首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
P Brandt  C Woodward 《Biochemistry》1987,26(11):3156-3167
Hydrogen exchange rates of six beta-sheet peptide amide protons in bovine pancreatic trypsin inhibitor (BPTI) have been measured in free BPTI and in the complexes trypsinogen-BPTI, trypsinogen-Ile-Val-BPTI, bovine trypsin-BPTI, and porcine trypsin-BPTI. Exchange rates in the complexes are slower for Ile-18, Arg-20, Gln-31, Phe-33, Tyr-35, and Phe-45 NH, but the magnitude of the effect is highly variable. The ratio of the exchange rate constant in free BPTI to the exchange rate constant in the complex, k/kcpIx, ranges from 3 to much greater than 10(3). Gln-31, Phe-45, and Phe-33 NH exchange rate constants are the same in each of the complexes. For Ile-18 and Tyr-35, k/kcpIx is much greater than 10(3) for the trypsin complexes but is in the range 14-43 for the trypsinogen complexes. Only the Arg-20 NH exchange rate shows significant differences between trypsinogen-BPTI and trypsinogen-Ile-Val-BPTI and between porcine and bovine trypsin-BPTI.  相似文献   

2.
The native conformation of a protein may be expressed in terms of the dihedral angles, phi's and psi's for the backbone, and kappa's for the side chains, for a given geometry (bond lengths and bond angles). We have developed a method to obtain the dihedral angles for a low-energy structure of a protein, starting with the X-ray structure; it is applied here to examine the degree of flexibility of bovine pancreatic trypsin inhibitor. Minimization of the total energy of the inhibitor (including nonbonded, electrostatic, torsional, hydrogen bonding, and disulfide loop energies) yields a conformation having a total energy of -221 kcal/mol and a root mean square deviation between all atoms of the computed and experimental structures of 0.63 A. The optimal conformation is not unique, however, there being at least two other conformations of low-energy (-222 and -220 kcal/mol), which resemble the experimental one (root mean square deviations of 0.66 and 0.64 A, respectively). These three conformations are located in different positions in phi, psi space, i.e., with a total deviation of 81 degrees, 100 degrees and 55 degrees from each other (with a root mean square deviation of several degrees per dihedral angle from each other). The nonbonded energies of the backbones, calculated along lines in phi, psi space connecting these three conformations, are all negative, without any intervening energy barriers (on an energy contour map in the phi, psi plane). Side chains were attached at several representative positions in this plane, and the total energy was minimized by varying the kappa's. The energies were of approximately the same magnitude as the previous ones, indicating that the conformation of low energy is flexible to some extent in a restricted region of phi, psi space. Interestingly, the difference delta phi i+1 in phi i+1 for the (i + 1)th residue from one conformation to another is approximately the same as -delta psi i for the ith residue; i.e., the plane of the peptide group between the ith and (i + 1)th residues re-orient without significant changes in the positions of the other atoms. The flexibility of the orientations of the planes of the peptide groups is probably coupled in a cooperative manner to the flexibility of the positions of the backbone and side-chain atoms.  相似文献   

3.
Renaturation of the reduced bovine pancreatic trypsin inhibitor   总被引:5,自引:0,他引:5  
Refolding of the reduced pancreatic trypsin inhibitor has been investigated using thiol-disulphide exchange with various disulphide reagents to regenerate the three disulphide bonds. Essentially quantitative renaturation was routinely achieved. The refolded inhibitor was indistinguishable from the original protein in interaction with trypsin and chymotrypsin, electrophoretic mobility, and nature of disulphide bonds.The kinetics of refolding using oxidized dithiothreitol to form the disulphide bonds have been studied in some detail. The renaturation reaction is usually of second-order, being first-order in both inhibitor and disulphide reagent concentrations. A short lag period in the appearance of inhibitor activity and the inhibition of the rate, but not the extent, of renaturation by low levels of reduced dithiothreitol suggest the accumulation of metastable intermediates. In addition, heterogeneity of the refolding reaction is apparent at high concentrations of disulphide reagent, with a fraction of the material being only slowly renatured.  相似文献   

