首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
白斑综合症病毒与对虾血淋巴细胞的体外结合实验   总被引:2,自引:2,他引:0  
通过差速离心和蔗糖密度梯度离心,从感染了白斑综合症病毒(WSSV)的病虾头胸部分离了WSSV,利用地高辛对病毒蛋白进行了标记(DIG-WSSV),以体外培养的对虾血淋巴细胞为吸附基底,观察和分析了病毒与细胞间的结合现象及特性。以NBT/BCIP为酶反应显色底物观察到在细胞周围形成许多暗紫色颗粒,证实病毒与细胞间存在着稳定的结合。以OPD为酶反应显色底物分析了结合反应的特性:当DIG-WSSV维持恒定值时,随着血淋巴细胞数量的增加结合显色增强,细胞数量达到1.2104cells/孔,492nm处的吸光值达到饱和;当血淋巴细胞数量维持恒定值时,随着DIG-WSSV蛋白含量的增加显色增强,且在DIG-WSSV的蛋白浓度达到4g/孔时,492nm处的吸光值达到饱和;未标记WSSV可竞争抑制血淋巴细胞与DIG-WSSV间的结合作用。进一步的研究得出:4℃下,随着结合时间的延长显色增强,但继续延长结合时间显色反而减弱;缓冲液的渗透压对结合结果影响甚微,而酸性条件利于病毒与细胞间的结合。37℃孵育对病毒结合活性影响不大,55℃和70℃孵育可显著影响病毒的结合活性;短时间超声波处理病毒可增加病毒结合能力,长时间超声波处理可破坏病毒结合能力;有机溶剂处理同样可破坏病毒结合能力,其中尤以氯仿/甲醇的处理更为激烈;不同的去垢剂对病毒结合活性的影响结果不同:SDS和脱氧胆酸钠可以降低病毒的结合活性,而Triton X-100和NP-40可以提高病毒的结合活性。    相似文献   

2.
Monoclonal antibodies (MAbs) were produced against white spot syndrome virus (WSSV) of penaeid shrimp. The virus isolate used for immunization was obtained from China in 1994 and was passaged in Penaeus vannamei. The 4 hybridomas selected for characterization all produced MAbs that reacted with the 28 kD structural protein by Western blot analysis. The MAbs tested in dot-immunoblot assays were capable of detecting the virus in hemolymph samples collected from moribund shrimp during an experimentally induced WSSV infection. Two of the MAbs were chosen for development of serological detection methods for WSSV. The 2 MAbs detected WSSV infections in fresh tissue impression smears using a fluorescent antibody for final detection. A rapid immunohistochemical method using the MAbs on Davidson's fixed tissue sections identified WSSV-infected cells and tissues in a pattern similar to that seen with digoxigenin-labeled WSSV-specific gene probes. A whole mount assay of pieces of fixed tissue without paraffin embedding and sectioning was also successfully used for detecting the virus. None of the MAbs reacted with hemolymph from specific pathogen-free shrimp or from shrimp infected with infectious hypodermal and hematopoietic necrosis virus, yellow head virus or Taura syndrome virus. In Western blot analysis, the 2 MAbs did not detect any serological differences among WSSV isolates from China, Thailand, India, Texas, South Carolina or Panama. Additionally, the MAbs did not detect a serological difference between WSSV isolated from penaeid shrimp and WSSV isolated from freshwater crayfish.  相似文献   

