首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Prokhorov LIu 《Tsitologiia》1999,41(10):900-913
Earlier we developed a "stationary phase aging" model and introduced a definition of life span of "stationary phase aging" cell cultures. In this model the cells grow after seeding in flasks without subcultivation and medium change. They reach cell saturation density, stop dividing, gradually degrade ("stationary phase aging") and perish. By the term "culture life span" we designate the time from cell seeding until culture death. We designate the culture as dead when the number of living cells is less than 10 per cent of their number at saturation density of cell culture. The life span of transformed Chinese hamster cells was found to be proportional to the duration of their growth from cell seeding up to saturation density, as well as to the number of cell culture doublings and to be inversely proportional to the velocity of cell culture doubling for the same growth period. Maximum life span of mammals is known to be proportional to pregnancy duration and to the age at puberty. We found that maximal life span of mammals was proportional to the number of cell population doublings and inversely proportional to the velocity of cell population doubling during embryonal period or for the time from zygote to growth termination. The dependences for cell cultures and for mammals are analogous to each other.  相似文献   

6.
2004年5—11月,对芜湖市镜湖大、小湖区水体中长三肢轮虫(Filinia longiseta)的有性生殖及其与种群密度、水温、水体透明度、水体叶绿素a含量和轮虫总密度等环境因子间的关系进行了研究.结果表明:当水温低于22℃或水体透明度大于一定值(小湖区SD>95cm,大湖区SD>100cm)时,长三肢轮虫不进行有性生殖;而当其本身的种群密度达到一定值(小湖区种群密度>122ind·L-1,大湖区种群密度>113ind·L-1)时才进行有性生殖.长三肢轮虫的混交雌体密度仅与其本身的种群密度以及水体中轮虫总密度之间呈正相关关系(P<0·01),而与水温、叶绿素a含量、水体透明度之间均无明显的相关关系;长三肢轮虫种群的混交率和受精率与水温、水体透明度、叶绿素a含量、轮虫总密度和长三肢轮虫种群密度之间也无明显的相关性.长三肢轮虫的有性生殖发生在种群增长的早期阶段,混交雌体以间断的、多循环的方式产生;最大混交率与最大种群密度同时出现,但最大受精率出现在种群即将消失时.  相似文献   

7.
The potential of spent medium to support the growth and recombinant protein production of High-Five? cells was investigated. Growth in medium consisting of three parts fresh and one part spent medium was comparable to that in fresh medium (maximal specific growth rates of 0.028 and 0.029 h?1, and maximal cell densities of 4 and 4.5 × 106 cells ml?1, respectively). Glucose exhaustion coincided with an abrupt decrease of viability. Of 15 amino acids analyzed, not a single one was completely exhausted at the end of the growth phase. Growth in medium consisting of equal parts spent and fresh medium led to lower maximal cell concentration (2.9 × 106 cells ml?1) with a smoother death phase. Glucose supplementation at the beginning of the culture or at the end of the growth phase did not lead to an increase of either the maximal cell density or the specific growth rate. Infection of High-Five? cells at three different densities (1.4, 2.5 and 4.2 × 106 cells ml?1) without medium change led to monotonically decreased specific productions for β-galactosidase. Partial (75%) or total medium replacement at the higher infection density restored the specific production at the levels of the intermediate density infection (321, 292 and 389 U.(106 cells)?1, respectively).  相似文献   

