首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the enzymatic step of the peroxidatic reaction between NAD and hydrogen peroxide, catalysed by horse liver alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1), has been investigated at pH 7 at high enzyme concentration. Under such conditions no burst phase has been observed, thus indicating that the rate-limiting step in the process, which converts NAD into Compound I, either precedes or coincides with the chemical step responsible for the observed spectroscopic change. Kinetic analysis of the data, performed according to a simplified reaction scheme suggests that the rate-limiting step is coincident with the spectroscopic (i.e., chemical) step itself. Furthermore, the absence of a proton burst phase indicates the proton release step does not precede the chemical step, in contrast with the case of ethanol oxidation. A kinetic effect of different premixing conditions on the reaction rate has been observed and attributed to the presence of NADH formed in the 'blank reaction' between NAD and residual ethanol tightly bound to alcohol dehydrogenase. A molecular mechanism for the enzymatic peroxidation step is finally proposed, exploiting the knowledge of the much better known reaction of ethanol oxidation. Inhibition of this reaction by NADH has been investigated with respect to H2O2 (noncompetitive, Ki about 10 microM) and to NAD (competitive, Ki about 0.7 microM). The effect of temperature on the steady-state reaction state (about 65 kJ/mol activation energy) has also been studied.  相似文献   

2.
A simple rate equation for alcohol dehydrogenase was obtained by assuming independent binding sites for ethanol and NAD+ and fully competitive inhibition by the products of the reaction, acetaldehyde and NADH. A random binding order was also assumed. The rate equation is described by six parameters: four association constants (two for the substrates and two for the products of the reaction), Vf for the forward direction, and the equilibrium constant of the reaction. The six parameters were determined at pH 7.4 by numerical analysis of progress curves of reactions started with different concentrations of ethanol and NAD+. The parameters for alcohol dehydrogenase partially purified from rat liver were: Km for ethanol = 0.746 mM, Km for NAD+ = 0.0563 mM, Km for acetaldehyde = 7.07 microM, Km for NADH = 4.77 microM and Keq = 2.36 X 10(-4). The computed values allowed a very good simulation of the experimental progress curves and little variation was observed in the kinetic parameters when the reactions were started in the presence of either NADH or acetaldehyde.  相似文献   

3.
A new form of alcohol dehydrogenase, designated mu-alcohol dehydrogenase, was identified in surgical human stomach mucosa by isoelectric focusing and kinetic determinations. This enzyme was anodic to class I (alpha, beta, gamma) and class II (pi) alcohol dehydrogenases on agarose isoelectric focusing gels. The partially purified mu-alcohol dehydrogenase, specifically using NAD+ as cofactor, catalyzed the oxidation of aliphatic and aromatic alcohols with long chain alcohols being better substrates, indicating a barrel-shape hydrophobic binding pocket for substrate. mu-Alcohol dehydrogenase stood out in high Km values for both ethanol (18 mM) and NAD+ (340 microM) as well as in high Ki value (320 microM) for 4-methylpyrazole, a competitive inhibitor for ethanol. mu-Alcohol dehydrogenase may account for up to 50% of total stomach alcohol dehydrogenase activity and appeared to play a significant role in first-pass metabolism of ethanol in human.  相似文献   

4.
N6-(N-[(4-Azido-3,5,6-trifluoro)pyridin-2-yl]-2-aminoethyl)- adenosine 5'-monophosphate has been synthesized and evidence presented for its structural assignment by ultraviolet and 19F-NMR spectroscopies. Its photolysis was shown to occur within 5 min. This AMP derivative behaves as a competitive inhibitor of NAD+ in horse-liver-alcohol-dehydrogenase-promoted oxidation of ethanol, with a Ki (0.95 mM) comparable to the Ki of AMP (1.9 mM). Moreover it is an activator of the enzyme when nicotinamide ribose is used as the oxidation cofactor. This activation is as good as that promoted by AMP or by the well known 8-azido-AMP. Upon photolysis of this new derivative in the presence of horse liver alcohol dehydrogenase, a covalent enzyme--analogue complex was isolated and assayed as a catalyst in the oxidation of ethanol using nicotinamide ribose as the cofactor. The reaction took place without complementation of AMP, indicating clearly that the AMP analogue is mainly covalently bound in the AMP-binding site, and that the linkage formed between the enzyme and the azido derivative has not dramatically altered the active site of the enzyme. A similar experiment with 8-azido-AMP produced a completely inactive complex.  相似文献   

