首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO), produced by NO synthase (NOS), serves multiple functions in the perinatal lung. In fetal baboons, neuronal (nNOS), endothelial (eNOS), and inducible NOS (iNOS) are all primarily expressed in proximal respiratory epithelium. In the present study, NOS expression and activity in proximal lung and minute ventilation of NO standard temperature and pressure (VeNO(STP)) were evaluated in a model of chronic lung disease (CLD) in baboons delivered at 125 days (d) of gestation (term = 185 d) and ventilated for 14 d, obtaining control lung samples from fetuses at 125 or 140 d of gestation. In contrast to the normal 73% increase in total NOS activity from 125 to 140 d of gestation, there was an 83% decline with CLD. This was related to marked diminutions in both nNOS and eNOS expression and enzymatic activity. nNOS accounted for the vast majority of enzymatic activity in all groups. The normal 3.3-fold maturational rise in iNOS protein expression was blunted in CLD, yet iNOS activity was elevated in CLD compared with at birth. The contribution of iNOS to total NOS activity was minimal in all groups. VeNO(STP) remained stable in the range of 0.5-1.0 nl x kg(-1) x min(-1) from birth to day 7 of life, and it then rose by 2.5-fold. Thus the baboon model of CLD is characterized by deficiency of the principal pulmonary isoforms, nNOS and eNOS, and enhanced iNOS activity over the first 2 wk of postnatal life. It is postulated that these alterations in NOS expression and activity may contribute to the pathogenesis of CLD.  相似文献   

2.
VEGF plays a critical role during lung development and is decreased in human infants with bronchopulmonary dysplasia. Inhibition of VEGF receptors in the newborn rat decreases vascular growth and alveolarization and causes pulmonary hypertension (PH). Nitric oxide (NO) is a downstream mediator of VEGF, but whether the effects of impaired VEGF signaling are due to decreased NO production is unknown. Therefore, we sought to determine whether impaired VEGF signaling downregulates endothelial NO synthase (eNOS) expression in the developing lung and whether inhaled NO (iNO) decreases PH and improves lung growth after VEGF inhibition. Newborn rats received a single dose of SU-5416 (a VEGF receptor inhibitor) or vehicle by subcutaneous injection and were killed up to 3 wk of age for assessments of right ventricular hypertrophy (RVH), radial alveolar counts (RAC), lung eNOS protein, and NOx production in isolated perfused lungs (IPL). Neonatal treatment with SU-5416 increased RVH in infant rats and reduced RAC. Compared with controls, SU-5416 reduced lung eNOS protein expression by 89% at 5 days (P < 0.01). IPL studies from day 14 rats demonstrated increased baseline pulmonary artery pressure and lower perfusate NOx concentration after SU-5416 treatment. Importantly, iNO treatment prevented the increase in RVH and improved RAC after SU-5416 treatment. We conclude that treatment of neonatal rats with SU-5416 downregulates lung eNOS expression and that iNO therapy decreases PH and improves lung growth after SU-5416 treatment. We speculate that decreased NO production contributes to PH and decreases distal lung growth caused by impaired VEGF signaling.  相似文献   

3.
Administration of inhaled nitric oxide (iNO) is a potential therapeutic strategy to prevent bronchopulmonary dysplasia (BPD) in premature newborns with respiratory distress syndrome. We evaluated this approach in a rat model, in which premature pups were exposed to room air, hyperoxia, or a combination of hyperoxia and NO (8.5 and 17 ppm). We investigated the anti-inflammatory effects of prolonged iNO therapy by studying survival, histopathology, fibrin deposition, and differential mRNA expression (real-time RT-PCR) of key genes involved in the development of BPD. iNO therapy prolonged median survival 1.5 days (P = 0.0003), reduced fibrin deposition in a dosage-dependent way up to 4.3-fold (P < 0.001), improved alveolar development by reducing septal thickness, and reduced the influx of leukocytes. Analysis of mRNA expression revealed an iNO-induced downregulation of genes involved in inflammation (IL-6, cytokine-induced neutrophilic chemoattractant-1, and amphiregulin), coagulation, fibrinolysis (plasminogen activator inhibitor 1 and urokinase-type plasminogen activator receptor), cell cycle regulation (p21), and an upregulation of fibroblast growth factor receptor-4 (alveolar formation). We conclude that iNO therapy improves lung pathology and prolongs survival by reducing septum thickness, inhibiting inflammation, and reducing alveolar fibrin deposition in premature rat pups with neonatal hyperoxic lung injury.  相似文献   