8.
The effect of reduced nutritional levels (particularly nitrogen source) for immobilized K. fragilis type yeast were studied using a trickle flow, "differential" plug flow type reactor with cells immobilized by adsorption onto an absorbant packing matrix. Minimizing nutrient levels in a feed stream to an immobilized cell reactor (ICR) might have the benefits of reducing cell growth and clogging problems in the ICR, reducing feed preparation costs, as well as reducing effluent disposal costs. In this study step changes in test feed medium nutrient compositions were introduced to the ICR, followed by a return to a basal medium. Gas evolution rates were monitored and logged on a continuous basis, and effluent cell density was used as an indicator of cell growth rate of the immobilized cell mass. Startup of the reactor using a YEP medium showed a rapid buildup of cells in the reactor during the initial 110 h operation. The population density then stabilized at 1.6 x 10(11) cells/g sponge. A defined medium containing a complex mix of essential nutrients with an inorganic nitrogen source (ammonium sulfate) was able to maintain 90% of the productivity in the ICR as compared to the YEP medium, but proved unable to promote growth of the immobilized cell mass during startup. Experiments on reduced ammonium sulfate in the defined medium, and reduced yeast extract and peptone in YEP medium indicated that stable productivity could be maintained for extended periods (80 h) in the complete absence of any nutrients besides a few salts (potassium phosphate and magnesium sulfate). It was found that productivity rates dropped by 35-65% from maximal values as nitrogenous nutrients were eliminated from the test mediums, while growth rates (as determined by shed cell density from the reactor) dropped by 75-95%. Thus, nutritional deficiencies largely decoupled growth and productivity of the immobilized yeast which suggests productivity is both growth- and non-growth-associated for the immobilized cells. A yeast extract concentration of 0.375 g/L with or without 1 g/L ammonium sulfate was determined to be the minimum level which gave a sustained increase in productivity rates as compared to the nutritionally deficient salt medium. This represents a 94% reduction in complex nitrogenous nutrient levels compared to standard YEP batch medium (3 g/L YE and 3.5 g/L peptone).  相似文献   

9.
This work studies a fundamental problem in blood capillary growth: how the cell proliferation or death induces the stress response and the capillary extension or regression. We develop a one-dimensional viscoelastic model of blood capillary extension/regression under nonlinear friction with surroundings, analyze its solution properties, and simulate various growth patterns in angiogenesis. The mathematical model treats the cell density as the growth pressure eliciting a viscoelastic response from the cells, which again induces extension or regression of the capillary. Nonlinear analysis captures two cases when the biologically meaningful solution exists: (1) the cell density decreases from root to tip, which may occur in vessel regression; (2) the cell density is time-independent and is of small variation along the capillary, which may occur in capillary extension without proliferation. The linear analysis with perturbation in cell density due to proliferation or death predicts the global biological solution exists provided the change in cell density is sufficiently slow in time. Examples with blow-ups are captured by numerical approximations and the global solutions are recovered by slow growth processes, which validate the linear analysis theory. Numerical simulations demonstrate this model can reproduce angiogenesis experiments under several biological conditions including blood vessel extension without proliferation and blood vessel regression.  相似文献   

10.
The tumor suppressor protein p53 activates growth arrest and proapoptotic genes in response to DNA damage. It is known that negative feedback by p21(Cip1/Waf1/Sdi1) represses p53-dependent transactivation of PUMA. The current study investigates PUMA feedback on p53 during oxidative stress from hyperoxia and the subsequent effects on cell survival mediated through p21 and Bcl-X(L). Deletion of PUMA in HCT116 colon carcinoma cells increased levels of p53 and p21, resulting in a larger G(1) population during hyperoxia. P21-dependent increase in Bcl-X(L) levels protected PUMA-deficient cells against hyperoxic cell death. Bax and Bak were both able to promote hyperoxic cell death. Bcl-X(L) protection against hyperoxic death was lost in cells lacking Bax, not PUMA, suggesting that Bcl-X(L) acts to inhibit Bax-dependent death. These results indicate that PUMA exerts a negative feedback on p53 and p21, leading to p21-dependent growth suppressive and survival changes. Enhanced survival was associated with increased Bcl-X(L) to block Bax activated cell death during oxidative stress.  相似文献   