5.
The kinetics of enzymatic oxidation of ethanol in the presence of alcohol dehydrogenase within a wide range of ethanol and NAD concentrations (pH 6.0--11.5) were studied. It was shown that high concentrations of ethanol (greater than 0.7--5 mM, depending on pH) and NAD (greater than 0.4--0.8 mM) activate alcohol dehydrogenase from horse liver within the pH range of 6.0--7.9. A mechanism of activation based on negative cooperativity of ADH subunits for binding of ethanol and NAD was proposed. The catalytic and Michaelis constants for alcohol dehydrogenase were calculated from ethanol and NAD at all pH values studied. The changes resulting from the subunit cooperativity were revealed. The nature of ionogenic groups of alcohol dehydrogenase, which affect the formation of complexes between the enzyme and NAD and ethanol, and the rate constants for catalytic oxidation of ethanol was assumed. The biological significance of the enzyme capacity for activation by high concentrations of ethanol within the physiological range of pH in the blood under excessive use of alcohol is discussed.  相似文献   

6.
1. AMP is an activator of the pyruvate dehydrogenase complex of the Ehrlich--Lettré ascites tumour, increasing its V up to 2-fold, with Ka of 40 microM at pH 7.4. This activation appears to be an allosteric effect on the decarboxylase subunit of the complex. 2. The pyruvate dehydrogenase complex has a Km for pyruvate within the range 17--36 microM depending on the pH, the optimum pH being approx. 7.4, with a V of approx. 0.1 unit/g of cells. The rate-limiting step is dependent on the transformation of the enzyme--substrate complex. The Km for CoA is 15 microM. The Km for NAD+ is 0.7 mM for both the complex and the lipoamide dehydrogenase. The complex is inhibited by acetyl-CoA competitively with CoA; the Ki is 60 microM. The lipoamide dehydrogenase is inhibited by NADH and NADPH competitively with NAD+, with Ki values of 80 and 90 microM respectively. In the reverse reaction the Km values for NADH and NADPH are essentially equal to their Ki values for the forward reaction, the V for the latter being 0.09 of that of the former. Hence the reaction rate of the complex in vivo is likely to be markedly affected by feedback isosteric inhibition by reduced nicotinamide nucleotides and possibly acetyl-CoA.  相似文献   

7.
The Michaelis constant values for the highly purified pyruvate dehydrogenase complex (PDC) from human heart are 25, 13 and 50 microM for pyruvate, CoA and NAD, respectively. Acetyl-CoA produces a competitive inhibition of PDC (Ki = 35 microM) with respect to CoA, whereas NADH produces the same type of inhibition with respect to NAD (Ki = 36 microM). The oxoglutarate dehydrogenase complex (OGDC) from human heart has active sites with two different affinities for 2-oxoglutarate ([S]0.5 of 30 and 120 microM). ADP (1 mM) decreases the [S]0.5 values by a half. The inhibition of OGDC (Ki = 81 microM) by succinyl-CoA is of a competitive type with respect to CoA (Km = 2.5 microM), whereas that of NADH (Ki = 25 microM) is of a mixed type with respect to NAD (Km = 170 microM).  相似文献   

8.
Dual biosynthetic pathways diverge from prephenate to L-tyrosine in Pseudomonas aeruginosa, with 4-hydroxyphenylpyruvate and L-arogenate being the unique intermediates of these pathways. Prephenate dehydrogenase and arogenate dehydrogenase activities could not be separated throughout fractionation steps yielding a purification of more than 200-fold, and the ratio of activities was constant throughout purification. Thus, the enzyme is a cyclohexadienyl dehydrogenase. The native enzyme has a molecular weight of 150,000 and is a hexamer made up of identical 25,500 subunits. The enzyme is specific for NAD+ as an electron acceptor, and identical Km values of 0.25 mM were obtained for NAD+, regardless of whether activity was assayed as prephenate dehydrogenase or as arogenate dehydrogenase. Km values of 0.07 mM and 0.17 mM were calculated for prephenate and L-arogenate, respectively. Inhibition by L-tyrosine was noncompetitive with respect to NAD+, but was strictly competitive with respect to either prephenate or L-arogenate. With cyclohexadiene as variable substrate, similar Ki values for L-tyrosine of 0.06 mM (prephenate) and 0.05 mM (L-arogenate) were obtained. With NAD+ as the variable substrate, similar Ki values for L-tyrosine of 0.26 mM (prephenate) and 0.28 mM (L-arogenate), respectively, were calculated. This is the first characterization of a purified, monofunctional cyclohexadienyl dehydrogenase.  相似文献   

