首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We characterized the expression pattern of progesterone receptor (PR) in two regions of the oviduct (ampullae and isthmus), and the uterus (epithelium and stroma) of the rabbit (Oryctolagus cuniculus) during early pregnancy (1-4 days) by RT-PCR and immunohistochemistry. We observed a significant increase in the expression of PR at mRNA level in the uterus on days 1 and 2 of pregnancy, followed by a decrease on days 3 and 4. These changes were also observed at protein level in the uterine epithelium. Interestingly, PR immunoreactivity decreased in stromal cells in all days of pregnancy as compared with non-pregnant rabbits (NG). In the isthmus PR mRNA expression significantly increased on day 2 of pregnancy and diminished on days 3 and 4, whereas no significant changes were observed in the ampullae. In epithelial and stromal cells of the isthmus, PR immunostaining was reduced through pregnancy as compared with NG group. In contrast, a reduction in PR immunostaining was observed on days 1-3 with an increase on day 4 in epithelial and stromal cells of the ampullae. The overall results suggest that PR exhibit a differential expression pattern in the oviduct and the uterus during early pregnancy of the rabbit, and that these differences are related to different functions of PR in the reproductive tract during early pregnancy.  相似文献   

2.
3.
ABSTRACT: BACKGROUND: Progesterone (P4) may modulate oviductal functions to promote early embryo development in cattle. In addition to its nuclear receptor (PR), P4 may mediate its actions through P4 receptor membrane component 1 (PGRMC1) and its relative, PGRMC2. Two successive experiments were undertaken to characterise the expression of PR, PGRMC1 and PGRMC2 in the bovine oviduct during the post-ovulation period, and to relate their expression to the presence of an embryo, the proximity of the CL and to the region of the oviduct. METHODS: In the first experiment (Exp. I), whole oviduct sections were collected from Holstein cows at Day 1.5, Day 4 and Day 5 post-ovulation (n = 2 cows per stage). The expression of PR, PGRMC1 and PGRMC2 was studied in the ampulla and isthmus by RT-PCR, western-blot and immunohistochemistry. In Exp. II, oviduct epithelial cells were collected from cyclic and pregnant Charolais cows (n = 4 cows per status) at Day 3.5 post-ovulation and mRNA expression of PR, PGRMC1 and PGRMC2 was examined in the ampulla and isthmus by real-time quantitative PCR. RESULTS: In Exp. I, PR, PGRMC1 and PGRMC2 were expressed in all oviduct samples. PGRMC1 was mainly localised in the luminal epithelium whereas PR and PGRMC2 were localised in the epithelium as well as in the muscle and stroma layers of the oviduct. The expression was primarily nuclear for PR, primarily cytoplasmic for PGRMC1 and both nuclear and cytoplasmic for PGRMC2. In Exp. II, mRNA levels for PR, PGRMC1 and PGRMC2 were not affected by either the pregnancy status or the side relative to the CL. However, the expression of PR and PGRMC2 varied significantly with the region of the oviduct: PR was more highly expressed in the isthmus whereas PGRMC2 was more highly expressed in the ampulla. CONCLUSIONS: This is the first evidence of PGRMC2 expression in the bovine oviduct. Our findings suggest that P4 regulates the functions of the bovine oviduct in a region-specific manner and through both classical and non classical pathways during the post-ovulation period.  相似文献   

4.
Stress-induced expression of immediate early genes (IEGs) appears to be transient even if the exposure to the stressor persists. However, there are some exceptions which suggest that particular characteristics of stressors can affect the dynamics of IEG expression. We studied in selected telencephalic, diencephalic and brainstem regions the mRNA levels of two clearly distinct IEGs (c-fos and arc) during prolonged exposure to a severe stressor such as immobilization (IMO) and after releasing the rats from the situation. Although regional differences were observed with the two IEGs, overall, c-fos mRNA levels progressively declined over the course of 4 h of continuous exposure to IMO, whereas arc mRNA levels were maintained at high levels in the brain regions that express this gene under stress (telencephalon). Levels of CRF hnRNA in the hypothalamus paraventricular nucleus only slightly declined during prolonged exposure to IMO. Surprisingly, termination of exposure to IMO did not modify CRF gene expression in the paraventricular nucleus or the pattern of IEGs expression, with the exception of c-fos in the lateral septum. Thus, putative signals associated to the termination of exposure to IMO were unable to modify either IEG expression in most brain areas or CRF gene expression in the paraventricular nucleus.  相似文献   

