首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PRR11(proline-rich protein 11,PRR11)是我们最近发现的一个新的肿 瘤相关基因.初步研究表明, PRR11参与细胞增殖、细胞周期和细胞癌变等多种生 物学过程.为了进一步研究PRR11基因的转录调控机制并全面解析其功能,本研究 对PRR11基因的启动子进行了克隆鉴定和初步分析.首先,应用5' RACE(rapid amplification of cDNA ends,cDNA末端快速扩增)技术鉴定了PRR 11基因的转 录起始位点,发现了其具有多个转录起始位点.通过PCR定向克隆和DNA blunting 技术,构建了6个相互重叠并覆盖PRR 11基因转录起始位点附近约2.0 kb区域的 PRR 11基因启动子荧光素酶报告基因重组体.启动子活性分析表明,PRR 11基因 启动子主要定位于转录起始位点附近-563 bp~+341 bp的区域内.采用转录因子 结合位点预测分析软件分析表明,PRR 11基因启动子缺乏典型的TATA盒,但含有 典型的GC盒、CCAAT盒以及潜在的经典转录因子E2F1和MYB的结合位点,提示Sp1、 NF-Y、E2F1和MYB等经典转录因子可能参与PRR 11基因的转录调控.  相似文献   

2.
3.
4.
Every member of a small family of Pseudo-Response Regulator (PRR) genes, including Timing of Cab Expression 1 (TOC1 [or PRR1]), are believed to play roles close to the circadian clock in the model higher plant Arabidopsis thaliana. In this study we established a transgenic line that misexpresses (or overexpresses) the PRR7 gene. As compared with wild-type plants, the resulting PRR7-misexpressing plants (designated PRR7-ox) showed characteristic phenotypes as to hallmarked circadian-associated biological events: (i) early flowering in a manner independent of photoperiodicity, (ii) hypersensitive response to red light during early photomorphogenesis, and (iii) altered free-running rhythms with long period of clock-associated genes. Finally, a series of all transgenic lines (PRR1-ox, PRR3-ox, PRR5-ox, PRR7-ox, and PRR9-ox) were characterized comparatively with regard to their clock-associated roles. The results suggested that the five homologous PRR factors play coordinate roles, distinctively from one another, and closely to the circadian clock in higher plants.  相似文献   

5.
6.
The current best candidates for Arabidopsis thaliana clock components are CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) and its homolog LHY (LATE ELONGATED HYPOCOTYL). In addition, five members of a small family, PSEUDO-RESPONSE REGULATORS (including PRR1, PRR3, PRR5, PRR7 and PRR9), are believed to be another type of clock component. The originally described member of PRRs is TOC1 (or PRR1) (TIMING OF CAB EXPRESSION 1). Interestingly, seedlings of A. thaliana carrying a certain lesion (i.e. loss-of-function or misexpression) of a given clock-associated gene commonly display a characteristic phenotype of light response during early photomorphogenesis. For instance, cca1 lhy double mutant seedlings show a shorter hypocotyl length than the wild type under a given fluence rate of red light (i.e. hypersensitivity to red light). In contrast, both toc1 single and prr7 prr5 double mutant seedlings with longer hypocotyls are hyposensitive under the same conditions. These phenotypes are indicative of linkage between the circadian clock and red light signal transduction mechanisms. Here this issue was addressed by conducting combinatorial genetic and epistasis analyses with a large number of mutants and transgenic lines carrying lesions in clock-associated genes, including a cca1 lhy toc1 triple mutant and a cca1 lhy prr7 prr5 quadruple mutant. Taking these results together, we propose a genetic model for clock-associated red light signaling, in which CCA1 and LHY function upstream of TOC1 (PRR1) in a negative manner, in turn, TOC1 (PRR1) serves as a positive regulator. PRR7 and PRR5 also act as positive regulators, but independently from TOC1 (PRR1). It is further suggested that these signaling pathways are coordinately integrated into the phytochrome-mediated red light signal transduction pathway, in which PIF3 (PHYTOCHROME-INTERACTING FACTOR 3) functions as a negative regulator immediately downstream of phyB.  相似文献   

7.
8.
9.
10.
Smirnova M  Klein HL 《Mutation research》2003,532(1-2):117-135
The postreplication repair pathway (PRR) is composed of error-free and error-prone sub-pathways that allow bypass of DNA damage-induced replication-blocking lesions. The error-free sub-pathway is also used for bypass of spontaneous DNA damage and functions in cooperation with recombination pathways. In diploid yeast cells, error-free PRR is needed to prevent genomic instability, which is manifest as loss of heterozygosity (LOH) events of increased chromosome loss and recombination. Homologous recombination acts synergistically with the error-free damage avoidance branch of PRR to prevent chromosome loss. The DNA damage checkpoint gene MEC1 acts synergistically with the PRR pathway in maintaining genomic stability. Integration of the PRR pathway with other cellular pathways for preventing genomic instability is discussed. In diploid strains, the most dramatic increase is in the abnormality of chromosome loss when a repair or damage detection pathway is defective.  相似文献   