9.
The 2-oxoglutarate dehydrogenase complex was isolated from the cellular slime mould, Dictyostelium discoideum, and purified 113-fold. The enzyme exhibited Michaelis-Menten kinetics and the Km values for 2-oxoglutarate, CoA, and NAD were 1.0 mM, 0.002 mM, and 0.07 mM, respectively. The Ki value for succinyl-CoA was determined to be 0.004 mM and the Ki for NADH was 0.018 mM. AMP had positive effects whereas ATP had negative effects on the enzyme activity. The kinetic constants determined in this study and the reaction mechanism suggested can now be incorporated into a transition model of the tricarboxylic acid cycle during differentiation of D. discoideum.  相似文献   

10.
Rat tissues contain three different isoenzymes of alcohol dehydrogenase (ADH) that we have named ADH-1, ADH-2 and ADH-3, ADH-1 is an anodic isoenzyme present in high amounts in the ocular tissues, stomach and lung. ADH-2 is also anodic and has been found in all the rat organs examined. ADH-3 is the group of cathodic ADH forms, mainly present in liver, that has been the subject of the majority of the previous studies on rat ADH. The three isoenzymes have been purified to homogeneity and characterized. All of them have similar physical characteristics: Mr 80,000, with two subunits of Mr 40,000; they contain four atoms of Zn per molecule, and prefer NAD+ as cofactor. Isoelectric points are, however, different: 5.1 for ADH-1, 5.95-6.3 for ADH-2 and 8.25-8.4 for ADH-3. ADH-3 exhibits a Km for ethanol of 1.4 mM, a broad substrate specificity and is strongly inhibited by pyrazole (Ki = 0.4 microM). ADH-2 shows substrate specificity toward long-chain alcohols and aldehydes, cannot be saturated by ethanol and is practically insensitive to pyrazole (Ki = 78.4 mM). ADH-1 has intermediate properties, with a Km for ethanol of 340 mM, a broad substrate specificity and Ki for pyrazole of 0.56 mM. Rat ADH-1, ADH-2 and ADH-3 exhibit many analogies with human ADH classes II, III and I respectively. The specific localization and kinetic properties of rat ADH isoenzymes suggest that ADH-1 and ADH-3 may act as metabolic barriers to external alcohols and aldehydes whereas ADH-2 may have a function in the metabolism of the endogenous long-chain alcohols and aldehydes.  相似文献   

11.
Stopped-flow studies of oxidation of butan-1-ol and propan-2-ol by NAD(+) in the presence of Phenol Red and large concentrations of yeast alcohol dehydrogenase give no evidence for the participation of a group of pK(a) approx. 7.6 in alcohol binding. Such a group has been implicated in ethanol binding to horse liver alcohol dehydrogenase [Shore, Gutfreund, Brooks, Santiago & Santiago (1974) Biochemistry13, 4185-4190]. The present result supports previous findings based on steady-state kinetic studies with the yeast enzyme. Stopped-flow studies of the yeast alcohol dehydrogenase-catalysed reduction of acetaldehyde by NADH in the presence of ethanol as product inhibitor indicate that the rate-limiting step is NAD(+) release from the enzyme-NAD(+)-ethanol product complex. This finding permits calculation of K(3), the dissociation constant for ethanol from the enzyme-NAD(+)-ethanol complex, by using the product-inhibition data of Dickenson & Dickinson (1978) (Biochem. J.171, 613-627). The calculations show that K(3) varies very little with pH in the range 5.95-8.9, and this agrees with the findings of the stopped-flow experiments described above. Absorption and fluorescence measurements on mixtures of substrates and coenzymes in the presence of high concentrations of alcohol dehydrogenase have been used to estimate values for the ratio [enzyme-NADH-acetaldehyde]/ [enzyme-NAD(+)-ethanol] at equilibrium. The values obtained were in the range 0.11+/-0.04, and this value together with estimates of K(3) was used to provide estimates of values for rate constants and dissociation constants for steps within the catalytic mechanism.  相似文献   

