首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The properties of the membrane-bound reduced nicotinamide adenine dinucleotide (NADH) oxidase of Acholeplasma laidlawii were compared with those of the corresponding cytoplasmic activity of Mycoplasma mycoides subsp. capri. The striking differences in pH optima, susceptibility to inhibitors and detergents, and heat inactivation between the NADH oxidase activity, with oxygen as an electron acceptor, and the NADH oxidoreductase activity, with dichlorophenol indophenol (DCPIP) as an alternate electron acceptor, support the presence of more than one catalytic protein in both the membrane-bound and soluble enzyme systems. The detection of more than one band positive for the NADH-nitroblue tetrazolium oxidoreductase reaction on electrophoresis of either the membranes of A. laidlawii or the cytoplasm of M mycoides subsp. capri also points in the same direction. The membrane-bound enzyme system differed, however, form the soluble one because it had a lower ratio of oxidase activity to oxidoreductase activity, and because it was less susceptible to heat inactivation and more readily incorporated incorporated into reaggregated membranes. In addition, the specific activity of the membrane-bound enzyme system increased as the culture aged, whereas that of the soluble system decreased as the culture aged. It is suggested that the different location in the cell could be responsible for some of the differences between the membrane-bound NADH oxidase activity of A. laidlawii and that found in the cytoplasm of M. mycoides subsp. capri.  相似文献   

3.
NAD+ had a biphasic effect on the NADH oxidase activity in electron transport particles from Mycobacterium phlei. The oxidase was inhibited competitively by NAD+ at concentrations above 0.05 mM. NAD+ in concentrations from 0.02 to 0.05 mM resulted in maximum stimulation of both NADH oxidation and oxygen uptake with concentrations of substrate both above and below the apparent K-M. Oxygen uptake and cyanide sensitivity indicated that the NAD+ stimulatory effect was linked to the terminal respiratory chain. The stimulatory effect was specific for NAD+. NAD+ was also specific in protecting the oxidase during heating at 50 degrees and against inactivation during storage at 0 degrees. NAD+ glycohydrolase did not affect stimulation nor heat protection of the NADH oxidase activity if the particles were previously preincubated with NAD+. Binding studies revealed that the particles bound approximately 3.6 pmol of [14C1NAD+ per mg of electron transport particle protein. Although bound NAD+ represented only a small fraction of the total added NAD+ necessary for maximal stimulation, removal of the apparently unbound NAD+ by Sephadex chromatography revealed that particles retained the stimulated state for at least 48 hours. Further addition of NAD+ to stimulated washed particles resulted in competitive inhibition of oxidase activity. Desensitization of the oxidase to the stimulatory effect of NAD+ was achieved by heating the particles at 50 degrees for 2 min without appreciable loss of enzymatic activity. Kinetic studies indicated that addition of NADH to electron transport particles prior to preincubation with NAD+ inhibited stimulation. In addition, NADH inhibited binding of [14C]NAD+. The utilization of artificial electron acceptors, which act as a shunt of the respiratory chain at or near the flavoprotein component, indicated that NAD+ acts as at the level of the NADH dehydrogenase at a site other than the catalytic one resulting in a conformational change which causes restoration as well as protection of oxidase activity.  相似文献   

4.
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) are a group of eukaryotic flavoenzymes that catalyse the reduction of dioxygen to the superoxide anion using electrons provided by NADPH. An integral membrane flavocytochrome b558 heterodimer, composed of the catalytic subunit gp91phox and the adaptor protein p22phox, is essential for catalytic activity of the mammalian Nox2 complex. Two homologues of the mammalian gp91phox, NoxA and NoxB, have been identified in fungi and shown to be crucial for distinct fungal cell differentiation and developmental processes, but to date, no homologue of the p22phox adaptor protein has been identified. Isolation of a mutant from Podospora anserina with a phenotype identical to a previously characterised PaNox1 mutant, combined with phylogenetic analysis, identified a fungal homologue of p22phox called PaNoxD. The same adaptor protein was shown to be a component of the Botrytis cinerea NoxA complex as supported by the identical phenotypes of the bcnoxA and bcnoxD mutants and direct physical interaction between BcNoxA and BcNoxD. These results suggest that NoxA/NoxD is the fungal equivalent of the mammalian gp91phox/p22phox flavocytochrome complex. Tetraspanin (Pls1) mutants of P. anserina and B. cinerea have identical phenotypes to noxB mutants, suggesting that Pls1 is the corresponding integral membrane adaptor for assembly of the NoxB complex.  相似文献   

