首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorescence intensity of trans-parinaric acid as a function of the temperature indicates a phase transition in bovine heart mitochondrial inner membranes below 0 degrees C. The comparison of the dye fluorescence intensity in intact inner mitochondrial membranes and in vesicles from extracted phospho lipids of mitochondria revealed a similar intensity increase with decreasing temperature. A synthetic phospholipid system of dioleoyl phosphatidylcholine was investigated because of its low phase transition temperature and showed a very definite intensity change at -25 degrees C. trans-Parinaric acid in membrane systems probes an environment of intermediate polarity; this was found from the excitation and emission spectra and from fluorescence decay.  相似文献   

2.
(+)-Totarol, a highly hydrophobic diterpenoid isolated from Podocarpus spp., is inhibitory towards the growth of diverse bacterial species. (+)-Totarol decreased the onset temperature of the gel to liquid-crystalline phase transition of DMPC and DMPG membranes and was immiscible with these lipids in the fluid phase at concentrations greater than 5 mol%. Different (+)-totarol/phospholipid mixtures having different stoichiometries appear to coexist with the pure phospholipid in the fluid phase. At concentrations greater than 15 mol% (+)-totarol completely suppressed the gel to liquid-crystalline phase transition in both DMPC and DMPG vesicles. Incorporation of increasing amounts of (+)-totarol into DEPE vesicles induced the appearance of the H(II) hexagonal phase at low temperatures in accordance with NMR data. At (+)-totarol concentrations between 5 and 35 mol% complex thermograms were observed, with new immiscible phases appearing at temperatures below the main transition of DEPE. Steady-state fluorescence anisotropy measurements showed that (+)-totarol decreased and increased the structural order of the phospholipid bilayer below and above the main gel to liquid-crystalline phase transition of DMPC respectively. The changes that (+)-totarol promotes in the physical properties of model membranes, compromising the functional integrity of the cell membrane, could explain its antibacterial effects.  相似文献   

3.
Membranotropic effects of the antibacterial agent Triclosan   总被引:6,自引:0,他引:6  
Triclosan is a broad-spectrum hydrophobic antibacterial agent used in dermatological preparations and oral hygiene products. To gain further insight into the mode of action of Triclosan we examined its effects on membranes by performing leakage titrations of different oral bacteria and studying its interaction with model membranes through the use of different biophysical techniques. There was negligible efflux of intracellular material from Streptococcus sobrinus at the minimal inhibitory concentration of Triclosan; whatever leakage did occur commenced only at much higher concentrations. In contrast, no leakage was observed at even the minimal bactericidal concentration for Porphyromonas gingivalis. Triclosan decreased the onset temperature of the gel to liquid-crystalline phase transition of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-3-[phospho-rac-glycerol] membranes and was immiscible with these lipids in the fluid phase at concentrations greater than 5 mol%. Steady-state fluorescence anisotropy measurements of different phospholipid/Triclosan samples using 3-(p-6-phenyl-1,3,5-hexatrienyl)-phenylpropionic acid were consistent with the calorimetric data. Incorporation of increasing amounts of Triclosan into 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) vesicles induced the nonlamellar H(II) hexagonal phase at low temperatures and new immiscible phases at temperatures below the main transition of DEPE. Taking these results together suggests that the antibacterial effects of Triclosan are mediated at least in part through its membranotropic effects, resulting in destabilized structures which compromise the functional integrity of cell membranes without inducing cell lysis.  相似文献   