12.
A NAD (P)-linked alcohol dehydrogenase was isolated from the soluble extract of the strictly respiratory bacterium Alcaligenes eutrophus N9A. Derepression of the formation of this enzyme occurs only in cells incubated under conditions of restricted oxygen supply for prolonged times. The purification procedure included precipitation by cetyltrimethylammonium bromide and ammonium sulfate and subsequent chromatography on DEAE-Sephacel, Cibacron blue F3G-A Sepharose and thiol-Sepharose. The procedure resulted in a 120-fold purification of a multifunctional alcohol dehydrogenase exhibiting dehydrogenase activities for 2,3-butanediol, ethanol and acetaldehyde and reductase activities for diacetyl, acetoin and acetaldehyde. During purification the ratio between 2,3-butanediol dehydrogenase and ethanol dehydrogenase activity remained nearly constant. Recovering about 20% of the initial 2,3-butanediol dehydrogenase activity, the specific activity of the final preparation was 70.0 U X mg protein-1 (2,3-butanediol oxidation) and 2.8 U X mg protein-1 (ethanol oxidation). The alcohol dehydrogenase is a tetramer of a relative molecular mass of 156000 consisting of four equal subunits. The determination of the Km values for different substrates and coenzymes as well as the determination of the pH optima for the reactions catalyzed resulted in values which were in good agreement with the fermentative function of this enzyme. The alcohol dehydrogenase catalyzed the NAD (P)-dependent dismutation of acetaldehyde to acetate and ethanol. This reaction was studied in detail, and its possible involvement in acetate formation is discussed. Among various compounds tested for affecting enzyme activity only NAD, NADP, AMP, ADP, acetate and 2-mercaptoethanol exhibited significant effects.  相似文献   

13.
alpha-L-Glycerolphosphate dehydrogenase (sn-glycerol-3-phosphate:NAD+ 2-oxidoreductase, EC 1.1.1.8) from Saccharomyces carlsbergensis was purified 400-fold. The enzyme preparation is free of interfering activities, such as glyceraldehyde phosphate dehydrogenase, alcohol dehydrogenase, triose phosphate isomerase and glycerolphosphatase. At pH 7.0 it is specific for NADH (Km = 0.027 mM with 0.8 mM dihydroxyacetone phosphate) and dihydroxyacetone phosphate (Km = 0.2 mM with 0.2 mM NADH). Between pH 5.0 and 6.0 the enzyme functions with NADPH, but only at 7% of the rate with NADH. Various anions (I- greater than SO42- greater than Br- greater than Cl-) act as inhibitors competing with the substrate dihydroxyacetone phosphate. Inorganic phosphate (Ki = 0.1 mM), pyrophosphate and arsenate are strong inhibitors. The nucleotides ATP and ADP are also inhibitory, but their action seems to be of the same type as the general anion competition (Ki = 0.73 mM for ATP). The results are consistent with the notion that the enzyme may regulate the redox potential of the NAD+/NADH couple during fermentation.  相似文献   

14.
It is shown that the unusual NAD(P)+-independent quinoprotein alcohol dehydrogenase, said previously to be responsible for oxidation of ethanol during growth of Acinetobacter calcoaceticus LMD 79.39, was in fact isolated from an unidentified organism which contained cytochrome c and which has now been lost. Several genuine strains of A. calcoaceticus do not contain cytochrome c nor do they contain a quinoprotein alcohol dehydrogenase. The enzyme responsible for ethanol oxidation in these bacteria is an inducible NAD+-linked alcohol dehydrogenase.  相似文献   