3.
White spot syndrome virus (WSSV), a unique member within the virus family Nimaviridae, is the most notorious aquatic virus infecting shrimp and other crustaceans and has caused enormous economic losses in the shrimp farming industry worldwide. Therefore, a comprehensive understanding of WSSV morphogenesis, structural proteins, and replication is essential for developing prevention measures of this serious parasite. The viral genome is approximately 300kb and contains more than 180 open reading frames (ORF). However, most of proteins encoded by these ORF have not been characterized. Due to the importance of WSSV structural proteins in the composition of the virion structure, infection process and interaction with host cells, knowledge of structural proteins is essential to understanding WSSV entry and infection as well as for exploring effective prevention measures. This review article summarizes mainly current investigations on WSSV structural proteins including the relative quantities, localization, function and protein-protein interactions. Traditional proteomic studies of 1D or 2D gel electrophoresis separations and mass spectrometry (MS) followed by database searches have identified a total of 39 structural proteins. Shotgun proteomics and iTRAQ were initiated to identify more structural proteins. To date, it is estimated that WSSV is assembled by at least 59 structural proteins, among them 35 are defined as the envelope fraction (including tegument proteins) and 9 as nucleocapsid proteins. Furthermore, the interaction within several major structural proteins has also been investigated. This identitification and characterization of WSSV protein components should help in the understanding of the viral assembly process and elucidate the roles of several major structural proteins.  相似文献   

4.
5.
Penaeid shrimp represent an important group of valuable exploited species known to either directly utilise saltmarsh habitat, or utilise saltmarsh-derived productivity. Consequently, both areal coverage and primary productivity of saltmarsh habitat has direct consequences for the productivity of these important fisheries, and they are likely to be key beneficiaries of habitat repair. This study aimed to establish quantitative estimates of abundance of School Prawn, Metapenaeus macleayi, across a recovering wetland system; Hexham wetland in the Hunter River. Six surveys were conducted across the wetland using a specialised benthic sled, and absolute abundance of School Prawn was estimated. School Prawn were consistently more abundant in certain areas of the wetland (the highest abundance site supported 1017 prawns per 100 m2), and the average density across the wetland was 244 prawns per 100 m2. All areas of the wetland (except the area closest to the wetland mouth) supported the full range of size classes, and multiple cohorts of prawns moved through the system during the sampling program. The asymmetry observed in the distribution of prawns across the wetland is likely to be due to a combination of water quality and inter-specific interactions. These results show that the recovering wetland is supporting a high abundance of School Prawn. Our estimates of recruitment for School Prawn will also be useful in gauging the potential increases in fisheries productivity arising from habitat repair in this, and other systems.  相似文献   

6.
Genotyping of white spot syndrome virus prevalent in shrimp farms of India   总被引:1,自引:0,他引:1  
DNA extracts from white spot syndrome virus (WSSV) that had infected post-larvae and juveniles of cultured shrimp, wild shrimp and crabs, which had been collected from different hatcheries and farms located along both the east and west coasts of India, revealed considerable variation in several previously identified WSSV DNA repeat regions. These include the 54 bp repeat in ORF 94, the 69 bp repeat in ORF 125 and the compound 45 and 57 bp repeat region in ORF 75. In ORF 94, 13 genotypes were observed with the number of repeats ranging from 2 to 16 units. While 7 repeat units were commonly observed (11.3%), no samples with 11 or 15 repeat units were found. In ORF 125, 11 types were found, with repeats ranging from 2 to 14 units. The most prevalent genotype displayed 4 repeat units (47.1%); no samples with 6 or 13 repeats were observed. The compound repeat region of ORF 75 displayed 6 different patterns of repeats. Samples with the same repeat pattern in one ORF did not always show identical repeat patterns in one or both of the other repeat regions. These data suggest that combined analysis of all 3 variable loci could be used to differentiate and characterize specific WSSV strains. For general epidemiological studies, the best marker with maximum variation is ORF 94, followed by ORF 125 and ORF 75. The 3 repeat regions above were used to compare WSSV genotypes from disease outbreaks on 3 sets of farms from different locations in the state of Andhra Pradesh. The genotypes within each farm set were almost identical, but differed between farm sets, suggesting that WSSV transmission occurred directly through virus carriers or water exchange between adjacent farms at each location. These findings show that genotyping can be a useful epidemiological tool for tracing the movement of WSSV within infected populations.  相似文献   