5.
Gel-permeation chromatography and ultrafiltration have been used to study the free and bound forms of NAD in crude extracts prepared from rabbit muscle. Both techniques indicate that over 80% of the endogenous NAD is free.Nicotinamide inhibits the destruction of NAD in muscle homogenates (50% inhibition at 1.6 mm nicotinamide). In the absence of nicotinamide, there is a rapid destruction of free NAD, but a more gradual destruction of bound NAD. The latter result confirms earlier findings that bound NAD is protected from the hydrolytic action of NADase. However, this protection is unlikely to constitute an important mechanism for controlling NADase activity in muscle homogenates because such a small proportion of the endogenous NAD is bound.In the absence of nicotinamide, NAD also disappears rapidly from minced muscle. Interestingly, the NAD/NADH ratio remains constant (NAD/NADH = 18.1–18.5) during the disappearance of NAD in minced muscle. Upon homogenization of the mince, the NAD/NADH ratio abruptly decreases, then slowly increases during subsequent incubation. The latter rise in NAD/NADH ratio appears to be independent of absolute changes in NAD concentration brought about by the action of NADase or the addition of exogenous NAD.  相似文献   

6.
7.
Yang X  Ma K 《Analytical biochemistry》2005,344(1):130-134
Hydrogen peroxide can be conveniently determined using horseradish peroxidase (HRP) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid). However, interference occurs among assay components in the presence of reduced nicotinamide adenine dinucleotide (NADH) that is also a substrate of NADH oxidase. So, depletion of NADH is required before using the HRP method. Here, we report simple and rapid procedures to accurately determine hydrogen peroxide generated by NADH oxidase. All procedures developed were based on the extreme acid lability of NADH and the stability of hydrogen peroxide, because NADH was decomposed at pH 2.0 or 3.0 for 10 min, while hydrogen peroxide was stable at pH 2.0 or 3.0 for at least 60 min. Acidification and neutralization were carried out by adjusting sample containing NADH up to 30 microM to pH 2.0 for 10 min before neutralizing it back to pH 7.0. Then, hydrogen peroxide in the sample was measured using the HRP method and its determination limit was found to be about 0.3 microM. Alternatively, hydrogen peroxide in samples containing NADH up to 100 microM could be quantitated using a modified HRP method that required an acidification step only, which was found to have a determination limit of about 3 microM hydrogen peroxide in original samples.  相似文献   

8.
9.
Flagyl and reduced nicotinamide adenine dinucleotide   总被引:1,自引:0,他引:1  
G H Coombs  B R Rabin 《FEBS letters》1974,42(1):105-107
  相似文献   

10.
Muto S  Miyachi S 《Plant physiology》1981,68(2):324-328
Light-induced conversion of NAD to NADP was investigated in higher plants. Upon illumination, conversion of NAD to NADP was observed in intact leaves of wheat and pea following incubation in the dark. This conversion was also observed in mesophyll protoplasts of wheat leaves when they were isolated in the dark or isolated in light and then preincubated in the dark. Chloroplasts isolated from wheat protoplasts prepared in the dark carried out the conversion. The conversion in the mechanically isolated spinach chloroplasts was observed only when they were isolated in the dark from leaves preincubated in darkness.  相似文献   

11.
12.
Galectins are a group of lactose-binding proteins widely distributed in nature. Twelve mammalian galectins have so far been identified, but their functions are to a large extent unknown. In this work we study galectin-1 in its interaction with human neutrophils, with regard to both cell surface binding and activation of the superoxide-producing NADPH-oxidase. We show that galectin-1 is able to activate the neutrophil NADPH-oxidase, provided that the cells have been primed by extravasation from the blood into the tissue, an activation pattern that is similar to that of galectin-3. Using in vitro priming protocols, the galectin-1 responsiveness was found to correlate to granule mobilization and galectin-1 binding to the cells, suggesting the presence of granule-localized receptors that are up-regulated to the cell surface upon priming. By galectin-1 overlay of fractionated neutrophils we identified potential galectin-1 receptor candidates localized in the membranes of the secretory vesicle and gelatinase granules. The binding of galectin-1 and galectin-3 to neutrophil proteins was compared, as were the dose dependencies for activation by the two lectins. The results suggest that, although similarities are found between the two galectins, they appear to activate the NADPH-oxidase using different receptors. In conclusion, galectin-1 appears to have proinflammatory functions, mediated through activation of the neutrophil respiratory burst.  相似文献   

13.
Reduced nicotinamide adenine dinucleotide (NADH) has been characterized electrochemically by solid electrode voltammetry and controlled potential electrolysis. Photometric and enzymatic assay showed that enzymatically active nicotinamide adenine dinucleotide (NAD+) could be regenerated electrolytically from its reduced form without the use of so-called electron mediators. Complete regeneration of enzymatically active NAD can be expected in pyrophosphate buffers and phosphate buffers during the electrolysis. Advantages of electrochemical regeneration of coenzymes are discussed, especially with regard to immobilization of enzymes.  相似文献   