4.
The structure of the complex between anhydro-trypsin and pancreatic trypsin inhibitor has been determined by difference Fourier techniques using phases obtained from the native complex (Huber et al., 1974). It was refined independently by constrained crystallographic refinement at 1.9 å resolution. The anhydro-complex has Ser 195 converted to dehydro-alanine. There were no other significant structural changes. In particular, the high degree of pyramidalization of the C atom of Lys 15 (I) of the inhibitor component observed in the native complex is maintained in the anhydro-species.  相似文献   

5.
Folding of the twisted beta-sheet in bovine pancreatic trypsin inhibitor   总被引:2,自引:0,他引:2  
The dominant role of local interactions has been demonstrated for the formation of the strongly twisted antiparallel beta-sheet structure consisting of residues 18-35 in bovine pancreatic trypsin inhibitor. Conformational energy minimization has indicated that this beta-sheet has a strong twist even in the absence of the rest of the protein molecule. The twist is maintained essentially unchanged when energy minimization is carried out by starting from the native conformation. By starting from a nontwisted beta-sheet conformation of residues 18-35, a strongly twisted structure (higher in energy than the native) is obtained. The high twist of the native-like beta-sheet is a consequence of its amino acid sequence, but it is enhanced strongly by interchain interactions that operate within the beta-sheet. The existence of the twisted beta-sheet structure does not require the presence of a disulfide bond between residue 14 and residue 38. It actually may facilitate the formation of this bond. Therefore, it is likely that the beta-sheet structure forms during an earlier stage of folding than the formation of this disulfide bond. This study provides an example of the manner in which conformational energy calculations can be used to provide information about the probable pathway of the folding of a protein.  相似文献   

6.
Stability studies on derivatives of the bovine pancreatic trypsin inhibitor   总被引:3,自引:0,他引:3  
Gibbs energy, enthalpy, and entropy data were determined for two selectively modified analogues of bovine pancreatic trypsin inhibitor (BPTI) to provide a model free set of thermodynamic parameters that characterize (a) the energetic and entropic contributions of the 14-38 disulfide bridge and (b) the variation of the overall stability resulting from the introduction of two negative charges into the positions 14 and 38. The two BPTI analogues studied were BPTI having Cys-14 and Cys-38 carboxymethylated (BPTI-RCOM) and BPTI having Cys-14 and Cys-38 carboxamidomethylated (BPTI-RCAM). They were obtained from native BPTI by reduction, followed by modification of the sulfhydryl groups with iodoacetic acid or iodoacetamide, respectively. The temperature dependence of all thermodynamic parameters of BPTI is drastically altered in the absence of the third disulfide bridge. Even the apparently minute difference of two dissociable carboxyl groups instead of uncharged amide groups in positions 14 and 38 has surprisingly large effects on the temperature dependence of the stabilization enthalpy. The Gibbs energy of BPTI at pH 2, 25 degrees C, decreases by approximately 70% when the 14-38 disulfide bond is cleaved. BPTI-RCOM is more stable than BPTI-RCAM in the whole pH range studied. The difference of -4 kJ/mol at pH 2, 25 degrees C, is reduced to -2.7 kJ/mol at pH 5, 25 degrees C. This finding demonstrates that the presence of two negative charges reduces the higher stability of BPTI-RCOM slightly; however, the overall effect of the two charges is still a stabilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