11.
Phosphorus depletion was identified in high-cell-concentration fed-batch NS0 myeloma cell cultures producing a humanized monoclonal antibody (MAb). In these cultures, the maximum viable and total cell concentration was generally ca. 5 x 10(9) and 7 x 10(9) cells/L, respectively, without phosphate feeding. Depletion of essential amino acids, such as lysine, was initially thought to cause the onset of cell death. However, further improvement of cell growth was not achieved by feeding a stoichiometrically balanced amino acid solution, which eliminated depletion of amino acids. Even though a higher cell viability was maintained for a longer period, no increase in total cell concentration was observed. Afterwards, phosphorus was found to be depleted in these cultures. By also feeding a phosphate solution to eliminate phosphorus depletion, the cell growth phase was prolonged significantly, resulting in a total cell concentration of ca. 17 x 10(9) cells/L, which is much greater than ca. 7 x 10(9) cells/L without phosphate feeding. The maximum viable cell concentration reached about 10 x 10(9) cells/L, twice as high as that without phosphate feeding. Apoptosis was also delayed and suppressed with phosphate feeding. A nonapoptotic viable cell population of 6.5 x 10(9) cells/L, as compared with 3 x 10(9) cells/L without phosphate feeding, was obtained and successfully maintained for about 70 h. These results are consistent with the knowledge that phosphorus is an essential part of many cell components, including phospholipids, DNA, and RNA. As a result of phosphate feeding, a much higher integral of viable cell concentration over time was achieved, resulting in a correspondingly higher MAb titer of ca. 1.3 g/L. It was also noted that phosphate feeding delayed the cell metabolism shift from lactate production to lactate consumption typically observed in recombinant NS0 cultures. The results highlight the importance of phosphate feeding in high-cell-concentration NS0 cultures.  相似文献   

12.
The growth in vitro of the murine myeloid cell line FDC-P1 depends on the presence of serum and a murine hemopoietic growth factor (either granulocyte/macrophage colony-stimulating factor (GM-CSF) or multipotential colony-stimulating factor (multi-CSF, IL3]. To determine the differential roles of serum and colony-stimulating factor (CSF) during the growth of FDC-P1 cultures, we investigated the kinetics of proliferation and death after withdrawal of serum or CSF, using flow cytometry to quantitate the numbers of vital and dead cells. After withdrawal of CSF, the cells died without entering a quiescent state. The life span of cultures lacking CSF increased with increasing concentrations of serum (greater than 50 h at 30% serum), and the cells kept dividing until they died. During the period of population death caused by the absence of CSF, the re-addition of CSF immediately prevented further cells from dying. After the withdrawal of serum in the presence of CSF, the cells continued to live and proliferate for weeks, but required high cell densities (much greater than 10(5)/ml), which suggests that the cells produced an active substance that can substitute for serum. Serum as well as serum-free conditioned medium from dense cultures made the survival and growth of FDC-P1 cultures independent of cell density. Without sufficient quantities of this activity, all cells of the population died within an interval that was much shorter than one cell cycle, which indicates that the factor acts throughout most of the cell cycle. The results suggest that both the CSF and the serum factor act together to permit cell survival, rather than to drive proliferation.  相似文献   

13.
The buoyant densities of Escherichia coli K12 were investigated by isopycnic centrifugation in gradients of colloidal silica (Ludox) and polyvinylpyrrolidone. Bacteria from an exponential culture in a defined medium supplemented with hydrolysed casein banded at densities between 1-060 and 1-115 g ml-1; the mean density was 1-081 g ml-1. At the higher densities, two populations of cells were present: smaller cells were approximately twice as numerous as, and half the modal volume of, the population of larger cells. A homogeneous population of cells of intermediate volume equilibrated in the least dense region of the density band. Synchronous cultures were established by inoculating cells selected from the most or least dense regions of the band into spent growth medium. The results are consistent with a fluctuation between maximal density at cell birth and division, and minimal density near the middle of the cell cycle. In synchronous cultures prepared by continuous-flow age selection, the first division occurred after a period that was significantly shorter than the length of subsequent cell cycles. Cells selected by this procedure were of similar mean density to those in the exponential culture but were more homogeneous with respect to size. The possibility that the smallest (and densest) cells in an exponential culture are retained in the rotor, and are thus excluded from the synchronous culture, is discussed.  相似文献   