7.
VP37 of white spot syndrome virus interact with shrimp cells   总被引:2,自引:0,他引:2  
Aims:  To investigate VP37 [WSV 254 of White spot syndrome virus (WSSV) genome] interacting with shrimp cells and protecting shrimp against WSSV infection.
Methods and Results:  VP37 was expressed in Escherichia coli and was confirmed by Western blotting. Virus overlay protein binding assay (VOPBA) technique was used to analyse the rVP37 interaction with shrimp and the results showed that rVP37 interacted with shrimp cell membrane. Binding assay of recombinant VP37 with shrimp cell membrane by ELISA confirmed that purified rVP37 had a high-binding activity with shrimp cell membrane. Binding of rVP37 to shrimp cell membrane was a dose-dependent. Competition ELISA result showed that the envelope protein VP37 could compete with WSSV to bind to shrimp cells. In vivo inhibition experiment showed that rVP37 provided 40% protection. Inhibition of virus infection by rVP37 in primary cell culture revealed that rVP37 counterparted virus infection within the experiment period.
Conclusions:  VP37 has been successfully expressed in E . coli . VP37 interacted with shrimp cells.
Significance and Impact of the Study:  The results suggest that rVP37 has a potential application in prevention of virus infection.  相似文献   

8.
White spot syndrome virus (WSSV) is an enveloped, large dsDNA virus that mainly infects penaeid shrimp, causing serious damage to the shrimp aquaculture industry. Like other animal viruses, WSSV infection induces apoptosis. Although this occurs even in by-stander cells that are free of WSSV virions, apoptosis is generally regarded as a kind of antiviral immune response. To counter this response, WSSV has evolved several different strategies. From the presently available literature, we construct a model of how the host and virus both attempt to regulate apoptosis to their respective advantage. The basic sequence of events is as follows: first, when a WSSV infection occurs, cellular sensors detect the invading virus, and activate signaling pathways that lead to (1) the expression of pro-apoptosis proteins, including PmCasp (an effecter caspase), MjCaspase (an initiator caspase) and voltage-dependent anion channel (VDAC); and (2) mitochondrial changes, including the induction of mitochondrial membrane permeabilization and increased oxidative stress. These events initiate the apoptosis program. Meanwhile, WSSV begins to express its genes, including two anti-apoptosis proteins: AAP-1, which is a direct caspase inhibitor, and WSV222, which is an E3 ubiquitin ligase that blocks apoptosis through the ubiquitin-mediated degradation of shrimp TSL protein (an apoptosis inducer). WSSV also induces the expression of a shrimp anti-apoptosis protein, Pm-fortilin, which can act on Bax to inhibit mitochondria-triggered apoptosis. This is a life and death struggle because the virus needs to prevent apoptosis in order to replicate. If WSSV succeeds in replicating in sufficient numbers, this will result in the death of the infected penaeid shrimp host.  相似文献   

9.
White spot syndrome virus is currently the leading cause of production losses in the shrimp industry. Penaeus monodon Rab7 protein has been recognized as a viral-binding protein with an efficient protective effect against white spot syndrome infection. Plant-derived recombinant PmRab7 might serve as an alternative source for in-feed vaccination, considering the remarkable abilities of plant expression systems. PmRab7 was introduced into the Arabidopsis thaliana T87 genome. Arabidopsis-derived recombinant PmRab7 showed high binding activity against white spot syndrome virus and a viral envelope, VP28. The growth profile of Arabidopsis suspension culture expressing PmRab7 (ECR21# 35) resembled that of its counterpart. PmRab7 expression in ECR21# 35 reached its maximum level at 5 mg g(-1) dry weight in 12 days, which was higher than those previously reported in Escherichia coli and in Pichia. Co-injection of white spot syndrome virus and Arabidopsis crude extract containing PmRab7 in Litopenaeus vannamei showed an 87% increase in shrimp survival rate at 5 day after injection. In this study, we propose an alternative PmRab7 source with higher production yield, and cheaper culture media costs, that might serve the industry's need for an in-feed supplement against white spot syndrome infection.  相似文献   