11.
12.
13.
Kaczorowski KA  Quail PH 《The Plant cell》2003,15(11):2654-2665
To identify new components in the phytochrome (phy) signaling network in Arabidopsis, we used a sensitized genetic screen for deetiolation-defective seedlings. Two allelic mutants were isolated that exhibited reduced sensitivity to both continuous red and far-red light, suggesting involvement in both phyA and phyB signaling. The molecular lesions responsible for the phenotype were shown to be mutations in the Arabidopsis PSEUDO-RESPONSE REGULATOR7 (PRR7) gene. PRR7 is a member of a small gene family in Arabidopsis previously suggested to be involved in circadian rhythms. A PRR7-beta-glucuronidase fusion protein localized to the nucleus, implying a possible function in the regulation of photoresponsive gene expression. Consistent with this suggestion, prr7 seedlings were partially defective in the regulation of the rapidly light-induced genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), observable as a premature increase in expression level during the second peak of the biphasic induction profile that is elicited upon initial exposure of dark-grown seedlings to light. A similar 3- to 6-h coordinated advance in peak free-running expression of CCA1, LHY, and TIMING-OF-CAB1, which are considered to encode the molecular components of the circadian oscillator in Arabidopsis, was observed in entrained fully green prr7 seedlings compared with wild-type seedlings. Collectively, these data suggest that PRR7 functions as a signaling intermediate in the phytochrome-regulated gene expression responsible for both seedling deetiolation and phasing of the circadian clock in response to light.  相似文献   

14.
15.
16.
17.
18.
The protein kinase mammalian target of rapamycin (mTOR) plays an important role in the coordinate regulation of cellular responses to nutritional and growth factor conditions. mTOR achieves these roles through interacting with raptor and rictor to form two distinct protein complexes, mTORC1 and mTORC2. Previous studies have been focused on mTORC1 to elucidate the central roles of the complex in mediating nutritional and growth factor signals to the protein synthesis machinery. Functions of mTORC2, relative to mTORC1, have remained little understood. Here we report identification of a novel component of mTORC2 named PRR5 (PRoline-Rich protein 5), a protein encoded by a gene located on a chromosomal region frequently deleted during breast and colorectal carcinogenesis (Johnstone, C. N., Castellvi-Bel, S., Chang, L. M., Sung, R. K., Bowser, M. J., Pique, J. M., Castells, A., and Rustgi, A. K. (2005) Genomics 85, 338-351). PRR5 interacts with rictor, but not raptor, and the interaction is independent of mTOR and not disturbed under conditions that disrupt the mTOR-rictor interaction. PRR5, unlike Sin1, another component of mTORC2, is not important for the mTOR-rictor interaction and mTOR activity toward Akt phosphorylation. Despite no significant effect of PRR5 on mTORC2-mediated Akt phosphorylation, PRR5 silencing inhibits Akt and S6K1 phosphorylation and reduces cell proliferation rates, a result consistent with PRR5 roles in cell growth and tumorigenesis. The inhibition of Akt and S6K1 phosphorylation by PRR5 knock down correlates with reduction in the expression level of platelet-derived growth factor receptor beta (PDGFRbeta). PRR5 silencing impairs PDGF-stimulated phosphorylation of S6K1 and Akt but moderately reduces epidermal growth factor- and insulin-stimulated phosphorylation. These findings propose a potential role of mTORC2 in the cross-talk with the cellular machinery that regulates PDGFRbeta expression and signaling.  相似文献   

19.
The circadian clock controls the period, phasing, and amplitude of processes that oscillate with a near 24-h rhythm. One core group of clock components in Arabidopsis that controls the pace of the central oscillator is comprised of five PRR (pseudo-response regulator) proteins whose biochemical function in the clock remains unclear. Peak expression of TOC1 (timing of cab expression 1)/PRR1, PRR3, PRR5, PRR7, and PRR9 are each phased differently over the course of the day and loss of any PRR protein alters period. Here we show that, together with TOC1, PRR5 is the only other likely proteolytic substrate of the E3 ubiquitin ligase SCF(ZTL) within this PRR family. We further demonstrate a functional significance for the phosphorylated forms of PRR5, TOC1, and PRR3. Each PRR protein examined is nuclear-localized and is differentially phosphorylated over the circadian cycle. The more highly phosphorylated forms of PRR5 and TOC1 interact best with the F-box protein ZTL (ZEITLUPE), suggesting a mechanism to modulate their proteolysis. In vivo degradation of both PRR5 and ZTL is inhibited by blue light, likely the result of blue light photoperception by ZTL. TOC1 and PRR3 interact in vivo and phosphorylation of both is necessary for their optimal binding in vitro. Additionally, because PRR3 and ZTL both interact with TOC1 in vivo via the TOC1 N terminus, taken together these data suggest that the TOC1/PRR3 phosphorylation-dependent interaction may protect TOC1 from ZTL-mediated degradation, resulting in an enhanced amplitude of TOC1 cycling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号