15.
Acetaldehyde and butyraldehyde are substrates for alcohol dehydrogenase in the production of ethanol and 1-butanol by solvent-producing clostridia. A coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH), which also converts acyl-CoA to aldehyde and CoA, has been purified under anaerobic conditions from Clostridium beijerinckii NRRL B592. The ALDH showed a native molecular weight (Mr) of 100,000 and a subunit Mr of 55,000, suggesting that ALDH is dimeric. Purified ALDH contained no alcohol dehydrogenase activity. Activities measured with acetaldehyde and butyraldehyde as alternative substrates were copurified, indicating that the same ALDH can catalyze the formation of both aldehydes for ethanol and butanol production. Based on the Km and Vmax values for acetyl-CoA and butyryl-CoA, ALDH was more effective for the production of butyraldehyde than for acetaldehyde. ALDH could use either NAD(H) or NADP(H) as the coenzyme, but the Km for NAD(H) was much lower than that for NADP(H). Kinetic data suggest a ping-pong mechanism for the reaction. ALDH was more stable in Tris buffer than in phosphate buffer. The apparent optimum pH was between 6.5 and 7 for the forward reaction (the physiological direction; aldehyde forming), and it was 9.5 or higher for the reverse reaction (acyl-CoA forming). The ratio of NAD(H)/NADP(H)-linked activities increased with decreasing pH. ALDH was O2 sensitive, but it could be protected against O2 inactivation by dithiothreitol. The O2-inactivated enzyme could be reactivated by incubating the enzyme with CoA in the presence or absence of dithiothreitol prior to assay.  相似文献   

16.
Acetaldehyde and butyraldehyde are substrates for alcohol dehydrogenase in the production of ethanol and 1-butanol by solvent-producing clostridia. A coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH), which also converts acyl-CoA to aldehyde and CoA, has been purified under anaerobic conditions from Clostridium beijerinckii NRRL B592. The ALDH showed a native molecular weight (Mr) of 100,000 and a subunit Mr of 55,000, suggesting that ALDH is dimeric. Purified ALDH contained no alcohol dehydrogenase activity. Activities measured with acetaldehyde and butyraldehyde as alternative substrates were copurified, indicating that the same ALDH can catalyze the formation of both aldehydes for ethanol and butanol production. Based on the Km and Vmax values for acetyl-CoA and butyryl-CoA, ALDH was more effective for the production of butyraldehyde than for acetaldehyde. ALDH could use either NAD(H) or NADP(H) as the coenzyme, but the Km for NAD(H) was much lower than that for NADP(H). Kinetic data suggest a ping-pong mechanism for the reaction. ALDH was more stable in Tris buffer than in phosphate buffer. The apparent optimum pH was between 6.5 and 7 for the forward reaction (the physiological direction; aldehyde forming), and it was 9.5 or higher for the reverse reaction (acyl-CoA forming). The ratio of NAD(H)/NADP(H)-linked activities increased with decreasing pH. ALDH was O2 sensitive, but it could be protected against O2 inactivation by dithiothreitol. The O2-inactivated enzyme could be reactivated by incubating the enzyme with CoA in the presence or absence of dithiothreitol prior to assay.  相似文献   

17.
Drosophila alcohol dehydrogenase belongs to the short chain dehydrogenase/reductase (SDR) family which lack metal ions in their active site. In this family, it appears that the three amino acid residues, Ser138, Tyr151 and Lys155 have a similar function as the catalytic zinc in medium chain dehydrogenases. The present work has been performed in order to obtain information about the function of these residues. To obtain this goal, the pH and temperature dependence of various kinetic coefficients of the alcohol dehydrogenase from Drosophila lebanonensis was studied and three-dimensional models of the ternary enzyme-coenzyme-substrate complexes were created from the X-ray crystal coordinates of the D. lebanonensis ADH complexed with either NAD(+) or the NAD(+)-3-pentanone adduct. The kon velocity for ethanol and the ethanol competitive inhibitor pyrazole increased with pH and was regulated through the ionization of a single group in the binary enzyme-NAD(+) complex, with a DeltaHion value of 74(+/-4) kJ/mol (18(+/-1) kcal/mol). Based on this result and the constructed three-dimensional models of the enzyme, the most likely candidate for this catalytic residue is Ser138. The present kinetic study indicates that the role of Lys155 is to lower the pKa values of both Tyr151 and Ser138 already in the free enzyme. In the binary enzyme-NAD(+) complex, the positive charge of the nicotinamide ring in the coenzyme further lowers the pKa values and generates a strong base in the two negatively charged residues Ser138 and Tyr151. With the OH group of an alcohol close to the Ser138 residue, an alcoholate anion is formed in the ternary enzyme NAD(+) alcohol transition state complex. In the catalytic triad, along with their effect on Ser138, both Lys155 and Tyr151 also appear to bind and orient the oxidized coenzyme.  相似文献   