10.
White spot disease (WSD) is caused by the white spot syndrome virus (WSSV), which results in devastating losses to the shrimp farming industry around the world. However, the mechanism of virus entry and spread into the shrimp cells is unknown. A binding assay in vitro demonstrated VP28-EGFP (envelope protein VP28 fused with enhanced green fluorescence protein) binding to shrimp cells. This provides direct evidence that VP28-EGFP can bind to shrimp cells at pH 6.0 within 0.5 h. However, the protein was observed to enter the cytoplasm 3 h post-adsorption. Meanwhile, the plaque inhibition test showed that the polyclonal antibody against VP28 (a major envelope protein of WSSV) could neutralize the WSSV and block an infection with the virus. The result of competition ELISA further confirmed that the envelope protein VP28 could compete with WSSV to bind to shrimp cells. Overall, VP28 of the WSSV can bind to shrimp cells as an attachment protein, and can help the virus enter the cytoplasm.  相似文献   

11.
Tsai JM  Wang HC  Leu JH  Hsiao HH  Wang AH  Kou GH  Lo CF 《Journal of virology》2004,78(20):11360-11370
White spot syndrome virus (WSSV) virions were purified from the hemolymph of experimentally infected crayfish Procambarus clarkii, and their proteins were separated by 8 to 18% gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to give a protein profile. The visible bands were then excised from the gel, and following trypsin digestion of the reduced and alkylated WSSV proteins in the bands, the peptide sequence of each fragment was determined by liquid chromatography-nano-electrospray ionization tandem mass spectrometry (LC-nanoESI-MS/MS) using a quadrupole/time-of-flight mass spectrometer. Comparison of the resulting peptide sequence data against the nonredundant database at the National Center for Biotechnology Information identified 33 WSSV structural genes, 20 of which are reported here for the first time. Since there were six other known WSSV structural proteins that could not be identified from the SDS-PAGE bands, there must therefore be a total of at least 39 (33 + 6) WSSV structural protein genes. Only 61.5% of the WSSV structural genes have a polyadenylation signal, and preliminary analysis by 3' rapid amplification of cDNA ends suggested that some structural protein genes produced mRNA without a poly(A) tail. Microarray analysis showed that gene expression started at 2, 6, 8, 12, 18, 24, and 36 hpi for 7, 1, 4, 12, 9, 5, and 1 of the genes, respectively. Based on similarities in their time course expression patterns, a clustering algorithm was used to group the WSSV structural genes into four clusters. Genes that putatively had common or similar roles in the viral infection cycle tended to appear in the same cluster.  相似文献   

12.
This study explored whether Crassostrea gigas oysters can be used as a bioindicator of white spot syndrome virus (WSSV) in shrimp farm water canals. Bioassays showed that C. gigas can accumulate WSSV in their gills and digestive glands but do not become infected, either by exposure to seawater containing WSSV or by cohabitation with infected shrimp. The use of a WSSV nested PCR to screen oysters placed in water canals at the entry of a shrimp farm allowed WSSV to be detected 16 d prior to the disease occurring. The finding that C. gigas can concentrate small amounts of WSSV present in seawater without being harmed makes it an ideal sentinel species at shrimp farms.  相似文献   

13.
14.
15.
Two structural protein genes, VP19 and VP466, of white spot syndrome virus (WSSV) were cloned and expressed in Sf21 insect cells using a baculovirus expression system for the development of injection and oral feeding vaccines against WSSV for shrimps. The cumulative mortalities of the shrimps vaccinated by the injection of rVP19 and rVP466 at 15 days after the challenge with WSSV were 50.2% and 51.8%, respectively. For the vaccination by oral feeding of rVP19 and rVP466, the cumulative mortalities were 49.2% and 89.2%, respectively. These results show that protection against WSSV can be generated in the shrimp, using the viral structural protein as a protein vaccine.  相似文献   

16.
Crustacean fortilin or the product of the translationally controlled tumor protein (TCTP) gene isolated from Penaeus monodon, is well conserved and has a Ca(++) binding domain. Pm-fortilin has anti-apoptotic properties and is present at high levels during the onset of viral infections in P. monodon. The possibility of using rFortilin to protect against white spot syndrome virus (WSSV) infection was tested. Injection of shrimp with rFortilin, after infection with WSSV, resulted in 80-100% survival and detection of very low levels of WSSV by PCR, whereas in moribund samples WSSV levels were very high. This result implies that injection of recombinant rFortilin decreases viral infection by an unknown mechanism, but probably by inhibiting viral replication. Using a yeast two-hybrid screen for cellular protein partners to rFortilin we identified an unknown protein that bound to fortilin. This is a novel polypeptide of 93 amino acids with a number of XPPX signature sequences that are often reported to have a function in antiviral peptides.  相似文献   

