首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the molecular basis for the pattern of ovarian steroid production during the bovine estrous cycle, the relative levels of mRNA specific for cholesterol side-chain cleavage cytochrome P-450, 17 alpha-hydroxylase cytochrome P-450, adrenodoxin, and low density lipoprotein receptor were determined in ovarian antral follicles of differing size (less than 3-18 mm) and corpora lutea from the early, early-mid, late-mid, and regressionary stages. Total and poly(A)+ RNA was size-fractionated on agarose-formaldehyde gels, transferred to nylon filters and hybridized to specific 32P-labeled probes. The levels of mRNAs for the rate-limiting enzymes in the conversion of cholesterol into progesterone, namely cholesterol side-chain cleavage cytochrome P-450 and its electron donor, adrenodoxin, were higher in corpora lutea than in follicles. Conversely the levels of mRNA specific for the key regulatory enzyme in the conversion of pregnenolone or progesterone to androgen, namely 17 alpha-hydroxylase cytochrome P-450, were high in all antral follicles examined but were low in young corpora lutea and undetectable in more mature corpora lutea. Low density lipoprotein receptor mRNA was detectable in antral follicles and corpora lutea but the levels were greater in corpora lutea. These results suggest that the pattern of changes in steroid hormone biosynthesis during the bovine estrous cycle and in the ovarian content of steroidogenic enzymes is related to and probably dependent upon the pattern of change in levels of mRNAs for steroidogenic enzymes and related proteins.  相似文献   

2.
3.
Corpora lutea were collected from cows at four stages of the luteal phase and prepared for immunostaining at the light microscope level. Other corpora lutea, which were fully developed, were dispersed by collagenase treatment and freshly isolated and cultured cells were processed for immunostaining. Electron microscopy was carried out on mature corpora lutea and freshly isolated cells. Positive staining for cholesterol side-chain-cleavage cytochrome P-450 (P-450scc), an inner-mitochondrial membrane enzyme considered to catalyse the rate-limiting step in the conversion of cholesterol to progesterone, was observed in all corpora lutea. The intensity of staining was much greater in mature corpora lutea than in young or regressing corpora lutea. Only small and large luteal cells stained positively and cells of the vasculature and other connective tissue elements did not. When cells were cultured and had become flatter, the intensity of immunostaining was observed to be greater in large luteal cells than in small luteal cells which was interpreted to be due, in part, to the greater volume density of mitochondria in these cells. In some cultured small luteal cells the pattern of immunostaining appeared as whorls of strands encircling the nucleus. This pattern was interpreted as a three-dimensional network of mitochondria organized into 'strands', more than one mitochondrion in cross-section, perhaps formed during the process of attachment and elongation of the cells. Further observations made at the electron microscope level, included the presence of close (5-8 nm) contacts with interconnecting septa between small luteal cells in tissue.  相似文献   

4.
5.
Difference spectroscopy was used to measure the binding of cholesterol sulfate (CS) to cytochrome P-450scc. The uncomplexed cytochrome and the complex of the cytochrome with adrenodoxin (ADX) were both titrated with CS in order to test whether ADX increased the affinity of the cytochrome for the sterol sulfate. The addition of ADX to the cytochrome had different effects on the binding of the sterol sulfate depending on several factors including: (1) The method of preparation of the cytochrome P-450scc, (2) The concentration of cytochrome P-450scc, (3) The method by which CS was suspended in aqueous solution, and (4) Whether or not the solutions of cytochrome contained non-ionic detergents. The results of this study suggest that the method of isolation of cytochrome P-450scc, and non-ionic detergents, greatly modulate the apparent affinity of cytochrome P-450scc for CS. In the absence of detergents the addition of adrenodoxin to dilute solutions of cytochrome P-450scc appears to enhance only slightly (1- to 2-fold) the affinity of the cytochrome for the sterol sulfate.  相似文献   