4.
Failed alveolar formation and excess, disordered elastin are key features of neonatal chronic lung disease (CLD). We previously found fewer alveoli and more elastin in lungs of preterm compared with term lambs that had mechanical ventilation (MV) with O(2)-rich gas for 3 wk (MV-3 wk). We hypothesized that, in preterm more than in term lambs, MV-3 wk would reduce lung expression of growth factors that regulate alveolarization (VEGF, PDGF-A) and increase lung expression of growth factors [transforming growth factor (TGF)-alpha, TGF-beta(1)] and matrix molecules (tropoelastin, fibrillin-1, fibulin-5, lysyl oxidases) that regulate elastin synthesis and assembly. We measured lung expression of these genes in preterm and term lambs after MV for 1 day, 3 days, or 3 wk, and in fetal controls. Lung mRNA for VEGF, PDGF-A, and their receptors (VEGF-R2, PDGF-Ralpha) decreased in preterm and term lambs after MV-3 wk, with reduced lung content of the relevant proteins in preterm lambs with CLD. TGF-alpha and TGF-beta(1) expression increased only in lungs of preterm lambs. Tropoelastin mRNA increased more with MV of preterm than term lambs, and expression levels remained high in lambs with CLD. In contrast, fibrillin-1 and lysyl oxidase-like-1 mRNA increased transiently, and lung abundance of other elastin-assembly genes/proteins was unchanged (fibulin-5) or reduced (lysyl oxidase) in preterm lambs with CLD. Thus MV-3 wk reduces lung expression of growth factors that regulate alveolarization and differentially alters expression of growth factors and matrix proteins that regulate elastin assembly. These changes, coupled with increased lung elastase activity measured in preterm lambs after MV for 1-3 days, likely contribute to CLD.  相似文献   

5.

Background

COPD is characterised by loss of alveolar elastic fibers and by lack of effective repair. Elastic fibers are assembled at cell surfaces by elastin binding protein (EBP), a molecular chaperone whose function can be reversibility inhibited by chondroitin sulphate of matrix proteoglycans such as versican. This study aimed to determine if alveoli of patients with mild to moderate COPD contained increased amounts of versican and a corresponding decrease in EBP, and if these changes were correlated with decreases in elastin and FEV1.

Methods

Lung samples were obtained from 26 control (FEV1 ≥ 80% predicted, FEV1/VC >0.7) and 17 COPD patients (FEV1 ≥ 40% – <80% predicted, FEV1/VC ≤ 0.7) who had undergone a lobectomy for bronchial carcinoma. Samples were processed for histological and immuno-staining. Volume fractions (Vv) of elastin in alveolar walls and alveolar rims were determined by point counting, and versican and EBP assessed by grading of staining intensities.

Results

Elastin Vv was positively correlated with FEV1 for both the alveolar walls (r = 0.66, p < 0.001) and rims (r = 0.41, p < 0.01). Versican was negatively correlated with FEV1 in both regions (r = 0.30 and 0.32 respectively, p < 0.05), with the highest staining intensities found in patients with the lowest values for FEV1. Conversely, staining intensities for EBP in alveolar walls and rims and were positively correlated with FEV1 (r = 0.43 and 0.46, p < 0.01).

Conclusion

Patients with mild to moderate COPD show progressively increased immuno-staining for versican and correspondingly decreased immuno-staining for EBP, with decreasing values of FEV1. These findings may explain the lack of repair of elastic fibers in the lungs of patients with moderate COPD. Removal of versican may offer a strategy for effective repair.  相似文献   

6.

Background

Surfactant protein D (SP-D), an innate immune molecule, plays an important protective role during airway inflammation. Deficiency of this molecule induces emphysematous changes in murine lungs, but its significance in human COPD remains unclear.

Methods

We collected bronchoalveolar lavage fluid from 20 subjects with varying degrees of COPD (8 former smokers and 12 current smokers) and 15 asymptomatic healthy control subjects (5 never smokers, 3 remote former smokers, and 7 current smokers). All subjects underwent a complete medical history and pulmonary function testing. SP-D was measured by Enzyme-Linked ImmunoSorbent Assay. Statistical analysis was performed using nonparametric methods and multivariable linear regression for control of confounding. The effect of corticosteroid treatment on SP-D synthesis was studied in vitro using an established model of isolated type II alveolar epithelial cell culture.