17.
Cultured populations of four penaeid shrimp species (Crustacea, Decapoda) from four separate culture facilities in Asia were found to be adversely affected by a disease of presumed viral etiology. Individual shrimp with the disease displayed nonspecific signs, including poor growth rate, anorexia, reduced preening activity, increased surface fouling, and occasional opacity of tail musculature. These signs were accompanied by mortalities during the juvenile stages, after apparently normal development through the larval and postlarval stages. Accumulative mortality rates in epizootics in Penaeus merguiensis and P. semisulcatus reached as high as 50 to 100%, respectively, of the affected populations within 4 to 8 weeks of disease onset. The principal lesion, common to all four species, was necrosis and atrophy of the hepatopancreas, accompanied by the presence of large prominent basophilic, PAS-negative, Fuelgen-positive intranuclear inclusion bodies in affected hepatopancreatic tubule epithelial cells (hepatopancreatocytes). These inclusion bodies presumably developed from small, eosinophilic, intranuclear bodies that were also present in the affected tissues. Electron microscopy of affected hepatopancreatocytes revealed aggregations of 22- to 24-nm-diameter virus particles within the electron-dense granular inclusion body ground substance. The virus particle size and morphology, the close association of the nucleolus with the developing inclusion body, and the presence of intranuclear bodies within developing inclusion bodies are similar to cytopathological features reported for parvovirus infections in insects and vertebrates. It is suggested that this presumed virus disease of cultured penaeid shrimp be called HPV for Hepatopancreatic Parvo-like Virus disease.  相似文献   

18.
Prevalence of white spot syndrome virus (WSSV) was determined using polymerase chain reaction (PCR) methodology on DNA extracted from the gills of wild black tiger shrimp Penaeus monodon collected from 7 sampling sites in the Philippines. These 7 sampling sites are the primary sources of spawners and broodstock for hatchery use. During the dry season, WSSV was detected in shrimp from all sites except Bohol, but during the wet season it was not detected in any site except Palawan. None of the WSSV-PCR positive shrimp showed signs of white spots in the cuticle. Prevalence of WSSV showed seasonal variations, i.e. prevalence in dry season (April to May) was higher than in the wet season (August to October). These results suggest that WSSV has already become established in the local marine environment and in wild populations of P. monodon. Thus, broodstock collected during the dry season could serve as the main source of WSSV contamination in shrimp farms due to vertical transmission of the virus in hatcheries.  相似文献   

19.
Chen AJ  Wang S  Zhao XF  Yu XQ  Wang JX 《Journal of virology》2011,85(16):8069-8079
Recent studies have shown that the ubiquitin (Ub) proteasome pathway (UPP) is closely related to immune defense. We have identified a ubiquitin-conjugating enzyme, E2, from the Chinese white shrimp, Fenneropenaeus chinensis (FcUbc). Injection of recombinant FcUbc protein (rFcUbc) reduced the mortality of shrimp infected with white spot syndrome virus (WSSV) and inhibited replication of WSSV. rFcUbc, but not a mutant FcUbc (mFcUbc), bound to WSSV RING domains (WRDs) from four potential E3 ligase proteins of WSSV in vitro. Importantly, rFcUbc could ubiquitinate the RING domains (named WRD2 and WRD3) of WSSV277 and WSSV304 proteins in vitro and the two proteins in WSSV-infected Drosophila melanogaster Schneider 2 (S2) cells. Furthermore, overexpression of FcUbc increased ubiquitination of WSSV277 and WSSV304 during WSSV infection. In summary, our study demonstrates that FcUbc from Chinese white shrimp inhibited WSSV replication and could ubiquitinate WSSV RING domain-containing proteins. This is the first report about antiviral function of Ubc E2 in shrimp.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号