5.
6.
The progesterone receptor (PR) plays a pivotal role in the maturation process of the secretory endometrium, implantation and maintenance of pregnancy in rabbits. To determine the dynamics of PR gene expression and its physiological significance, the endometrial expression of PR and PR mRNA were evaluated and compared with the expression of the progesterone-regulated uteroglobin (UG) gene during 0–5 days post-coitus in rabbits. The results of immunoblot experiments indicated the presence of PR in endometrial cell extracts from days 1–4 of pregnancy with maximum PR immunostaining on day 2, followed by a marked diminution until its complete disappearance on day 5. When endometrial PR mRNA content was assessed by Northern blots, the results were similar to those of PR immunostaining, with maximal concentrations on the second day after mating. However, PR mRNA levels were still high on day 3, despite the concomitant decrease in immunostainable PR. Endometrial UG gene expression, on the other hand, exhibited a different time sequence. Thus, the UG content in uterine flushings progressively increased from day 3 after mating, reaching maximal levels on the fifth day. The endometrial UG mRNA content presented a similar profile, as its maximum concentration occurred on days 4–5. The overall results indicate that endometrial PR is down-regulated at both the mRNA and protein levels, possibly by endogenous progesterone during early pregnancy. The striking observation that maximal expression of endometrial UG gene products occurred when PR and its mRNA are no longer detectable suggests an important role for this progesterone-binding uterine protein during the preimplantation period. © 1993 Wiley-Liss, Inc.  相似文献   

7.
8.
To further our understanding of progesterone (P) as an endocrine mammogen, a PR(lacz) knockin mouse was generated in which the endogenous progesterone receptor (PR) promoter directly regulated lacZ reporter expression. The PR(lacz) mouse revealed PR promoter activity was restricted to the epithelial compartment during the prenatal and postnatal stages of mammary gland development. At puberty, PR promoter activity was unexpectedly robust and restricted to the body cells within the terminal end buds and to the luminal epithelial cells in the subtending ducts. In the adult, the preferential localization of PR(lacz) positive cells to the distal regions of ductal side branches provided a cellular context to the recognized mandatory role of P in ductal side-branching, and segregation of these cells from cells that undergo proliferation supported an intraepithelial paracrine mode of action for P in branching morphogenesis. Toward the end of pregnancy, the PR(lacz) mouse disclosed a progressive attenuation in PR promoter activity, supporting the postulate that the preparturient removal of the proliferative signal of P is a prerequisite for the emergence of a functional lactating mammary gland. The data suggest that PR expression before pregnancy is to ensure the specification and spatial organization of ductal and alveolar progenitor cell lineages, whereas abrogation of PR expression before lactation is required to enable terminal differentiation of the mammary gland.  相似文献   

9.
Distribution of Mahogany/Attractin mRNA in the rat central nervous system   总被引:9,自引:0,他引:9  
Lu Xy  Gunn TM  Shieh Kr  Barsh GS  Akil H  Watson SJ 《FEBS letters》1999,462(1-2):101-107
The Mahogany/Attractin gene (Atrn) has been proposed as a downstream mediator of Agouti signaling because yellow hair color and obesity in lethal yellow (A(y)) mice are suppressed by the mahogany (Atrn(mg)) mutation. The present study examined the distribution of Atrn mRNA in the brain and spinal cord by in situ hybridization. Atrn mRNA was found widely distributed throughout the central nervous system, with high levels in regions of the olfactory system, some limbic structures, regions of the brainstem, cerebellum and spinal cord. In the hypothalamus, Atrn mRNA was found in specific nuclei including the suprachiasmatic nucleus, the supraoptic nucleus, the medial preoptic nucleus, the paraventricular hypothalamic nucleus, the ventromedial hypothalamic nucleus, and the arcuate nucleus. These results suggest a broad spectrum of physiological functions for the Atrn gene product.  相似文献   