6.
The synthesis of cholesterol side chain cleavage cytochrome P-450 (cytochrome P-450scc) and adrenodoxin was studied both in freshly harvested bovine granulosa cells and in granulosa cells maintained in primary monolayer culture. In addition, the action of follicle-stimulating hormone (FSH) and cyclic AMP analogs to stimulate the synthesis of cytochrome P-450scc was investigated in cultured cells. Precursor forms of cytochrome P-450scc and adrenodoxin were immunoisolated from a cell-free translation system directed by RNA prepared from freshly obtained granulosa cells that were not luteinized. Furthermore, the presence of cytochrome P-450scc in lysates of granulosa cells freshly obtained from very small follicles (containing less than 0.1 ml of follicular fluid) and in mitochondria of freshly obtained granulosa cells was demonstrated by using an immunoblotting technique. Continuous treatment of cultured granulosa cells with FSH or with cyclic AMP analogs (dibutyryl cyclic AMP or 8-bromo cyclic AMP) for 72 h increased incorporation of [35S]methionine into immunoprecipitable cytochrome P-450scc. Moreover, FSH, dibutyryl cyclic AMP, and 8-bromo cyclic AMP stimulated pregnenolone production by cultured granulosa cells (2.3-, 4.0-, and 7.5-fold increase over control, respectively), indicative of an increase in cholesterol side chain cleavage activity. The results of this study demonstrate for the first time the presence of two components of the cholesterol side chain cleavage system in freshly obtained granulosa cells, and provide direct evidence for the trophic effect of FSH and its presumed mediator, cyclic AMP, on the synthesis of cytochrome P-450scc in granulosa cells.  相似文献   

7.
The actions of insulin and somatomedin C (insulin-like growth factor I) on cholesterol side-chain cleavage activity and the synthesis of cytochrome P-450scc and adrenodoxin were investigated in primary cultures of swine ovarian (granulosa) cells. Nanomolar concentrations of pure human somatomedin C stimulated biosynthesis of progesterone and 20 alpha-hydroxypregn-4-en-3-one. Moreover, in the presence of exogenous sterol substrate for cholesterol side-chain cleavage, somatomedin C significantly enhanced pregnenolone biosynthesis in a time- and dose-dependent manner. This augmentation of functional cholesterol side-chain cleavage activity was accompanied by a dose-dependent (2-16-fold) increase in [35S]methionine incorporation into specific immunoprecipitable cytochrome P-450scc and adrenodoxin. Micromolar concentrations of insulin (but not proinsulin or desoctapeptide) also induced synthesis of cholesterol side-chain cleavage constituents by 4-7-fold. These results demonstrate that an insulin-like growth factor, somatomedin C, exerts discrete differentiating effects on ovarian cells characterized by increased synthesis of immunospecific cytochrome P-450scc and adrenodoxin. Thus, we infer that somatomedin C may serve a critical role in the differentiation of steroidogenic cells in the mammalian ovary.  相似文献   

8.
A homogeneous cytochrome P-450scc preparation with a specific enzyme content of 18 nmol/1 mg protein has been obtained using affinity chromatography on adrenodoxin-Sepharose under optimal conditions of the protein adsorption onto and desorption from the affinity sorbent. The data on the N-terminal amino acid sequence of the enzyme, along with the results of electrophoretic and spectrophotometric analyses favoured the multistage cholesterol transformation to pregnenolone to be catalyzed by single species of cytochrome P-450scc consisting of one polypeptide chain. Limited proteolysis of cytochrome P-450scc with trypsin resulted, at the initial stages, in the formation (in an equimolar ratio) of two large polypeptide fragments, I and II, with Mr 27000 and 22000, respectively. Prolonged action of trypsin led to the digestion of fragment II and the formation of a stoichiometric amount of fragment III, Mr of about 14000. Cytochrome P-450scc converted by trypsin into equimolar mixtures of fragments I and II or I and III retained the major spectral and functional properties of the native protein. The aspartyl-prolyl linkages, sulphhydryl groups, and surface tyrosine residues are distributed nonuniformly among fragments I and II. These data, as well as a different resistance of the fragments to the action of trypsin, suggest that cytochrome P-450scc consists of two independently folded domains linked with a short loop of the polypeptide chain, the domains being rigidly associated under neutral conditions.  相似文献   