4.
The effects on dielaidoylphosphatidylethanolamine (DEPE) bilayers of ceramides containing different N-acyl chains have been studied by differential scanning calorimetry small angle x-ray diffraction and (31)P-NMR spectroscopy. N-palmitoyl (Cer16), N-hexanoyl (Cer6), and N-acetyl (Cer2) sphingosines have been used. Both the gel-fluid and the lamellar-inverted hexagonal transitions of DEPE have been examined in the presence of the various ceramides in the 0-25 mol % concentration range. Pure hydrated ceramides exhibit cooperative endothermic order-disorder transitions at 93 degrees C (Cer16), 60 degrees C (Cer6), and 54 degrees C (Cer2). In DEPE bilayers, Cer16 does not mix with the phospholipid in the gel phase, giving rise to high-melting ceramide-rich domains. Cer16 favors the lamellar-hexagonal transition of DEPE, decreasing the transition temperature. Cer2, on the other hand, is soluble in the gel phase of DEPE, decreasing the gel-fluid and increasing the lamellar-hexagonal transition temperatures, thus effectively stabilizing the lamellar fluid phase. In addition, Cer2 was peculiar in that no equilibrium could be reached for the Cer2-DEPE mixture above 60 degrees C, the lamellar-hexagonal transition shifting with time to temperatures beyond the instrumental range. The properties of Cer6 are intermediate between those of the other two, this ceramide decreasing both the gel-fluid and lamellar-hexagonal transition temperatures. Temperature-composition diagrams have been constructed for the mixtures of DEPE with each of the three ceramides. The different behavior of the long- and short-chain ceramides can be rationalized in terms of their different molecular geometries, Cer16 favoring negative curvature in the monolayers, thus inverted phases, and the opposite being true of the micelle-forming Cer2. These differences may be at the origin of the different physiological effects that are sometimes observed for the long- and short-chain ceramides.  相似文献   

5.
The local anesthetics dibucaine and tetracaine inhibit the (Ca2+ + Mg2+)-ATPase from skeletal muscle sarcoplasmic reticulum [DeBoland, A. R., Jilka, R. L., & Martonosi, A. N. (1975) J. Biol. Chem. 250, 7501-7510; Suko, J., Winkler, F., Scharinger, B., & Hellmann, G. (1976) Biochim. Biophys. Acta 443, 571-586]. We have carried out differential scanning calorimetry and fluorescence measurements to study the interaction of these drugs with sarcoplasmic reticulum membranes and with purified (Ca2+ + Mg2+)-ATPase. The temperature range of denaturation of the (Ca2+ + Mg2+)-ATPase in the sarcoplasmic reticulum membrane, determined from our scanning calorimetry experiments, is ca. 45-55 degrees C and for the purified enzyme ca. 40-50 degrees C. Millimolar concentrations of dibucaine and tetracaine, and ethanol at concentrations higher than 1% v/v, lower a few degrees (degrees C) the denaturation temperature of the (Ca2+ + Mg2+)-ATPase. Other local anesthetics reported to have no effect on the ATPase activity, such as lidocaine and procaine, did not significantly alter the differential scanning calorimetry pattern of these membranes up to a concentration of 10 mM. The order parameter of the sarcoplasmic reticulum membranes, calculated from measurements of the polarization of the fluorescence of diphenylhexatriene, is not significantly altered at the local anesthetic concentrations that shift the denaturation temperature of the (Ca2+ + Mg2+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Arrhenius plots of various enzyme and transport systems associated with the liver mitochondrial inner membranes of ground squirrels exhibit changes in slope at temperatures of 20-25 degrees C in nonhibernating but not in hibernating animals. It has been proposed that the Arrhenius breaks observed in nonhibernating animals are the result of a gel to liquid-crystalline phase transition of the mitochondrial membrane lipids, which also occurs at 20-25 degrees C, and that the absence of such breaks in hibernating animals is due to a major depression of this lipid phase transition to temperatures below 4 degrees C. In order to test this hypothesis, we have examined the thermotropic phase behavior of liver inner mitochondrial membranes from hibernating and nonhibernating Richardson's ground squirrels, Spermophilus richardsonii, by differential scanning calorimetry and by 19F nuclear magnetic resonance and fluorescence polarization spectroscopy. Each of these techniques indicates that no lipid phase transition occurs in the membranes of either hibernating or nonhibernating ground squirrels within the physiological temperature range of this animal (4-37 degrees C). Moreover, differential scanning calorimetric measurements indicate that only a small depression of the lipid gel to liquid-crystalline phase transition, which is centered at about -5 degrees C in nonhibernating animals and at about -9 degrees C in hibernators, occurs. We thus conclude that the Arrhenius plot breaks observed in some membrane-associated enzymatic and transport activities of nonhibernating animals are not the result of a lipid phase transition and that a major shift in the gel to liquid-crystalline lipid phase transition temperature is not responsible for seasonal changes in the thermal behavior of these inner mitochondrial membrane proteins.  相似文献   