W Gallagher  F Tao  C Woodward 《Biochemistry》1992,31(19):4673-4680
Hydrogen exchange rate constants for the 17 slowest exchanging amide NH groups in bovine pancreatic trypsin inhibitor (BPTI) were measured in solution and in form II and form III crystals. All 17 amide hydrogens are buried and intramolecularly hydrogen bonded in the crystal structure, except Lys 41 which is buried and hydrogen bonded to a buried water. Large-scale crystallization procedures were developed for these experiments, and rate constants for both crystal and solution exchange were measured by 1H NMR spectroscopy of exchange-quenched samples in solution. Two conditions of pH and temperature, pH 9.8 and 35 degrees C, and pH 9.4 and 25 degrees C, bring two groups of hydrogens into the experimental time window (minutes to weeks). One consists of the 10 slowest exchanging hydrogens, all of which are associated with the central beta-sheet of BPTI. The second group consists of seven more rapidly exchanging hydrogens, which are distributed throughout the molecule, primarily in a loop or turn. In both groups, most hydrogens exchange more slowly in crystals, but there is considerable variation in the degree to which the exchange is depressed in crystals. Many differences observed for the more rapidly exchanging hydrogens can be attributed to local surface effects arising from intermolecular contacts in the crystal lattice. Within the slower group, however, a very large effect on exchange of Ile 18 and Tyr 35 appears to be selectively transmitted through the matrix of the molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Reduced bovine pancreatic trypsin inhibitor has a compact structure   总被引:4,自引:0,他引:4  
D Amir  E Haas 《Biochemistry》1988,27(25):8889-8893
The conformation of reduced bovine pancreatic trypsin inhibitor (R-BPTI) under reducing conditions was monitored by measurements of nonradiative excitation energy-transfer efficiencies (E) between a donor probe attached to the N-terminal Arg1 residue and an acceptor attached to one of the lysine residues (15, 26, 41, or 46) [Amir, D., & Haas, E. (1987) Biochemistry 26, 2162-2175]. High-excitation energy-transfer efficiencies that approach those found in the native state were obtained for the reduced labeled BPTI derivatives in 0.5 M guanidine hydrochloride (Gdn.HCl) and 4 mM DTT. Unlike the dependence expected for a random coil chain, E does not decrease as a function of the number of residues between the labeled sites. The efficiency of energy transfer between probes attached to residues 1 and 15 in the reduced state is higher than that found for the same pair of sites in the native state or reduced unfolded (in 6 M Gdn.HCl) state. This segment also shows high dynamic flexibility. These results indicate that the overall structure of reduced BPTI under folding (but still reducing) conditions shows a high population of conformers with interprobe distances similar to those of the native state. Reduced BPTI seems to be in a molten globule state characterized by a flexible, compact structure, which probably reorganizes into the native structure when the folding is allowed to proceed under oxidizing conditions.  相似文献   