9.
10.
We report the isolating and sequencing of three cDNA clones encoding rat P-450scc, the nucleotide and protein sequences of which are highly homologous to those of bovine and human P-450scc, especially in the putative heme and steroid binding domains. We document that different molecular mechanisms regulate P-450scc in granulosa cells of preovulatory (PO) follicles prior to and after luteinization. Luteinizing hormone/human chorionic gonadotropin (LH/hCG) and cAMP are obligatory to induce P-450scc mRNA in PO granulosa cells in vivo and in vitro. Once P-450scc mRNA is induced as a consequence of the LH/hCG surge it is constitutively maintained by luteinized cells in vivo (0-4 days) and in vitro (0-9 days) in the absence of gonadotropins, is susceptible to modulation by prolactin and is no longer regulated by cAMP. Exposure to elevated concentrations of hCG in vivo for 5-7 h was required for PO granulosa cells to undergo a functional transition establishing the stable luteal cell phenotype. Transient exposure of PO + hCG (7 h) follicles in vitro to the RNA synthesis inhibitor actinomycin D (1 microgram/ml) or the protein synthesis inhibitor cycloheximide (10 micrograms/ml), for 1-5 h prior to culturing the granulosa cells failed to disrupt the induction of P-450scc mRNA, progesterone biosynthesis, and appearance of the luteal cell morphology. Inhibitors of protein kinase A (Rp-cAMPS; 1-500 microM and N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H8); 1-200 microM) added directly to the luteinized cell cultures also failed to alter P-450scc mRNA in these cells, although the cells contain in vivo amounts of mRNA for RII beta, RI alpha, and C alpha, the primary subunits of protein kinase A found in the rat ovary. These data suggest that expression of the P-450scc gene in rat ovarian follicular cells is regulated in a sequential manner by cAMP-dependent and cAMP-independent mechanisms associated with granulosa cells and luteal cells, respectively.  相似文献   

11.
Vasoactive intestinal peptide (VIP), a neuropeptide present in ovarian nerves, has been previously shown to induce synthesis of the side-chain cleavage cytochrome P-450 enzyme which catalyzes the conversion of cholesterol to pregnenolone (the rate-limiting step in progesterone synthesis). In the present study we demonstrate, by means of a bovine 3'-specific P-450scc cDNA probe, that this VIP effect is exerted at least partially at the level of gene expression in cultured granulosa cells that were isolated from estrogen-primed, immature rats. The size and level of the 2.0 kilobase P-450scc mRNA species was assessed by Northern blot analysis, while the translatability of this mRNA was assayed by immunoisolation of the 35S-labeled P-450scc precursor protein translated from total RNA of control and stimulated granulosa cells. FSH was much more effective than VIP at increasing P-450scc mRNA concentrations in cultured granulosa cells, whereas secretin treatment was ineffective. The results suggest that, like FSH, the stimulatory effect of the neuropeptide VIP on ovarian progesterone secretion involves regulation of P-450scc gene expression during functional maturation of the prepubertal ovary.  相似文献   

12.
Cytochrome P-450scc and adrenodoxin were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The sample containing 94% of a cross-linked complex and 6% of free cytochrome P-450scc was obtained after purification on cholate-Sepharose. Cytochrome P-450scc in the cross-linked complex is not reduced in the presence of NADPH and adrenodoxin reductase, but completely preserves its high spin form in the presence of Tween-20 or pregnenolone. The use of radioactive labelled adrenodoxin, chemical cleavage of cytochrome P-450scc from the cross-linked complex by o-iodosobenzoic acid and HPLC for separation of peptides demonstrated that the cytochrome P-450scc complex with adrenodoxin was cross-linked through two amino acid sequences of cytochrome P-450scc, i.e., Leu 88-Trp108 and Leu368-Trp417.  相似文献   