7.
At characteristic temperatures, membranes from Escherichia coli cells enriched in exogenous elaidic acid exhibit two abrupt changes in the slope of Arrhenius plots of two enzyme activities. For NADH oxidase, these changes occur at 27 degrees and 32 degrees, whereas for D-lactate oxidase, these changes occur at 31 degrees and 36 degrees. Pyrene excimer fluorescence and spin-labeled fatty acid paramagnetic resonance results indicate that the beginning, midpoint, and end of a single structural change(order leads to disorder transition) occurs at 25.5-29.0 degrees, 30.0-31.0 degrees, and 33.0-35.5 degrees, respectively. These data suggest that for NADH oxidase, the observed activity changes correspond to the beginning and midpoint of a single membrane lipid structural change, whereas for D-lactate, the activity changes correspond to the midpoint and end of that structural change. In addition to the membrane structural change spanning the range of 25.5-35.5 degrees, a second change (9.5-21.0 degrees) was also observed. This transition was detected by 5- and 16-2,2-dimethyloxazolidinyl-1-oxyl (doxyl) stearates, but not by 12-doxyl stearate or pyrene. Structural changes in the extracted lipids were observed in the temperature ranges 4.0-9.0 degrees, 14.0-20.0 degrees, and 25.0-35.5 degrees. The two higher ranges correlate well with the ranges for structural changes observed in the intact membrane. Observations of these multiple transitions in both intact membranes and extracted lipids strongly suggest that these lipids segregate into domains of different fluidity and composition.  相似文献   

8.
Using 2H- and 31P-NMR techniques the effects of temperature variation and phenethyl alcohol addition were investigated on lipid acyl chain order and on the macroscopic lipid organization of membrane systems derived from cells of the Escherichia coli fatty acid auxotrophic strain K1059, which was grown in the presence of [11,11-2H2]oleic acid. Membranes of intact cells showed a gel to liquid-crystalline phase transition in the range of 4-20 degrees C, which was similar to that observed for the total lipid extract and for the dominant lipid species phosphatidylethanolamine (PE). Phosphatidylglycerol (PG) remained in a fluid bilayer throughout the whole temperature range (4-70 degrees C). At 30 degrees C acyl chain order was highest in PE, followed by the total lipid extract, PG, intact cells, and isolated inner membrane vesicles. Acyl chain order in E. coli PE and PG was much higher than in the corresponding dioleoylphospholipids. E. coli PE was found to maintain a bilayer organization up to about 60 degrees C, whereas in the total lipid extract as well as in intact E. coli cells bilayer destabilization occurred already at about 42 degrees C. It is proposed that the regulation of temperature at which the bilayer-to-non-bilayer transition occurs may be important for membrane functioning in E. coli. Addition of phenethyl alcohol did not affect the macroscopic lipid organization in E. coli cells or in the total lipid extract, but caused a large reduction in chain order of about 70% at 1 mol% of the alcohol in both membrane systems. It is concluded that while both increasing temperature and addition of phenethyl alcohol can affect membrane integrity, in the former case this is due to the induction of non-bilayer lipid structures, whereas in the latter case this is caused by an increase in membrane fluidity.  相似文献   