Results

Among former smokers, those with COPD had significantly lower SP-D levels than healthy subjects (median 502 and 1067 ng/mL, respectively, p = 0.01). In a multivariable linear regression model controlling for age, sex, race, and pack-years of tobacco, COPD was independently associated with lower SP-D levels (model coefficient -539, p = 0.04) and inhaled corticosteroid use was independently associated with higher SP-D levels (398, p = 0.046). To support the hypothesis that corticosteroids increase SP-D production we used type II alveolar epithelial cells isolated from adult rat lungs. These cells responded to dexamethasone treatment by a significant increase of SP-D mRNA (p = 0.041) and protein (p = 0.037) production after 4 days of culture.

Conclusion

Among former smokers, COPD is associated with lower levels of SP-D and inhaled corticosteroid use is associated with higher levels of SP-D in the lung. Dexamethasone induced SP-D mRNA and protein expression in isolated epithelial cells in vitro. Given the importance of this molecule as a modulator of innate immunity and inflammation in the lung, low levels may play a role in the pathogenesis and/or progression of COPD. Further, we speculate that inhaled steroids may induce SP-D expression and that this mechanism may contribute to their beneficial effects in COPD. Larger, prospective studies are warranted to further elucidate the role of surfactant protein D in modulating pulmonary inflammation and COPD pathogenesis.  相似文献   

7.

Rationale

Aquaporin-5 (AQP5) can cause mucus overproduction and lower lung function. Genetic variants in the AQP5 gene might be associated with rate of lung function decline in chronic obstructive pulmonary disease (COPD).

Methods

Five single nucleotide polymorphisms (SNPs) in AQP5 were genotyped in 429 European American individuals with COPD randomly selected from the NHLBI Lung Health Study. Mean annual decline in FEV1 % predicted, assessed over five years, was calculated as a linear regression slope, adjusting for potential covariates and stratified by smoking status. Constructs containing the wildtype allele and risk allele of the coding SNP N228K were generated using site-directed mutagenesis, and transfected into HBE-16 (human bronchial epithelial cell line). AQP5 abundance and localization were assessed by immunoblots and confocal immunofluoresence under control, shear stress and cigarette smoke extract (CSE 10%) exposed conditions to test for differential expression or localization.

Results

Among continuous smokers, three of the five SNPs tested showed significant associations (0.02>P>0.004) with rate of lung function decline; no associations were observed among the group of intermittent or former smokers. Haplotype tests revealed multiple association signals (0.012>P>0.0008) consistent with the single-SNP results. In HBE16 cells, shear stress and CSE led to a decrease in AQP5 abundance in the wild-type, but not in the N228K AQP5 plasmid.

Conclusions

Polymorphisms in AQP5 were associated with rate of lung function decline in continuous smokers with COPD. A missense mutation modulates AQP-5 expression in response to cigarette smoke extract and shear stress. These results suggest that AQP5 may be an important candidate gene for COPD.  相似文献   

8.

Background

Relationships between improvements in lung function and other clinical outcomes in chronic obstructive pulmonary disease (COPD) are not documented extensively. We examined whether changes in trough forced expiratory volume in 1 second (FEV1) are correlated with changes in patient-reported outcomes.

Methods

Pooled data from three indacaterol studies (n = 3313) were analysed. Means and responder rates for outcomes including change from baseline in Transition Dyspnoea Index (TDI), St. George''s Respiratory Questionnaire (SGRQ) scores (at 12, 26 and 52 weeks), and COPD exacerbation frequency (rate/year) were tabulated across categories of ΔFEV1. Also, generalised linear modelling was performed adjusting for covariates such as baseline severity and inhaled corticosteroid use.

Results

With increasing positive ΔFEV1, TDI and ΔSGRQ improved at all timepoints, exacerbation rate over the study duration declined (P < 0.001). Individual-level correlations were 0.03-0.18, but cohort-level correlations were 0.79-0.95. At 26 weeks, a 100 ml increase in FEV1 was associated with improved TDI (0.46 units), ΔSGRQ (1.3-1.9 points) and exacerbation rate (12% decrease). Overall, adjustments for baseline covariates had little impact on the relationship between ΔFEV1 and outcomes.