13.
In order to elucidate the mechanism of the electron transfer reaction of mitochondrial steroid hydroxylase, the reduction reaction of cytochrome P-450scc (P-450scc) catalyzed by covalently cross-linked complexes between adrenodoxin reductase (AR) and adrenodoxin (AD) was studied. The reduction rate with the covalent AR-AD complex was very slow (0.030 min-1, as the flavin turnover number) compared with the reduction catalyzed by AR and AD (4.6 min-1). When free AD was added to the reaction mixture containing the AR-AD complex, the rate increased about 30 times. The AD dimer [(AD)2], and a complex between AR and the AD dimer [AR-(AD)2] were then prepared. The Vmax for the P-450scc reduction activity of AR with (AD)2 was 50% of that of AR with AD. The Km value for the total concentration of AD in the P-450scc reduction reaction mixture containing AR and (AD)2 was found to be the same as that in the reaction mixture containing AR and AD. P-450scc reduction by AR-(AD)2 was about 5 times faster than that by AR-AD. The addition of free AD to the AR-(AD)2 complex enhanced the P-450scc reduction about 30 times. AR-AD and AR-(AD)2 were able to reduce external AD, cytochrome c, and acetylated cytochrome c.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Highly purified beef adrenal cytochrome P-450 specific for cholesterol side chain cleavage (P-450-scc) has been reconstituted with sonicated vesicles containing cholesterol and either dimyristoyl phosphatidylcholine (DMPC) or dioleoyl phosphatidylcholine (DOPC). When cholesterol was present in DMPC vesicles at 1:15 molar ratio, cardiolipin and L-alpha-phosphatidylinositol 4-monophosphate (DPI) increased side chain cleavage by at least 5-fold (0.7 min-1-3.5 min-1). In DOPC vesicles, a smaller increase was observed (2.8 min-1-5.0 min-1). Activator phospholipids increased the rate of transference of cholesterol both to and from the cytochrome when, respectively, cholesterol-free P-450scc and cholesterol-P-450scc complex are combined with either DMPC or DOPC vesicles. Transfer of cholesterol to and from cytochrome P-450 occurred with similar first order rate constants and was also independent of the concentrations of cholesterol vesicles and P-450. It is suggested that transfer in both directions is limited by the rate of insertion of P-450scc into the membrane. Phospholipid stimulatory effects for both cholesterol transfer and for activation of side chain cleavage occurred with the same ranking, even though cholesterol transfer, following reconstitution, was 5-10 times slower than the turnover of side chain cleavage. DPI increased Vmax for side chain cleavage in both DMPC and DOPC vesicles to the same rate (12 min-1) without effect on the Km for cholesterol, while cardiolipin both produced a similar increase in Vmax and decreased Km (cholesterol). This activation by DPI is attributed to more favorable incorporation of P-450scc in these membranes and is consistent with previously reported effects of acidic phospholipids on other mitochondrial proteins.  相似文献   

15.
In order to define the substrate binding site of human cytochrome P-450scc in the vicinity of the 3β-hydroxyl group of cholesterol, we have tested the ability of the cytochrome to cleave the side chain of a range of cholesterol esters and cholesterol methyl ether. Using a Tween-20 detergent reconstituted system we found that cholesterol sulphate could undergo side-chain cleavage with the same turnover number (kcat) as that for cholesterol, but with a higher Km. Cholesterol methyl ether underwent side-chain cleavage to pregnenolone methyl ether with kcat and Km values 30% of those for cholesterol. Cholesterol fatty acid esters with acyl chain lengths of up to four carbons were able to undergo side-chain cleavage with Km values similar to those for cholesterol, but kcat values only 12–23% of those for cholesterol. Turnover numbers decreased as the acyl group length increased beyond four carbons, although some activity was still detected with cholesterol palmitate as substrate. Analysis of bovine cytochrome P-450scc revealed that it could also cleave the side chain of acyl and sulphate esters of cholesterol. This study indicates that the substrate binding site of cytochrome P-450scc in the vicinity of the 3β-hydroxyl group is larger than previously believed.  相似文献   