10.
The lipocalin apolipoprotein D (Apo D) is upregulated in peripheral nerves following injury and in regions of the central nervous system, such as the cerebral cortex, hippocampus, and cerebellum, during aging and progression of certain neurological diseases. In contrast, few studies have examined Apo D expression in the brainstem, a region necessary for survival and generally less prone to age-related degeneration. We measured Apo D expression in whole human brainstem lysates by slot-blot and at higher spatial resolution by quantitative immunohistochemistry in eleven brainstem nuclei (the 4 nuclei of the vestibular nuclear complex, inferior olive, hypoglossal nucleus, oculomotor nucleus, facial motor nucleus, nucleus of the solitary tract, dorsal motor nucleus of the vagus nerve, and Roller`s nucleus). In contrast to cortex, hippocampus, and cerebellum, apolipoprotein D was highly expressed in brainstem tissue from subjects (N = 26, 32−96 years of age) with no history of neurological disease, and expression showed little variation with age. Expression was significantly stronger in somatomotor nuclei (hypoglossal, oculomotor, facial) than visceromotor or sensory nuclei. Both neurons and glia expressed Apo D, particularly neurons with larger somata and glia in the periphery of these brainstem centers. Immunostaining was strongest in the neuronal perinuclear region and absent in the nucleus. We propose that strong brainstem expression of Apo D throughout adult life contributes to resistance against neurodegenerative disease and age-related degeneration, possibly by preventing oxidative stress and ensuing lipid peroxidation.  相似文献   

11.
The female rabbit is an exceptional experimental model to define mechanisms by which progesterone (P) controls the expression of reproductive behaviors. In the rabbit, the rise in P levels during pregnancy inhibits estrous scent marking ("chinning"), stimulates the excavation of a nest burrow ("digging"), and primes behaviors later used for nest construction. The pre-parturient fall of P triggers the construction of a straw nest ("straw carrying") that is lined with hair that she pulls from her own body ("hair pulling"). These behaviors can be replicated in ovariectomized (ovx) females given a schedule of estradiol (E) and P that mimics hormone levels during pregnancy (E from days 0 to 4, E + P from days 5 to 17, E from days 18 to 27). We administered PR antagonists RU486 or CDB(VA)2914 to ovx female rabbits during either the initial (days 5-11) or late (days 12-17) phases of P treatment, to determine the role of PR activation in coordinating the expression of these behaviors. Both antiprogestins attenuated the P-mediated decline in chinning and increase in digging when administered during days 5-11. When given across days 12-17, both antiprogestins triggered an early decline in digging, the onset of nest building in some Ss, and the reinstatement of chinning. These results point to a central role of PR activation for establishing and maintaining the behavioral phenotype of pregnancy, and for the behavioral transition from pregnancy to estrus.  相似文献   

12.
13.
The aim of this work was to compare PR, ERα and OTR uterine expression between days 9 and 21 of pregnancy in ewes whose estrus had been synchronized with two different protocols. Sixty-four adult Manchega ewes were synchronized with either conventional progestagens (P) or prostaglandin analogues (PG), and mated. Uterine samples were obtained from pregnant animals (group P, n=24; group PG, n=25) on days 9 post coitus (pc), 13pc, 15pc, 17pc and 21pc. Immunohistochemical detection of progesterone receptor (PR), estrogen receptor-α (ERα) and oxytocin receptor (OTR) was assessed in different uterine cell compartments including luminal and glandular epithelium, stroma and myometrium. Interaction day × treatment was obtained when assessing PR expression in the caruncular stroma (P=0.027) and myometrium (P=0.000), as well as for ERα in the superficial stroma (P=0.05). Significant "day post coitus" effect was found regarding to PR (P<0.01, with the exception of the superficial stroma, deep stroma and myometrium), ERα (P<0.01), and OTR (P<0.05, except in the deep compartments). No significant "treatment" effect was found for PR, ERα or OTR protein immunoexpression. This study supports the implication of PR, ERα and OTR within days 9-21 of the ovine pregnancy. Moreover, different expression pattern of PR and ERα proteins has been found between treatments in various compartments studied. Collectively, these results indicate that PR, ERα and OTR expression during early pregnancy is similar between ewes treated with either progestagens or prostaglandin analogues-based protocols for estrus synchronization.  相似文献   