Conclusions

These results suggest that larger improvements in FEV1 are likely to be associated with larger patient-reported benefits across a range of clinical outcomes.

Trial Registration

ClinicalTrials.gov NCT00393458, NCT00463567, and NCT00624286  相似文献   

9.
10.
To learn whether nitric oxide (NO) inhalation can decrease myocardial ischemia-reperfusion (I/R) injury, we studied a murine model of myocardial infarction (MI). Anesthetized mice underwent left anterior descending coronary artery ligation for 30, 60, or 120 min followed by reperfusion. Mice breathed NO beginning 20 min before reperfusion and continuing thereafter for 24 h. MI size and area at risk were measured, and left ventricular (LV) function was evaluated using echocardiography and invasive hemodynamic measurements. Inhalation of 40 or 80 ppm, but not 20 ppm, NO decreased the ratio of MI size to area at risk. NO inhalation improved LV systolic function, as assessed by echocardiography 24 h after reperfusion, and systolic and diastolic function, as evaluated by hemodynamic measurements 72 h after reperfusion. Myocardial neutrophil infiltration was reduced in mice breathing NO, and neutrophil depletion prevented inhaled NO from reducing myocardial I/R injury. NO inhalation increased arterial nitrite levels but did not change myocardial cGMP levels. Breathing 40 or 80 ppm NO markedly and significantly decreased MI size and improved LV function after ischemia and reperfusion in mice. NO inhalation may represent a novel method to salvage myocardium at risk of I/R injury.  相似文献   

11.

Background

Frequent exacerbations induce a high burden to Chronic Obstructive Pulmonary Disease (COPD). We investigated the course of exacerbations in the published COSMIC study that investigated the effects of 1-year withdrawal of fluticasone after a 3-month run-in treatment period with salmeterol/fluticasone in patients with COPD.

Methods

In 373 patients, we evaluated diary cards for symptoms, Peak Expiratory Flow (PEF), and salbutamol use and assessed their course during exacerbations.

Results

There were 492 exacerbations in 224 patients. The level of symptoms of cough, sputum, dyspnea and nocturnal awakening steadily increased from 2 weeks prior to exacerbation, with a sharp rise during the last week. Symptoms of cough, sputum, and dyspnea reverted to baseline values at different rates (after 4, 4, and 7 weeks respectively), whereas symptoms of nocturnal awakening were still increased after eight weeks. The course of symptoms was similar around a first and second exacerbation. Increases in symptoms and salbutamol use and decreases in PEF were associated with a higher risk to develop an exacerbation, but with moderate predictive values, the areas under the receiver operating curves ranging from 0.63 to 0.70.

Conclusions

Exacerbations of COPD are associated with increased symptoms that persist for weeks and the course is very similar between a first and second exacerbation. COPD exacerbations are preceded by increased symptoms and salbutamol use and lower PEF, yet predictive values are too low to warrant daily use in clinical practice.  相似文献   

12.
The effects of inhaled bronchodilators at rest and during exercise were studied in 15 subjects with chronic obstructive pulmonary disease. In a crossover study against placebo, albuterol caused a significant increase in expiratory flow and reduced lung hyperinflation and dyspnea at rest, but this was not associated with differences in symptoms with exercise or any relevant parameter of physical performance. Dynamic hyperinflation occurred during exercise similarly after placebo or albuterol and was associated with a reduction of forced expiratory flows. This, in turn, was correlated with the bronchoconstrictor effect of deep inhalation determined at rest. In a parallel group study, expiratory flow was increased by 3-wk treatment with salmeterol (n = 9) but not with placebo (n = 6). However, in neither group was the response to exercise different from baseline. These results suggest that in chronic obstructive pulmonary disease effective pharmacological bronchodilation at rest may not be predictive of benefits of exercise tolerance. This may be related to the occurrence of airway narrowing during exercise, particularly when a deep inhalation at rest is followed by a decrease in expiratory flow.  相似文献   