16.
A highly purified (12 nmol of P-450-heme per milligram of protein) bovine adrenal cortex mitochondrial cytochrome P-450, termed P-450sce, which cleaves the side chain of cholesterol to yield pregnenolone, is obtained in the substrate-bound ferric form with observed absorption maxima at 393 nm and 645 nm and a shoulder around 540 nm. The absorption spectra of the P-450scc, whether in the substrate-bound ferric form or in the CO-complexed ferrous form, are subject to environmental perturbation. The addition of adrenal ferredoxin readily restores full ferric high spin type spectrum of the substrate-bound P-450scc or, together with cholesterol and Tween 20, restores the CO-spectrum of the P-450scc, exhibiting stable and typical spectra of cytochrome P-450. Tween 20, at concentration of 0.3%, remarkably increases the P-450scc-catalyzed cholesterol side chain cleavage activity. Based on these findings, a highly reactive and reliable assay has been developed for the conversion of cholesterol to pregnenolone. The specific activity of the P-450scc, thus determined in the presence of NADPH, NADPH:adrenal ferredoxin oxidoreductase (EC 1.6.7.1), adrenal ferredoxin, cholesterol, and molecular oxygen, is 16 mol of pregnenolone formed per minute per mole of P-450-heme and V of enzyme catalyzed reaction was 30 mol/min/mol of P-450-heme. Apparent Km values are 120 μm for cholesterol and 1.5 μm for adrenal ferredoxin. The P-450scc has a pH optimum at pH 7.2 and is most active at ionic strength of 0.1.  相似文献   

17.
The intrinsic isotope effect on the reduction of the FAD-containing dehydrogenase electron transferase, adrenodoxin reductase, by (4S)-[2H]NADPH has been determined to be 7.1 to 7.7. The replacement of FAD by a series of FAD analogs at the active site of adrenodoxin reductase with oxidation-reduction potentials which vary over a range of 212 mV has made it possible to extrapolate to this limiting value from the variation in the observed isotope effect on Vmax with flavin midpoint potential. Stop-flow studies which allow the direct determination of the intrinsic isotope effect on the reductive half-reaction corroborate this result. During the steady state reduction of ferricyanide by the native enzyme under conditions of Vmax, this isotope effect is almost fully expressed (VH/VD = 6.7 to 6.8). In contrast, we observe a dramatic attenuation of the intrinsic isotope effect (due to hydride transfer to flavin) when the oxidative half-reaction is mediated by the natural acceptor protein, the 2Fe/2S ferredoxin, adrenodoxin. In a coupled three-protein system, the adrenodoxin-mediated reductions of both the artificial electron acceptor, cytochrome c, and the physiological electron acceptor, cytochrome P-450scc, by adrenodoxin reductase occur at similar rates and with similar kinetic isotope effects (1.9 to 2.0) when (4S)-[2H]NADPH is the reductant. We infer similar mechanisms for the reduction of both cytochromes. These results are in agreement with previous studies (Lambeth, J.D., and Kamin, H. (1979) J. Biol. Chem. 254, 2766-2774) which show that the reductive half-reaction is not solely rate-determining in adrenodoxin-mediated processes. The observation of a linear free energy relationship between Vmax and the flavin midpoint potential during steady state reduction of ferricyanide confirms that the reductive half-reaction is rate-determining in this assay. The relationship between Vmax and flavin midpoint potential in reactions which require adrenodoxin suggests that the midpoint potential of native adrenodoxin reductase has been optimized. Thus, the apoenzyme of adrenodoxin reductase tailors the midpoint potential of bound FAD in order to balance the activation energies of the reductive and oxidative half-reactions.  相似文献   

18.
Follicles were collected from cows and processed for electron microscopy and for immunofluorescent staining at the light microscope level. Key regulatory steroidogenic enzymes cholesterol side-chain-cleavage cytochrome P-450 (P-450scc) and 17 alpha-hydroxylase cytochrome P-450 (P-45017 alpha) were immunolocalized using specific IgG fractions raised against these enzymes. In larger follicles in which the theca interna had differentiated, positive staining for cytochromes P-450scc and P-450(17) alpha was observed in the cells of the theca interna. Electron microscopic examination showed that these cells were rich in endoplasmic reticulum, mainly rough, and had moderate numbers of mitochondria with tubular and lamellar cristae. Positive staining was also present in the theca of follicles undergoing atresia. Positive staining for cytochrome P-450(17) alpha was not observed in the membrana granulosa but cytochrome P-450scc was present in the membrana granulosa in some follicles, particularly in the larger antral follicles. By contrast, positive staining for both enzymes was not observed in stroma, surface epithelium or in small preantral follicles in which the theca interna had not differentiated. These results indicate good agreement between the type(s) of steroidogenic enzyme(s) present in tissues and the type(s) of steroid hormone(s) produced. It is concluded that regulation of steroid hormone production involves, at least in part, regulation of the levels of steroidogenic enzymes.  相似文献   