14.
Li J 《Life sciences》2002,71(24):2833-2843
Contraction of skeletal muscle evokes increases in arterial blood pressure and heart rate. Some regions of the brainstem have been implicated for expression of the cardiovascular responses to muscle contraction. Previous studies have reported that static muscle contraction induced c-Fos protein in the nucleus of tractus solitarii (NTS), lateral reticular nucleus (LRN), lateral tegmental field (FTL), subretrofacial nucleus (SRF), A1 region and periaqueductal gray (PAG) of the brainstem. Furthermore, neuronal NADPH-diaphorase (NADPH-d), which is considered as a marker of neuronal nitric oxide synthase (nNOS), has been localized in those same regions. In this study, static muscle contraction was induced by electrical stimulation of the L7 and S1 ventral roots in anaesthetized cats. Distribution of c-Fos protein within neurons containing nNOS was evaluated by double labeling methods in order to determine if nNOS containing neurons in the brainstem were activated during muscle contraction. The results indicate that c-Fos protein colocalized with NADPH-d positive staining within the neurons of the SRF and PAG, but not within the NTS neurons. Distinct number of neurons with c-Fos protein was in close proximity to NADPH-d positive staining in the NTS, SRF, and PAG. Coexisting of c-Fos protein and NADPH-d positive staining was not observed in the LRN, FTL and A1 region. These findings demonstrate that nNOS containing neurons were activated by muscle contraction in the selective regions of the brainstem, and nNOS positive staining had close anatomic contacts with the neurons activated by contraction. This result provides neuroanatomic evidence suggesting that nitric oxide modulates the cardiovascular responses to muscle contraction within the NTS, SRF and PAG of the brainstem.  相似文献   

15.
Progesterone regulates diverse functions in the rabbit brain through the interaction with its nuclear receptor (PR). Although PR protein has been detected in some regions of the rabbit forebrain, PR mRNA expression and distribution in the rabbit brain are unknown. Hence, we investigated these issues by in situ hybridization. New Zealand adult female rabbits were ovariectomized and treated with vehicle or estradiol (5 μg/(kg day)) for 3 days. The results show an extended distribution of PR mRNA expression in the rabbit brain. The highest expression was detected in preoptic area and hypothalamic anterior nuclei such as paraventricular, periventricular and arcuate nuclei. A high expression was also detected in thalamic and telencephalic areas, including hippocampus and cerebral cortex. Estradiol treatment induced an increase in PR mRNA expression in many brain areas, particularly in the hippocampus and the hypothalamic and preoptic area regions. The wide distribution of PR mRNA in the rabbit brain suggests that progesterone through PR activation is involved in several functions apart from reproductive behavior in rabbits, and that PR expression is up-regulated by estradiol in the rabbit brain.  相似文献   

16.
Glucagon-like peptide-1 (GLP-1), structurally similar to glucagon, synthesized from the precursor proglucagon, is a well known anorexigenic peptide in the brain of several animal species. However, there are no previous reports concerning GLP-1-containing neurons in the chick brain. The aim of the present study was to investigate the distribution of proglucagon mRNA and GLP-1-immunoreactive (GLI) perikarya in various regions of the chick brain. We detected proglucagon mRNA in the brainstem, and to a lesser extent in the telencephalon. In the brainstem, a study using immunohistochemistry revealed that GLI perikarya were present in the nucleus motorius nervi facialis pars dosalis, nucleus motoris dorsalis nervi vagi and nucleus tractus solitarii. Furthermore, we found that proglucagon mRNA expression in the brainstem decreased after 24 h fasting. The present findings support the idea that endogenous GLP-1 is involved in feeding behavior of chicks.  相似文献   