13.
Ascorbic acid plays an important role in connective tissue metabolism, where, among other effects, it acts as a reducing factor in the reactions catalyzed by prolyl and lysyl hydroxylases. In vitro, ascorbic acid has been shown to have a positive influence on collagen synthesis at pre- and/or post-translational levels and a negative effect on elastin production. In the present work, the effects of vitamin C on extracellular matrix deposition have been studied in vivo. Stereological analysis on electron micrographs showed, compared to age-matched controls, a 50 to 60% increase of collagen deposition in the media and in the adventitia of the aorta of rats treated for 30 days from the 18th day of life with 10% ascorbate in their drinking water. By contrast, elastin volume density was significantly reduced by the treatment at all ages examined. These morphological data were supported by in situ hybridization observations showing enhanced collagen type I mRNA and reduced elastin mRNA expression upon treatment. Although vitamin C did not inhibit lysyl oxidase activity in vivo, being only slightly higher than in controls, enzyme activity was significantly reduced, when high doses of ascorbate were added in vitro. Lysyl oxidase activity may be a function of enhanced collagen metabolism rather than a direct effect of the vitamin on the enzyme activity. These data indicate that ascorbate exerts opposite effects on the deposition of two major components of the extracellular matrix in vivo, at least during periods of rapid growth.  相似文献   

14.
15.
16.
In a number of species, partial pneumonectomy initiates hormonally regulated compensatory growth of the remaining lung lobes that restores normal mass, structure and function. Compensation is qualitatively similar across species, but differs with gender, age and hormonal status. Although the biology of response is best characterized in rats, dogs have proven valuable in defining post-operative physiological adaptations. Most recently, mice were recognized to offer unique opportunities to explore the genetic basis of the response, as well as to evaluate associated detrimental effects of pathophysiological significance in animals exposed to carcinogens. The pneumonectomy model thus offers powerful insight concerning adaptive organ growth.  相似文献   

17.

Background

The relationship between airway structural changes (remodeling) and airways hyperresponsiveness (AHR) is unclear. Asthma guidelines suggest treating persistent asthma with inhaled corticosteroids and long acting β-agonists (LABA). We examined the link between physiological function and structural changes following treatment fluticasone and salmeterol separately or in combination in a mouse model of allergic asthma.

Methods

BALB/c mice were sensitized to intraperitoneal ovalbumin (OVA) followed by six daily inhalation exposures. Treatments included 9 daily nebulized administrations of fluticasone alone (6 mg/ml), salmeterol (3 mg/ml), or the combination fluticasone and salmeterol. Lung impedance was measured following methacholine inhalation challenge. Airway inflammation, epithelial injury, mucus containing cells, and collagen content were assessed 48 hours after OVA challenge. Lungs were imaged using micro-CT.

Results and Discussion

Treatment of allergic airways disease with fluticasone alone or in combination with salmeterol reduced AHR to approximately naüve levels while salmeterol alone increased elastance by 39% compared to control. Fluticasone alone and fluticasone in combination with salmeterol both reduced inflammation to near naive levels. Mucin containing cells were also reduced with fluticasone and fluticasone in combination with salmeterol.

Conclusions

Fluticasone alone and in combination with salmeterol reduces airway inflammation and remodeling, but salmeterol alone worsens AHR: and these functional changes are consistent with the concomitant changes in mucus metaplasia.  相似文献   

18.
Inhaled nitric oxide (iNO) has been shown to have a protective effect in lung ischemia-reperfusion (I/R)-induced injuries. We studied the role of iNO (10 parts/million for 4 h) administered before I/R. In an isolated perfused lung preparation, iNO decreased the extravascular albumin accumulation from 2,059 +/- 522 to 615 +/- 105 microl and prevented the increase in lung wet-to-dry weight ratio. To study the mechanisms of this prevention, we evaluated the role of nitric oxide (NO) transport and lung exposure with matched experiments by using either lungs or blood of animals exposed to iNO and blood or lungs of naive animals. iNO-exposed blood with naive lungs did not limit the extravascular albumin accumulation (2,561 +/- 397 microl), but iNO-exposed lungs showed a leak not significantly different from the group in which both lungs and blood were iNO exposed (855 +/- 224 vs. 615 +/- 105 microl). An improvement in heart I/R left ventricular developed pressure in the animals exposed to iNO showed that blood-transported NO was, however, sufficient to trigger remote organ endothelium and reduce the consequences of a delayed injury. In conclusion, preventive iNO reduces the consequences of lung I/R injuries by a mechanism based on tissue or endothelium triggering.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号