9.
When cell membranes are treated with Triton X-100 or other detergents at 4 degrees C, a nonsolubilized fraction can often be recovered, the "detergent-resistant membranes", that is not found when detergent treatment takes place at 37 degrees C. Detergent-resistant membranes may be related in some cases to membrane "rafts". However, several basic aspects of the formation of detergent-resistant membranes are poorly understood. To answer some of the relevant questions, a simple bilayer composition that would mimic detergent-resistant membranes was required. The screening of multiple lipid compositions has shown that the binary mixture egg sphingomyelin/egg ceramide (SM/Cer) exhibits the required detergent resistance. In detergent-free membranes composed of different mixtures of SM and Cer (5-30 mol % of Cer) differential scanning calorimetry, fluorescence spectroscopy, and fluorescence microscopy experiments reveal the presence of discrete, Cer-enriched gel domains in a broad temperature range. In particular, at temperatures below SM phase transition ( approximately 40 degrees C) two gel (respectively Cer-rich and SM-rich) phases are directly observed using fluorescence microscopy. Although pure SM membranes are fully solubilized by Triton X-100 at room temperature, 5 mol % Cer is also enough to induce detergent resistance, even with a large detergent excess and lengthy equilibration times. Short-chain Cers do not give rise to detergent resistance. SM/Cer mixtures containing up to 30 mol % Cer become fully soluble at approximately 50 degrees C, i.e., well above the gel-fluid transition temperature of SM. The combined results of temperature-dependent solubilization and differential scanning calorimetry reveal that SM-rich domains are preferentially solubilized over the Cer-rich ones as soon as the former melt (i.e., at approximately 40 degrees C). As a consequence, at temperatures allowing only partial solubilization, the nonsolubilized residue is enriched in Cer with respect to the original bilayer composition. Fluorescence microscopy of giant unilamellar vesicles at room temperature clearly shows that SM-rich domains are preferentially solubilized over the Cer-rich ones and that the latter become more rigid and extensive as a consequence of the detergent effects. These observations may be relevant to the phenomena of sphingomyelinase-dependent signaling, generation of "raft platforms", and detergent-resistant cell membranes.  相似文献   

10.
Cultured chick fibroblasts supplemented with stearic acid in the absence of serum at 37 degrees C degenerate and die in contrast to cells grown at 41 degrees C which appear normal in comparison with controls. These degenerative effects at 37 degrees C are alleviated by addition to stearate-containing media of fatty acids known to fluidize bilayers. These observations suggest that cell degeneration at 37 degrees C may involve alterations in the physical state of the membrane. Fatty acid analysis of plasma membrane obtained from stearate-supplemented cells clearly demonstrates the enrichment of this fatty acid species into bilayer phospholipids. Moreover, the extent of enrichment is similar in cells grown at both 37 and 41 degrees C. Stearate enrichment at either temperature does not appear to alter significantly membrane cholesterol or polar lipid content. Fluorescence anisotropy measurements for perylene and diphenylhexatriene incorporated into stearate-enriched membranes reveals changes suggestive of decreased bilayer fluidity. Moreover, analysis of temperature dependence of probe anisotropy indicates that a similarity in bilayer fluidity exists between stearate-enriched membranes at 41 degrees C and control membranes at 37 degrees C. Calorimetric data from liposomes prepared from polar lipids isolated from these membranes show similar melting profiles, consistent with the above lipid and fluorescence analyses. Arrhenius plot of stearate-enriched membrane glucose transporter function reveals breaks which coincide with the main endotherm of the pure phospholipid phase transition, indicating the sensitivity of the transporter to this transition which is undetectable in these native bilayers. These data suggest the existence of regions of bilayer lipid microheterogeneity which affect integral enzyme function, cell homeostasis and viability.  相似文献   