18.
Vinyl acetate is subject to microbial degradation in the environment and by pure cultures. It was hydrolyzed by samples of soil, sludge, and sewage at rates of up to 6.38 and 1 mmol/h per g (dry weight) under aerobic and anaerobic conditions, respectively. Four yeasts and thirteen bacteria that feed aerobically on vinyl acetate were isolated. The pathway of vinyl acetate degradation was studied in bacterium V2. Vinyl acetate was degraded to acetate as follows: vinyl acetate + NAD(P)+----2 acetate + NAD(P)H + H+. The acetate was then converted to acetyl coenzyme A and oxidized through the tricarboxylic acid cycle and the glyoxylate bypass. The key enzyme of the pathway is vinyl acetate esterase, which hydrolyzed the ester to acetate and vinyl alcohol. The latter isomerized spontaneously to acetaldehyde and was then converted to acetate. The acetaldehyde was disproportionated into ethanol and acetate. The enzymes involved in the metabolism of vinyl acetate were studied in extracts. Vinyl acetate esterase (Km = 6.13 mM) was also active with indoxyl acetate (Km = 0.98 mM), providing the basis for a convenient spectrophotometric test. Substrates of aldehyde dehydrogenase were formaldehyde, acetaldehyde, propionaldehyde, and butyraldehyde. The enzyme was equally active with NAD+ or NADP+. Alcohol dehydrogenase was active with ethanol (Km = 0.24 mM), 1-propanol (Km = 0.34 mM), and 1-butanol (Km = 0.16 mM) and was linked to NAD+. The molecular sizes of aldehyde dehydrogenase and alcohol dehydrogenase were 145 and 215 kilodaltons, respectively.  相似文献   

19.
M Nieder  B Sunarko    O Meyer 《Applied microbiology》1990,56(10):3023-3028
Vinyl acetate is subject to microbial degradation in the environment and by pure cultures. It was hydrolyzed by samples of soil, sludge, and sewage at rates of up to 6.38 and 1 mmol/h per g (dry weight) under aerobic and anaerobic conditions, respectively. Four yeasts and thirteen bacteria that feed aerobically on vinyl acetate were isolated. The pathway of vinyl acetate degradation was studied in bacterium V2. Vinyl acetate was degraded to acetate as follows: vinyl acetate + NAD(P)+----2 acetate + NAD(P)H + H+. The acetate was then converted to acetyl coenzyme A and oxidized through the tricarboxylic acid cycle and the glyoxylate bypass. The key enzyme of the pathway is vinyl acetate esterase, which hydrolyzed the ester to acetate and vinyl alcohol. The latter isomerized spontaneously to acetaldehyde and was then converted to acetate. The acetaldehyde was disproportionated into ethanol and acetate. The enzymes involved in the metabolism of vinyl acetate were studied in extracts. Vinyl acetate esterase (Km = 6.13 mM) was also active with indoxyl acetate (Km = 0.98 mM), providing the basis for a convenient spectrophotometric test. Substrates of aldehyde dehydrogenase were formaldehyde, acetaldehyde, propionaldehyde, and butyraldehyde. The enzyme was equally active with NAD+ or NADP+. Alcohol dehydrogenase was active with ethanol (Km = 0.24 mM), 1-propanol (Km = 0.34 mM), and 1-butanol (Km = 0.16 mM) and was linked to NAD+. The molecular sizes of aldehyde dehydrogenase and alcohol dehydrogenase were 145 and 215 kilodaltons, respectively.  相似文献   

20.
L G Lange  B L Vallee 《Biochemistry》1976,15(21):4681-4686
A general affinity chromatographic method for alcohol dehydrogenase purification has been developed by employing immobilized 4-substituted pyrazole derivatives that isolate the enzyme through formation of a specific ternary complex. Sepharose 4B is activated with 300 mg of cyanogen bromide/ml of packed gel and coupled to 4-[3-(N-6-aminocaproyl)aminopropyl]pyrazole. From crude liver extracts in 50 mM phosphate-0.37 mM nicotinamide adenine dinucleotide, pH 7.5, alcohol dehydrogenase is optimally bound at a capacity of 4-5 mg of enzyme/ml of gel. Addition of ethanol, propanol, or butanol, 500 mM, results in the formation of a second ternary complex, which allows the elution of bound enzyme in high yield and purity. This double-ternary complex affinity chromatography has been applied successfully to human, horse, rat, and rabbit liver extracts to isolate the respective homogeneous alcohol dehydrogenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号