9.
10.
Structural and dynamic properties of bovine pancreatic trypsin inhibitor (BPTI) in aqueous solution are investigated using two molecular dynamics (MD) simulations: one of 1.4 ns length and one of 0.8 ns length in which atom-atom distance bounds derived from NMR spectroscopy are included in the potential energy function to make the trajectory satisfy these experimental data more closely. The simulated properties of BPTI are compared with crystal and solution structures of BPTI, and found to be in agreement with the available experimental data. The best agreement with experiment was obtained when atom-atom distance restraints were applied in a time-averaged manner in the simulation. The polypeptide segments found to be most flexible in the MD simulations coincide closely with those showing differences between the crystal and solution structures of BPTI. © 1995 Wiley-Liss, Inc.  相似文献   

11.
One of the frontiers today in molecular biology is to measure, identify and go further to predict the low-frequency internal motion of biological macromolecules, which is crucially important for understanding the dynamic mechanism of various biological functions occurring in such molecules. Based on the theory of continuity model developed recently for dealing with the internal low-frequency motion of a biological macromolecule, it is predicted that the low-frequency phonons with wave number of about 23 cm?1 might be excited in BPTI molecule.  相似文献   

12.
Barbar E  Hare M  Makokha M  Barany G  Woodward C 《Biochemistry》2001,40(32):9734-9742
The NMR characteristics of [14-38]Abu, a synthetic variant of BPTI that is partially folded in aqueous buffer near neutral pH, support a model of early folding events which begin with stabilization of the nativelike, slow exchange core [Barbar, E., Hare, M., Daragan, V., Barany, G., and Woodward, C. (1998) Biochemistry 37, 7822-7833 (1)]. In partially folded [14-38]Abu, urea denaturation profiles for representative amide protons show that global unfolding is non-two-state and that core residues require a higher concentration of urea to unfold. Dynamic properties of pH-denatured [14-38]Abu and fully reduced and unfolded BPTI analogue were determined from heteronuclear NMR relaxation measurements at similar solution conditions. Differences at various sites in the polypeptide chain were evaluated from spectral density functions determined from T1, T2, and steady-state heteronuclear NOE data. Although denatured [14-38]Abu contains no persistent secondary structure, its most ordered residues are those that, in native BPTI, fold into the slow exchange core. The fully reduced analogue is significantly more mobile and shows less heterogeneous dynamics, but at 1 degree C, restricted motion is observed for residues in the central segments of the polypeptide chain. These observations indicate that there is a developing core or cores even in highly unfolded species. Apparently the effect of 14-38 disulfide on unfolded  相似文献   

13.
Summary In addition to bovine pancreatic trypsin inhibitor (BPTI), three BPTI-related molecular forms (isoinhibitors I, II and III) were isolated from bovine lung by affinity chromatography on immobilized trypsin and subsequently purified by Fast Protein Liquid Chromatography. These inhibitors are identical to the isoinhibitors previously isolated from bovine spleen. Their localization in bovine lung was studied by immunohistochemical techniques, using two different immunoglobulin preparations, selectively recognizing BPTI or the other molecular forms.BPTI-related immunoreactivity was found to be restricted to isolated cells, often identified as mast cells by Toluidine Blue staining. In contrast, isoinhibitor-related immunoreactivity, which also occurs in the mast cells, is present in a number of other cell types. These types include: (i) the smooth muscle cells of different calibre vessels, (ii) the ciliated cells of the bronchial epithelium and the related mucus, and (iii) many cells at alveolar level.Comparison of these data with previous results obtained for bovine spleen suggest multiple physiological roles for these inhibitors.  相似文献   

14.
15.
E M Goodman  P S Kim 《Biochemistry》1989,28(10):4343-4347
A short peptide corresponding to the alpha-helical region of BPTI shows partial folding in aqueous solution (pH 7) as judged by circular dichroism (CD). Folding is temperature and denaturant sensitive, and the peptide is monomeric. The difference CD spectrum, obtained from spectra at two temperatures, indicates that the peptide folds as an alpha-helix. Difference CD spectroscopy provides a sensitive assay for helix formation in peptides exhibiting small amounts of structure. Helix stability in this peptide shows a marked pH dependence which is consistent with stabilizing charged side-chain interactions with the helix dipole and/or salt bridge formation.  相似文献   

16.
The apparently complete refolding of reduced bovine pancreatic trypsin inhibitor (BPTI) is shown to produce a mixture of two species. One of these is native BPTI, but the other lacks the disulphide bond between cysteines 30 and 51. The latter species has a folded conformation very like that of native BPTI, and is oxidized by air to native BPTI on warming in aqueous solution. The two unreactive cysteine thiol groups appear to be buried in the interior of the molecule, which restricts access by reagents that can alkylate them or oxidize them to form the disulphide bond. The implications of this intermediate and its conformation for the understanding of protein folding are discussed.  相似文献   

17.
The kinetics of the formation of the complex between bovine β-trypsin and the bovine basic pancreatic trypsin inhibitor (BPTI) was investigated using three different signals: the displacement of proflavine, the optical density changes in the UV region, and the loss of the enzymatic activity. For the three different signals, with inhibitor in excess over bovine β-trypsin ([BPTI] ≥ 5 × [bovine β-trypsin]), the time course of the reaction corresponds to a pseudo-first-order process. The concentration dependence of the rate is second order at low BPTI concentrations and tends to first order at high inhibitor concentrations. This behavior may be explained by relatively rapid preequilibria followed by limiting first-order processes according to The values of Ki, k+i, and k(on)i ( = k+i/Ki) have been determined for the different reactions at three pH values: 6.80, 4.80, and 3.50. The kinetic parameters differ widely for the processes reflected by the various signals; the difference increases upon lowering pH. The results indicate that the formation of the bovine β-trypsin–BPTI complex is not an all-or-nothing process, but involves several intermediates corresponding to discrete reaction steps, which are differently affected by ionization processes.  相似文献   