11.
A phospholipid analog 1-palmitoyl-2-6(pyren-1-yl)hexanoyl-sn-glycero-3-phospho-N- (trinitrophenyl)aminoethanol (PPHTE) in which pyrene fluorescence is intramolecularly quenched by the trinitrophenyl group was used as a substrate for pancreatic phospholipase A2. Upon phospholipase A2 catalyzed hydrolysis of this molecule pyrene monomer fluorescence emission intensity increased as a result of the transfer of the pyrene fatty acid to the aqueous phase. Optimal conditions for phospholipase A2 hydrolysis of PPHTE were similar to those observed earlier for other pyrenephospholipids (T. Thuren, J. A. Virtanen, R. Verger, and P. K. J. Kinnunen (1987) Biochim. Biophys. Acta 917, 411-417). Although differential scanning calorimetry revealed no thermal phase transitions for PPHTE between +5 and +60 degrees C the Arrhenius plot of the enzymatic hydrolysis of the lipid showed a discontinuity at 30 degrees C. The molecular origin of this discontinuity remains at present unknown. To study the effects of dimyristoylphosphatidylcholine (DMPC) phase transition at 23.9 degrees C on phospholipase A2 reaction PPHTE was mixed with DMPC in a molar ratio of 1:200 in small unilamellar vesicles. The hydrolysis of DMPC-PPHTE vesicles was measured by following the increase in pyrene monomer fluorescence emission due to phospholipase A2 action on PPHTE. Below the phase transition of DMPC the enzymatic reaction exhibited a hyperbolic behavior. At the transition as well as at slightly higher temperatures a lag period was observed. The longest lag period was approximately 20 min. Above 26 degrees C no lag time could be observed. However, the reaction rates were slower than below the phase transition temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Rat brain myelin, synaptosomal plasma membranes and synaptic vesicles were spin labelled with stearic acid nitroxide derivatives. Their electron spin resonance spectra were studied as a function of temperature and devalent ions (Ca2+ and Mg2+) concentrations. (1) Synaptosomal plasma membranes and synaptic vesicles show identical temperature variations of their order parameter (S = 0.58 at 35 degrees C and S = 0.72 AT 22 DEGREES C). Myelin appears more rigid (S = 0.66 at 35 degrees C and S = 0.76 at 22 degrees C). A discontinuity of the order parameter variation as a function of temperature, is observed between 14.5 degrees C and l9.5 degrees C with the three types of membranes. (2) The hydrophobic core of these membranes is very fluid. No transition temperature is observed. The measured values of the spin label rotation correlation times and rotational activation energies are 2.1 and 2.8 ns at 35 degrees C and 3.1 and 3.6 kcal/mol respectively for synaptosomal plasma membranes and myelin. (3) Ca2+ enhances the membrane rigidity (12+/-0.7% increase of the order parameter at 35 degrees C in the presence of 10(-3) M Ca2+) and increases the transition temperature. At a lower extend, similar effects are observed with Mg2+.  相似文献   

13.
J H Davis  C P Nichol  G Weeks  M Bloom 《Biochemistry》1979,18(10):2103-2112
The cytoplasmic and outer membranes of Escherichia coli were studied between 0 and 40 degrees C by deuterium magnetic resonance quadrupolar echo spectroscopy. The L51 strain of E. coli was used to incorporate perdeuterated palmitic acid into the membrane phospholipids. The cytoplasmic and outer membranes were separated using standard techniques. The spectrum of each membrane preparation was dominated at high temperatures (greater than or equal to 37 degrees C) by the characteristic liquid-crystalline plateau previously observed for perdeuterated palmitate chains in model phospholipid membranes. At low temperatures, the shape and width of the spectrum were characteristic of the gel phase. The relative intensities of the liquid-crystalline and gel features varied systematically with temperature. A quantitative analysis of the acyl chain orientational order was carried out by using the method of moments. The orientational order at each temperature was greater in the outer membrane sample than in that of the cytoplasmic membrane, indicating that the liquid-crystalline-gel transition region in the outer membrane is shifted to higher temperatures than that of the cytoplasmic membrane by about 7 degrees C. It is clear from the results that most of the phospholipid molecules participate in the phase transition.  相似文献   