14.
15.
16.
An NADH dehydrogenase possessing a specific activity 3-5 times that of membrane-bound enzyme was obtained by extraction of Acholeplasma laidlawii membranes with 9.0% ethanol at 43 degrees C. This dehydrogenase contained only trace amounts of iron (suggesting an uncoupled respiration), a flavin ratio of 1:2 FAD to FMN and 30-40% lipid. Its resistance to sedimentation is probably due to the high flotation density of the lipids. It efficiently utilized ferricyanide, menadione and dichlorophenol indophenol as electron acceptors, but not O2, ubiquinone Q10 or cytochrome c. Lineweaver-Burk plots of the dehydrogenase were altered to linear functions upon extraction with 9.0% ethanol. A secondary site of ferricyanide reduction could not be explained by the presence of cytochromes, which these membranes lack. In comparison to other respiratory chain-linked NADH dehydrogenases in cytochrome-containing respiratory chains, this dehydrogenase was characterized by similar Km's with ferricyanide, dichlorophenol indophenol, menadione as electron acceptors, but considerably smaller V's with ferricyanide, dichlorophenol indophenol, menadione as electron acceptors, and smaller specific activities. It was not stimulated or reactivated by the addition of FAD, FMN, Mg2+, cysteine or membrane lipids, and was less sensitive to respiratory inhibitors than unextracted enzyme. The ineffectiveness of ADP stimulation on O2 uptake, the insensitivity to oligomycin and the very low iron content of A. laidlawii membranes were considered in relation to conservation of energy by these cells. Some kinetic properties of the dehydrogenation, the uniquely high glycolipid content and apparently uncoupled respiration at Site I were noteworthy characteristics of this NADH dehydrogenase from the truncated respiratory chain of A. laidlawii.  相似文献   

17.
18.
Solubilization of a reduced nicotinamide adenine dinucleotide (NADH)-2,6 dichlorophenol indophenol (DCIP) oxidoreductase associated with the membrane NADH oxidase system of Bacillus megaterium KM was effected by treatment with 0.2% sodium deoxycholate, 8 m urea, or buffer (pH 9.0) in the presence of ethyl-enediaminetetraacetate. These treatments inactivated membrane NADH oxidase. It was found that membrane NADH oxidase and NADH-DCIP oxidoreductase were masked in membranes. Several procedures, including brief sonic oscillation, treatment with 0.05% deoxycholate, prolonged stirring at 4 C with 10% glycerol, and washing in the absence of Mg(2+), unmasked the oxidase and oxidoreductase activities. It was necessary to study the masking and unmasking of these activities to quantitate adequately the effects of solubilization procedures. Further information on the localization of oxidase and oxidoreductase in subcellular fractions and the effects of electron transport inhibitors on NADH oxidation was also obtained.  相似文献   

19.
Electron transport particles (ETP) prepared from beef heart mitochondria formed malondialdehyde by NADPH-dependent lipid peroixidation in the presence of ferric ions and ADP or ATP. The reaction was inhibited by MnCl2, EDTA, or radical scavengers, but was not inhibited by p-hydroxymercuribenzoate (PHMB) or respiratory chain inhibitors. The oxidation of NADPH and oxygen consumption by ETP were activated by the addition of ferric ions and APT, and inhibited by inhibitors of lipid peroxidation. This peroxidation system was apparently different from those of liver microsomes and mitochondria as regards the effect of PHMB, optimal pH and the concentration of NADPH for half-maximal reaction velocity.  相似文献   

20.
K Takayama  M Nakano 《Biochemistry》1977,16(9):1921-1926
The oxidation of reduced nicotinamide adenine dinucleotide (NADH) by the horseradish peroxidase (HRP)-H2O2 system is greatly increased by the addition of thyroxine or related compounds. On the basis of a study of the rate of NADH oxidation in the presence of various concentrations of thyroxine, it is clear that thyroxine acts as a catalyst for NADH oxidation. Spectral changes of a HRP-H2O2 complex (compound I) indicate that thyroxine acts as an electron donor to both compounds I and II. The rate of electron donation from thyroxine is much faster than that from NADH. The HRP-H2O2 system requires 0.83 mol of O2 for the oxidation of 1 mol of NADH. Ferricytochrome c is reduced to ferrocytochrome c by the system, and causes an inhibition of O2 consumption which can be abolished by superoxide dismutase. JUDGING FROM THE INHIBITION OF O2 uptake by ferricytochrome c, about 54% of the total flux of electrons from NADH to oxygen appears to proceed by way of O2-. These results suggest that the initial step of thyroxine-mediated NADH oxidation by HRP and H2O2 is the formation of oxidized thyroxine, a phenoxy radical, which attacks NADH to produce NAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号