18.
Structural perturbations due to a series of mutations at the 30-51 disulfide bond of bovine pancreatic trypsin inhibitor have been explored using NMR. The mutants replaced cysteines at positions 30 and 51 by alanine at position 51 and alanine, threonine, or valine at position 30. Chemical shift changes occur in residues proximate to the site of mutation. NOE assignments were made using an automated procedure, NASIGN, which used information from the wild-type crystal structure. Intensity information was utilized by a distance geometry algorithm, VEMBED, to generate a series of structures for each protein. Statistical analyses of these structures indicated larger averaged structural perturbations than would be expected from crystallographic and other information. Constrained molecular dynamics refinement using AMBER at 900 K was useful in eliminating structural movements that were not a necessary consequence of the NMR data. In most cases, statistically significant movements are shown to be those greater than approximately 1 A. Such movements do not appear to occur between wild type and A30A51, a result confirmed by crystallography (Eigenbrot, C., Randal, M., & Kossiakoff, A.A., 1990, Protein Eng. 3, 591-598). Structural alterations in the T30A51 or V30A51 mutant proteins near the limits of detection occur in the beta-loop (residues 25-28) or C-terminal alpha-helix, respectively.  相似文献   

19.
There is increasing evidence that protein folding and protein export are competing processes in prokaryotic cells. Virtually all secretion studies reported to date, however, have employed proteins that are relatively uncharacterized in terms of their folding behavior and three-dimensional structure. In contrast, the structural and biochemical parameters governing the folding of bovine pancreatic trypsin inhibitor (BPTI) and several of its mutants have been studied intensively. We therefore undertook a study of the secretion behavior in Escherichia coli of recombinant BPTI and its mutants. Wild-type BPTI and two well-characterized folding mutants (C14A, C38A)BPTI and (C30A, C51A)BPTI (missing the 14-38 and 30-51 disulfide bonds, respectively), were investigated by analyzing their expression fused to an E. coli signal sequence or to two synthetic IgG-binding domains of staphylococcal protein A. Both disulfide mutants are destabilized relative to wild-type BPTI and exhibit markedly altered folding kinetics: one (C14A, C38A) folds more slowly than wild-type BPTI and the other (C30A, C51A) unfolds more rapidly. Both mutants were observed to be exported 3-10 times more efficiently than the wild-type molecule. Moreover, the levels of unprocessed preprotein in the cytoplasm were severalfold higher for the wild-type fusion than for the fusion to the two folding mutants. Intracellular degradation of the BPTI moiety was also observed. These results are consistent with traffic of intracellular BPTI preproteins on at least three routes along the secretory pathway: (a) facile secretion of unfolded material, (b) intracellular folding leading to secretion blockage, and (c) degradation followed by export of truncated molecules. A novel feature of these findings is the implication that disulfide bonds can form in the bacterial cytoplasm and lead to secretion incompetence.  相似文献   

20.
Chang J  Ballatore A 《FEBS letters》2000,473(2):183-187
In the presence of denaturant and thiol initiator, the native bovine pancreatic trypsin inhibitor (BPTI) denatures by shuffling its native disulfide bonds and converts to a mixture of scrambled isomers. The extent of denaturation is evaluated by the relative yields of the scrambled and native species of BPTI. BPTI is an exceedingly stable molecule and can be effectively denatured only by guanidine thiocyanate (GdmSCN) at concentrations higher than 3-4 M. The denatured BPTI consists of at least eight fractions of scrambled isomers. Their composition varies under increasing concentrations of GdmSCN. In the presence of 6 M GdmSCN, the most predominant fraction of scrambled BPTI accounts for 56% of the total structure of denatured BPTI. Structural analysis reveals that this predominant fraction contains the bead-form isomer of scrambled BPTI, bridged by three pairs of neighboring cysteines, Cys5-Cys14, Cys30-Cys38 and Cys51-Cys55. The extreme conformational stability of BPTI has important implications in its distinctive folding pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号