14.
Escherichia coli K1 synthesizes a polysialic acid capsule when grown at 37 but not 15 degrees C. The derangement in sialyl polymer synthesis appears to result from the inability of 15 degrees C membranes to synthesize or assemble a functional endogenous acceptor (Troy, F.A., and McCloskey, M.A. (1979) J. Biol. Chem. 254, 7377-7387). Membranes from cells grown at 15 degrees C spontaneously gained the ability to synthesize sialyl polymer after incubation at 33 degrees C for 2-4 h. The incubation-dependent activation of the endogenous synthesis of sialyl polymer in 15 degrees C membranes possessed two unusual features. First, the sialyltransferase was localized in a low density vesicle fraction (LDV; rho = 1.11 g/cm3). Second, this fraction catalyzed protein synthesis, and protein synthesis was required for activation. A study of the LDV fraction showed: 1) their light density resulted from a 5- to 8-fold enrichment in lipid phosphate to protein ratio and their sialyltransferase activity was enriched 40-fold compared with unfractionated total membranes; 2) they contained proteins characteristic of inner and outer membranes including leader peptidase and lipoprotein; 3) they constituted 8% of the mass of unfractionated total membranes yet contained all of the endogenous sialyltransferase activity in 15 degrees C membranes. In contrast, LDV from 37 degrees C grown cells accounted for 4.8% of the membrane mass and only 12.5% of the endogenous sialyltransferase activity; 4) they were multilamellar and averaged 0.7 mu in diameter. Based on these results, we believe the LDV fraction is of physiological importance in sialyl polymer synthesis. Growth at 15 degrees C allowed identification and study of the LDV fraction possibly because of the altered thermotropic properties of the membrane phospholipids that occur when E. coli is grown at low temperature.  相似文献   

15.
The rotational motion of tryptophan side chains in oxidized and reduced wild-type (WT) Escherichia coli thioredoxin and in two single-tryptophan variants of E. coli thioredoxin was studied in solution in the temperature range 20-50 degrees C from 13C-NMR relaxation rate measurements at 75.4 and 125.7 MHz and at 20 degrees C from steady-state and time-resolved trp fluorescence anisotropy measurements. Tryptophan enriched with 13C at the delta 1 and epsilon 3 sites of the indole ring was incorporated into WT thioredoxin and into two single-trp mutants, W31F and W28F, in which trp-28 or trp-31 of WT thioredoxin was replaced, respectively, with phenylalanine. The NMR relaxation data were interpreted using the Lipari and Szabo "model-free" approach (G. Lipari and A. Szabo. 1982. J. Amer. Chem. Soc. 104:4546-4559) with trp steady-state anisotropy data included for the variants at 20 degrees C. Values for the correlation time for the overall rotational motion (tau m) from NMR of oxidized and reduced WT thioredoxin at 35 degrees C agree well with those given by Stone et al. (Stone, M. J., K. Chandrasekhar, A. Holmgren, P. E. Wright, and H. J. Dyson. 1993. Biochemistry. 32:426-435) from 15N NMR relaxation rates, and the dependence of tau m on viscosity and temperature was in accord with the Stokes-Einstein relationship. Order parameters (S2) near 1 were obtained for the trp side chains in the WT proteins even at 50 degrees C. A slight increase in the amplitude of motion (decrease in S2) of trp-31, which is near the protein surface, but not of trp-28, which is partially buried in the protein matrix, was observed in reduced relative to oxidized WT thioredoxin. For trp-28 in W31F, order parameters near 1 (S2 > or = 0.8) at 20 degrees C were found, whereas trp-31 in W28F yielded the smallest order parameters (S2 approximately 0.6) of any of the cases. Analysis of time-resolved anisotropy decays in W28F and W31F yielded S2 values in good agreement with NMR, but gave tau m values about 60% smaller. Generally, values of tau e, the effective correlation time for the internal motion, were < or = 60 ps from NMR, whereas somewhat longer times were obtained from fluorescence. The ability of NMR and fluorescence techniques to detect subnanosecond motions in proteins reliably is examined.  相似文献   