19.
Rat Leydig cells in primary culture were used as a model system to investigate the effects of human chorionic gonadotropin (hCG) and dibutyryl cyclic AMP (Bt2cAMP) on the synthesis of cholesterol side chain cleavage cytochrome P-450 (cytochrome P-450scc) and the iron-sulfur protein, adrenodoxin. Leydig cells isolated from the testes of mature rats were placed in monolayer culture in the absence of stimulatory factors for 8 days. HCG (10 mIU/ml) or Bt2cAMP (1 mM) were then added to some of the cultures and the incubations were continued for up to 48 h. Testosterone production was increased markedly in cells incubated with hCG or Bt2cAMP. A significant accumulation of pregnenolone in the medium of cells treated with Bt2cAMP was also observed. Both hCG and Bt2cAMP increased the rates of synthesis of cytochrome P-450scc and adrenodoxin. In hCG-treated cells the apparent rate of synthesis of cytochrome P-450scc was increased 13-fold over that of controls after 48 h of incubation; the rate of adrenodoxin synthesis was increased 4-fold by hCG treatment. In Bt2cAMP-treated cells the rate of synthesis of cytochrome P-450scc was 37-fold greater than that of control cells after 48 h of incubation; adrenodoxin synthesis was increased 36-fold over controls. In hCG- and Bt2cAMP-treated cells, the concentration of immunoreactive cytochrome P-450scc and adrenodoxin increased with increasing time of incubation, and were correlated with the stimulatory effects of these agents on cytochrome P-450scc activity and on total steroid production. The results of this study are indicative that the maintenance by LH/hCG of elevated levels of testosterone synthesis by the Leydig cell is mediated, in part, by induction of the synthesis of cytochrome P-450scc and its associated protein, adrenodoxin. Since Bt2cAMP had effects similar to those observed with hCG, it is suggested that the stimulatory effects of hCG on the synthesis of cytochrome P-450scc and adrenodoxin are mediated by increased cyclic AMP formation.  相似文献   

20.
The role of cAMP in the regulation of the amount and synthesis of cytochrome P-450 cholesterol side-chain cleavage (P-450scc) and cytochrome P-450 17 alpha-hydroxylase/C17-20 lyase (P-450(17 alpha) was investigated in mouse Leydig cell cultures. In the absence of cAMP, the amount of immunoreactive P-450(17 alpha) decreased to less than 5% by day 4 and was undetectable between days 7 and 11. In contrast, the amount of immunoreactive P-450scc remained relatively constant throughout the same period. Treatment of Leydig cell cultures for 4 days with 0.05 mM 8-bromo-cAMP initiated on day 7 increased the amount of P-450(17 alpha) with relatively little effect on the amount of P-450scc. The rate of de novo synthesis of each of the P-450 enzymes was studied by determining [35S]methionine incorporation into newly synthesized protein. In the absence of cAMP, de novo synthesis of P-450(17 alpha) ceased while the rate of de novo synthesis of P-450scc increased with time in culture between days 2 and 11. Treatment with cAMP initiated on day 7 of culture caused a time-dependent increase in the rate of de novo synthesis of P-450(17 alpha) on days 9 and 11 equivalent to 40% and 60%, respectively, of that observed in freshly isolated Leydig cells. The rate of de novo synthesis of P-450scc was increased 2-fold relative to untreated cultures on days 9 and 11. De novo synthesis of P-450(17 alpha) ceased when cAMP was removed on day 11 and restored when cAMP was added again on day 13 of culture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号