochemical restraints with deviations from ideal geometry of 0.01 A and 2 degrees. The three independent molecules (2 in P6(3), 1 in R3) are similar, with deviations in C alpha positions of 0.6 A. The polypeptide chain of 320 amino acid residues is folded into a planar cyclic arrangement of four repeats. The repeats have similar structures of five alpha-helical segments wound into a right-handed compact superhelix. Three calcium ion sites in repeats I, II and IV and two lanthanum ion sites in repeat I have been found in the R3 crystals. They are located at the convex face of the molecule opposite the N terminus. Repeat III has a different conformation at this site and no calcium bound. The calcium sites are similar to the phospholipase A2 calcium-binding site, suggesting analogy also in phospholipid interaction. The center of the molecule is formed by a channel of polar charged residues, which also harbors a chain of ordered water molecules conserved in the different crystal forms. Comparison with amino acid sequences of other annexins shows a high degree of similarity between them. Long insertions are found only at the N termini. Most conserved are the residues forming the metal-binding sites and the polar channel. Annexins V and VII form voltage-gated calcium ion channels when bound to membranes in vitro. We suggest that annexins bind with their convex face to membranes, causing local disorder and permeability of the phospholipid bilayers. Annexins are Janus-faced proteins that face phospholipid and water and mediate calcium transport.  相似文献   

19.
We have identified and characterized mouse, rat, and human cDNAs that encode a novel secreted protein of 448 amino acids named DANCE (developmental arteries and neural crest epidermal growth factor (EGF)-like). DANCE contains six calcium-binding EGF-like domains, one of which includes an RGD motif. Overexpression studies of recombinant DANCE protein document that DANCE is a secreted 66-kDa protein. DANCE and recently described protein S1-5 comprise a new EGF-like protein family. The human DANCE gene was mapped at chromosome 14q32.1. DANCE mRNA is mainly expressed in heart, ovary, and colon in adult human tissues. Expression profile analysis by in situ hybridization revealed prominent DANCE expression in developing arteries. DANCE is also expressed in neural crest cell derivatives, endocardial cushion tissue, and several other mesenchymal tissues. In adult vessels, DANCE expression is largely diminished but is reinduced in balloon-injured vessels and atherosclerotic lesions, notably in intimal vascular smooth muscle cells and endothelial cells that lose their ability to proliferate in late stage of injury. DANCE protein was shown to promote adhesion of endothelial cells through interaction of integrins and the RGD motif of DANCE. DANCE is thus a novel vascular ligand for integrin receptors and may play a role in vascular development and remodeling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号