16.
Three bipolar archaeal-type diglycerophosphocholine tetraether lipids (also known as bolalipids) have been prepared to determine (1) the influence of molecular structure on the physical properties of bolalipid membranes and (2) their impact on the functional reconstitution of Ste14p, a membrane-associated isoprenylcysteine carboxyl methyltransferase from Saccharomyces cerevisiae. Three bolalipids were synthesized: C20BAS, C32BAS, and C32phytBAS. These bolalipid structures differ in that the C20BAS derivative has a short sn-1 glyceryl diether C20H40 transmembrane alkyl chain and two ether-linked sn-2 n-decyl chains, whereas the C32BAS and C32phytBAS derivatives have a longer sn-1 diether C32H64 membrane-spanning chain and two ether-linked sn-2 n-hexadecyl or phytanyl chains, respectively. Differential scanning calorimetry and temperature-dependent 31P NMR was used to determine the gel-to-liquid crystalline phase transition temperatures of the bolalipids (C32BAS Tm > 85 degrees C; C32phytBAS Tm = 14 degrees C; and C20BAS Tm = 17 degrees C). The bolalipid lateral diffusion coefficients, determined by fluorescence recovery after photobleaching at 25 degrees C, were 1.5 x 10(-8) and 1.8 x 10(-9) cm2/s for C20BAS and C32phytBAS, respectively. The mobility of C32BAS could not be measured at this temperature. Ste14p activity was monitored by an in vitro methyltransferase assay in reconstituted vesicle dispersions composed of DMPC, C20BAS/E. coli polar lipid, C20BAS/POPC, C32phytBAS/E. coli polar lipid, and C32phytBAS/POPC. Ste14p activity was lost in vesicles composed of 75-100 mol % C20BAS and 0-100 mol % C32BAS but retained in vesicles with 0-50 mol % C20BAS and 0-100 mol % C32phytBAS. Confocal immunofluorescence microscopy confirmed the presence of Ste14p in 100 mol % C20BAS and 100 mol % C32phytBAS vesicle dispersions, even though the lamellar liquid crystalline phase thickness of C20BAS is only 32 A. Because Ste14p activity was not affected by either the gel-to-liquid-crystal phase transition temperature of the lipid or the temperature of the assay, the low activity observed in 75-100 mol % C20BAS membranes can be attributed to hydrophobic mismatch between this bolalipid and the hydrophobic surface of Ste14p.  相似文献   

17.
Physical properties of Escherichia coli membrane lipids in logarithmic- and stationary-phase cells were studied by measuring the fluorescence polarization change of cis- and trans-parinaric acid as a function of temperature. In aqueous dispersions of phospholipids extracted from cytoplasmic and outer membranes of cells of differing growth phase, a similar polarization increase was observed over the range from physiological temperature to below 0 degrees C, and nearly the same transition ratios were obtained in all samples. The cytoplasmic membrane of both of the growth-phase cells showed a higher polarization ratio above the transition temperatures, compared to that in the aqueous dispersion of phospholipids. The polarization ratios below the transition temperatures of these specimens were lower than the value obtained with the lipids, especially in the stationary-phase specimens. The outer membrane specimens showed a similar polarization change but the transition temperature ranges were considerably higher both in the logarithmic- and the stationary-phase specimens, compared to those in the cytoplasmic membrane specimens. Freeze-thawing of logarithmic-phase cells showed the emergence of activity of certain enzymes which are known to be located in the membranes. The stationary-phase cells did not suffer from any such deleterious effect and maintained a high level of cell viability in a similar treatment. These results indicate that in the stationary-phase cell membranes lipids are in a highly ordered state, and the lipid state causes a membrane stability which results in the high resistance of the cell to freeze-thawing.  相似文献   