14.
Heat-shock proteins (HSPs) act like "chaperones", making sure that the cell's proteins are in the right shape and in the right place at the right time. Heat-shock protein glycoprotein 96 (gp96) is a member of the HSP90 protein family, which chaperones a number of molecules in protein folding and transportation. Heat-shock protein gp96 serves as a natural adjuvant for chaperoning antigenic peptides into the immune surveillance pathways. Currently, heat-shock protein gp96 was only isolated from murine and human tissues and cell lines. An animal cell suspension culture process for the production of heat-shock protein gp96 by MethA tumor cell was developed for the first time in spinner flasks. Effects of culture medium and condition were studied to enhance the MethA tumor cell density and the production and productivity of heat-shock protein gp96. Initial glucose concentration had a significant effect on the heat-shock protein gp96 accumulation, and an initial glucose level of 7.0 g/L was desirable for MethA tumor cell growth and heat-shock protein gp96 production and productivity. Cultures at an initial glutamine concentration of 3 and 6 mM were nutritionally limited by glutamine. At an initial glutamine concentration of 6 mM, the maximal viable cell density of 19.90 x 10(5) cells/mL and the maximal heat-shock protein gp96 production of 4.95 mg/L was obtained. The initial concentration of RPMI 1640 and serum greatly affected the MethA tumor cell culture process. Specifically cultures with lower initial concentration of RPMI 1640 resulted in lower viable cell density and lower heat-shock protein gp96 production. At an initial serum concentration of 8%, the maximal viable cell density of 19.18 x 10(5) cells/mL and the maximal heat-shock protein gp96 production of 5.67 mg/L was obtained. The spin rate significantly affected the cell culture process in spinner flasks, and a spin rate of 150 rpm was desirable for MethA tumor cell growth and heat-shock protein gp96 production and productivity. Not only the cell density but also the production and productivity of heat-shock protein gp96 attained in this work are the highest reported in the culture of MethA tumor cell. This work offers an effective approach for producing heat-shock protein glycoprotein 96 from the cell culture process. The fundamental information obtained in this study may be useful for the efficient production of heat-shock protein by animal cell suspension culture on a large scale.  相似文献   

15.
16.
赵亮  范里  张旭  谭文松 《生物工程学报》2009,25(7):1069-1076
抗-CD25单克隆抗体作为免疫抑制剂拥有广阔的市场前景和巨大的经济价值。本实验以表达抗?CD25单克隆抗体的GS-NS0细胞为研究对象,开发了支持其大规模培养和抗体表达的无血清低蛋白培养基,批培养最大活细胞密度和最大抗体浓度分别达3×106cells/mL和300mg/L以上,比商业无血清培养基(Excell 620+0.2% primatone)分别提高了100%和46%。通过批培养实验,研究了细胞的生长、葡萄糖和氨基酸代谢、以及产物表达特点,并揭示了批培养过程中初始葡萄糖浓度对GS-NS0细胞生长与代谢的影响规律。为优化GS-NS0细胞培养过程和抗CD25单抗成功迈向产业化提供了重要的科学依据。  相似文献   