17.
Cav1.2 and Cav1.3 are the major L-type voltage-gated Ca2+ channels in the CNS. Yet, their individual in vivo functions are largely unknown. Both channel subunits are expressed in the auditory brainstem, where Cav1.3 is essential for proper maturation. Here, we investigated the role of Cav1.2 by targeted deletion in the mouse embryonic auditory brainstem. Similar to Cav1.3, loss of Cav1.2 resulted in a significant decrease in the volume and cell number of auditory nuclei. Contrary to the deletion of Cav1.3, the action potentials of lateral superior olive (LSO) neurons were narrower compared with controls, whereas the firing behavior and neurotransmission appeared unchanged. Furthermore, auditory brainstem responses were nearly normal in mice lacking Cav1.2. Perineuronal nets were also unaffected. The medial nucleus of the trapezoid body underwent a rapid cell loss between postnatal days P0 and P4, shortly after circuit formation. Phosphorylated cAMP response element-binding protein (CREB), nuclear NFATc4, and the expression levels of p75NTR, Fas, and FasL did not correlate with cell death. These data demonstrate for the first time that both Cav1.2 and Cav1.3 are necessary for neuronal survival but are differentially required for the biophysical properties of neurons. Thus, they perform common as well as distinct functions in the same tissue.  相似文献   

18.
This study characterized endometrial expression of mRNAs of oestrogen and progesterone receptors (ER, PR) and insulin-like growth factor-I (IGF-I) during the oestrous cycle. Seven Holstein heifers that showed standing oestrus on the same day (day 0) were selected and blood samples for oestradiol (E2) and progesterone (P4) determinations by RIA were taken daily until day 23. Endometrial samples were taken by transcervical biopsies on days 0, 5, 12 and 19 for mRNA determination by solution hybridization. The highest endometrial mRNA levels of ERalpha and PR were observed at oestrus and a decline was observed already at day 5, which then decreased progressively at the end of the luteal phase. IGF-I mRNA levels were higher at day 0 and 5 than at day 12. At day 19, mRNA levels of ERalpha, PR and IGF-I were the lowest in heifers that were at the end of their luteal phase (n=4), but were high again in heifers which P4 levels were basal (n=3). The temporal changes in mRNA endometrial expression of ERalpha, PR and IGF-I and their relation to the changes in steroid concentrations during the bovine oestrus cycle are described.  相似文献   

19.
目的:如何减轻缺氧造成的肺损伤是平原人群进入高原环境时面临的难题。本研究旨在探索外源性1-磷酸鞘氨醇(S1P)对低氧暴露诱导肺上皮细胞损伤的改善作用。方法:对肺上皮细胞(BEAS 2B细胞)进行4 h不同浓度的S1P预处理,之后放入低氧培养箱(氧气浓度为1%)模拟24 h和48 h的低氧暴露,检测细胞的增殖活性、早期凋亡以及线粒体相关功能;通过实时荧光定量PCR检测受体基因(S1PR1-3)的表达水平。结果:外源性S1P预处理可在BEAS 2B细胞中显著提高S1PR3的表达水平;对于24 h-48 h的急性低氧暴露,给予1μM浓度的S1P预处理时对细胞具有显著的保护作用,主要表现在线粒体功能改善、细胞增殖活性提升及早期凋亡率下降,包括:线粒体膜电位(MMP)和三磷酸腺苷(ATP)水平显著升高(P<0.0005),线粒体活性氧(ROS)产生显著减少(P<0.0001),从而显著提高了细胞的增殖活性(P<0.005),并降低早期凋亡率。结论:外源性S1P预处理能通过改善低氧诱导的氧化应激损伤保护肺上皮细胞。S1P在预防急性高原病、改善高原反应方面具有潜在应用价值。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号