18.
The thermal stability of bovine brain hsp73, Escherichia coli DnaK, and its mutant T199A was studied by a combination of spectroscopic and chromatographic methods. DnaK undergoes a temperature-induced conformational change that leads to the formation of a molten globule at physiologically relevant temperatures (midpoint of the transition, tm, 41 degrees C). Native DnaK binds to a denatured form of alpha-lactalbumin in a temperature-dependent manner with maximum rate at about 40 degrees C. The molten globule of DnaK is unable to bind denatured alpha-lactalbumin but recovers native structure and activity upon cooling. The half-life of the refolding process is 10 min at 35 degrees C. Mg/ATP and Mg/ADP increase the thermal stability of DnaK; in the presence of these nucleotides the tm is shifted to 59 degrees C. Binding of Mg/ATP (but not Mg/ADP or Mg/adenosine 5'-[gamma-thio]triphosphate) causes a conformational change in DnaK as determined by the emission fluorescence spectrum. The DnaK mutant T199A which lacks the threonine residue that is essential for ATP hydrolysis and autophosphorylation activity (McCarty, J. S., and Walker, G. C. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 9513-9517) shows nearly identical properties to the wild type in the presence or absence of nucleotides. Hsp73 undergoes similar temperature-induced transitions as determined by spectroscopic methods (Palleros, D.R., Welch, W.J., and Fink, A.L. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 5719-5723); however, contrary to DnaK, the molten globule of hsp73 irreversibly aggregates at temperatures higher than its tm (42 degrees C).  相似文献   

19.
The biological activity of farnesol (FN) and geranylgeraniol (GG) and their isoprenyl groups is related to membrane-associated processes. We have studied the interactions of FN and GG with 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) membranes using DSC and X-ray diffraction. Storage of samples at low temperature for a long time favors a multidomain system formed by a lamellar crystalline (Lc) phase and isoprenoids (ISPs) aggregates. We demonstrate that ISPs alter the thermotropic behavior of DEPE, thereby promoting a HII growth in a lamellar Lc phase with a reduced degree of hydration. The HII phase occurs with the same repeat distance (dHII=5.4 nm) as the Lc phase and upon heating it expands considerably (deltad/deltaT approximately 0.22 nm/ degrees C). The dimensional stabilization of this HII phase coincides with the transition temperature of the Lc to Lalpha phase. Thereafter, the system DEPE/ISP will progress by increasing the nonlamellar-forming propensity and reaching a single HII phase at high temperature. The cooling scan followed a similar structural path, except that the system went into a stable gel phase Lbeta with a repeat distance, dLbeta=6.5 nm, in co-existence with a HII phase. The formation of ISP microdomains in model PE membranes substantiates the importance of the isoprenyl group in the binding of isoprenylated proteins to membranes and in lipid-lipid interactions through modulation of the membrane structure.  相似文献   

20.
Das S  Seebach D  Reusch RN 《Biochemistry》2002,41(16):5307-5312
Complexes of poly-(R)-3-hydroxybutyrate and inorganic polyphosphate (PHB/polyP), isolated from the plasma membranes of Escherichia coli or prepared synthetically (HB(128)/polyP(65)), form Ca(2+)-selective ion channels in planar lipid bilayers that exhibit indistinguishable gating and conductance characteristics at 22 degrees C. Here we examine the gating and conductance of E. coli and synthetic PHB/polyP complexes in planar lipid bilayers as a function of temperature from 15 to 45 degrees C. E. coli PHB/polyP channels remained effectively open throughout this range, with brief closures that became more rare at higher temperatures. Conversely, as temperatures were gradually increased, the open probability of HB(128)/polyP(65) channels progressively decreased. The effect was fully reversible. Channel conductance exhibited three distinct phases. Below 25 degrees C, as PHB approached its glass temperature (ca. 10 degrees C), the conductance of both E. coli and synthetic channels remained at about the same level (95-105 pS). Between 25 degrees C and ca. 40 degrees C, the conductance of E. coli and synthetic channels increased gradually with temperature coefficients (Q(10)) of 1.45 and 1.42, respectively. Above 40 degrees C, E. coli channel conductance increased sharply, whereas the conductance of HB(128)/polyP(65) channels leveled off. The discontinuities in the temperature curves for E. coli channels coincide with discontinuities in thermotropic fluorescence spectra and specific growth rates of E. coli cells. It is postulated that E. coli PHB/polyP complexes are associated with membrane components that inhibit their closure at elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号