17.
We have previously shown that cultured trunk neural crest cell populations irreversibly lose neurogenic ability when dispersal is prevented or delayed, while the ability to produce other crest derivatives is retained (Vogel, K. S. and Weston, J. A. (1988) Neuron 1, 569-577). Here, we show that when crest cells are prevented from dispersing, cell death is increased and neurogenesis is decreased in the population, as a result of high cell density. Control experiments to characterize the effects of high cell density on environmental conditions in culture suggest that reduced neurogenesis is the result of cell-cell interactions and not changes (conditioning or depletion) of the culture medium. Additionally, we show that the caspase inhibitor zVAD-fmk, which blocks developmentally regulated cell death, rescues the neurogenic ability of high density cultures, without any apparent effect on normal, low-density cultures. We conclude, therefore, that increased cell interaction at high cell densities results in the selective death of neurogenic precursors in the nascent crest population. Furthermore, we show that neurogenic cells in cultured crest cell populations that have dispersed immediately are not susceptible to contact-mediated death, even if they are subsequently cultured at high cell density. Since most early migrating avian crest cells express Notch1, and a subset expresses Delta1 (Wakamatsu, Y., Maynard, T. M. and Weston, J. A. (2000) Development 127, 2811-2821), we tested the possibility that the effects of cell contact were mediated by components of a Notch signaling pathway. We found that neurogenic precursors are eliminated when crest cells are co-cultured with exogenous Delta1-expressing cells immediately after they segregate from the neural tube, although not after they have previously dispersed. We conclude that early and prolonged cell interactions, mediated at least in part by Notch signaling, can regulate the survival of neurogenic cells within the nascent crest population. We suggest that a transient episode of cell contact-mediated death of neurogenic cells may serve to eliminate fate-restricted neurogenic cells that fail to disperse promptly in vivo.  相似文献   

18.
Cooper S  Yu C  Shayman JA 《IUBMB life》1999,48(2):225-230
Phosphorylation of the retinoblastoma protein (Rb) during the G1-phase of the mammalian cell division cycle is currently believed to be a controlling element regulating the passage of cells into S-phase. We find, however, that the suspension-grown cell lines U937, L1210, and MOLT-4 contain exclusively hyperphosphorylated Rb. Furthermore, when adherent NIH3T3 cells are grown at very low densities to avoid overgrowth and contact inhibition, they also contain only hyperphosphorylated Rb. NIH3T3 cells exhibit hypophosphorylation when the cells are grown at moderate to high cell densities. We propose that cultures of adherent cells such as NIH3T3, when grown to moderate cell densities, are made up of two populations of cells: (a) cells that are relatively isolated and therefore growing exponentially without contact inhibition, and (b) cells that are growth-inhibited by local cell density or contact inhibition. The common observation in adherent cell lines, that Rb is both hyper- and hypophosphorylated in the G1-phase and only hyperphosphorylated in the S- and G2-phases, is explained by the effects of cell density and contact inhibition. Thus, phosphorylation-dephosphorylation of Rb protein during the G1 phase is not a necessary process during the NIH3T3, L1210, MOLT-4, and U937 division cycles. We propose that phosphorylation-dephosphorylation of Rb is independent of the division cycle and is primarily determined by growth conditions throughout the division cycle.  相似文献   

19.
20.
This study proposes an easy to use in situ device, based on multi-frequency permittivity measurements, to monitor the growth and death of attached Vero cells cultivated on microporous microcarriers, without any cell sampling. Vero cell densities were on-line quantified up to 106 cell mL−1. Some parameters which could potentially impact Vero cell morphological and physiological states were assessed through different culture operating conditions, such as media formulation or medium feed-harvest during cell growth phase. A new method of in situ cell death detection with dielectric spectroscopy was also successfully implemented. Thus, through permittivity frequency scanning, major rises of the apoptotic cell population in bioreactor cultures were detected by monitoring the characteristic frequency of the cell population, fc, which is one of the culture dielectric parameters. Both cell density quantification and cell apoptosis detection are strategic information in cell-based production processes as they are involved in major events of the process, such as scale-up or choice of the viral infection conditions. This new application of dielectric spectroscopy to adherent cell culture processes makes it a very promising tool for risk-mitigation strategy in industrial processes. Therefore, our results contribute to the development of Process Analytical Technology in cell-based industrial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号