首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bisphosphonates are potent antiresorptive drugs commonly employed in the treatment of metabolic bone diseases. Despite their frequent use, the mechanisms of bisphosphonates on bone cells have largely remained unclear. Receptor activator of nuclear factor-kappaB ligand (RANKL) is essential for osteoclast formation and activation, whereas osteoprotegerin (OPG) neutralizes RANKL. Various osteotropic drugs have been demonstrated to modulate osteoblastic production of RANKL and OPG. In this study, we assessed the effects of the bisphosphonates pamidronate (PAM) and zoledronic acid (ZOL) on OPG mRNA steady-state levels (by semiquantitative RT-PCR) and protein production (by ELISA) in primary human osteoblasts (hOB). PAM increased OPG mRNA levels and protein secretion by hOB by up to 2- to 3-fold in a dose-dependent fashion with a maximum effect at 10(-6) M (P < 0.001) after 72 h. Similarly, ZOL enhanced OPG gene expression and protein secretion by hOB in a dose-dependent fashion with a maximum effect at 10(-8) M after 72 h, consistent with the higher biological potency of ZOL. Time course experiments indicated a stimulatory effect of PAM and ZOL on osteoblastic OPG protein secretion by 6-fold, respectively (P < 0.001). Pretreatment with PAM and ZOL prevented the inhibitory effects of the glucocorticoid dexamethasone on OPG mRNA and protein production. Analysis of cellular markers of osteoblastic differentiation revealed that PAM and ZOL induced type I collagen secretion and alkaline phosphatase activity by 2- and 4-fold, respectively (P < 0.0001 by ANOVA). In conclusion, our data suggest that bisphosphonates modulate OPG production by normal human osteoblasts, which may contribute to the inhibition of osteoclastic bone resorption. Since, OPG production increases with osteoblastic cell maturation, enhancement of OPG by bisphosphonates could be related to their stimulatory effects on osteoblastic differentiation.  相似文献   

2.
3.
Porphyromonas gingivalis is a Gram-negative anaerobe implicated in chronic periodontitis, a bacterial-induced inflammatory condition that causes destruction of the periodontal connective tissues and underlying alveolar bone. The receptor activator of nuclear factor-kappaB ligand (RANKL) is a cytokine that directly stimulates osteoclastogenesis and bone resorption, whereas its decoy receptor osteoprotegerin (OPG) blocks this action. This study aimed to investigate the effects of P. gingivalis culture supernatants on RANKL and OPG expression in W20-17 bone marrow stromal cells, and evaluate the involvement of its virulence factors, particularly gingipains and lipopolysaccharide. P. gingivalis up-regulated RANKL and down-regulated OPG mRNA expression and protein production. These effects were blocked by indomethacin, suggesting mediation by prostaglandins. Furthermore, P gingivalis induced the production of prostaglandin E(2). Heat-inactivation, or chemical inhibition of P. gingivalis gingipains did not affect RANKL and OPG regulation. However, lipopolysaccharide depletion by polymyxin B abolished RANKL induction, and partly rescued the suppression of OPG. In conclusion, P. gingivalis regulates the RANKL-OPG system via prostaglandin E(2) in bone marrow stromal cells, in a manner that favours osteoclastogenesis. A non-proteolytic and non-proteinaceous P. gingivalis component is involved in these events, most probably its lipopolysaccharide. This activity may contribute to the bone loss characteristic of periodontitis.  相似文献   

4.
Recently, HMG-CoA reductase inhibitors (statins), potent inhibitors of cholesterol biosynthesis, have been linked to protective effects on bone metabolism. Because of their widespread use, prevention of bone loss and fractures would be a desirable side effect. However, the mechanisms how statins may affect bone metabolism are poorly defined. Here, we evaluated the effect of atorvastatin on osteoblastic production of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG), cytokines that are essential for osteoclast cell biology. While RANKL enhances osteoclast formation and activation, thereby, promoting bone loss, OPG acts as a soluble decoy receptor and antagonizes the effects of RANKL. In primary human osteoblasts (hOB), atorvastatin increased OPG mRNA levels and protein secretion by hOB by up to three fold in a dose-dependent manner with a maximum effect at 10(-6) M (P < 0.001). Time course experiments indicated a time-dependent stimulatory effect of atorvastatin on OPG mRNA levels after 24 h and on OPG protein secretion after 48-72 h (P < 0.001). Treatment of hOB with substrates of cholesterol biosynthesis that are downstream of the HMG-CoA reductase reaction (mevalonate, geranylgeranyl pyrophosphate) reversed atorvastatin-induced enhancement of OPG production. Of note, atorvastatin abrogated the inhibitory effect of glucocorticoids on OPG production. Treatment of hOB with atorvastatin enhanced the expression of osteoblastic differentiation markers, alkaline phosphatase and osteocalcin. In summary, our data suggest that atorvastatin enhances osteoblastic differentiation and production of OPG. This may contribute to the bone-sparing effects of statins.  相似文献   

5.
Osteoprotegerin (OPG) and osteoclast differentiation factor (ODF) are crucial regulators of osteoclastogenesis. To determine the biological role of interleukin (IL)-18 produced by stromal/osteoblastic cells in osteoclastogenesis, we examined the effects of IL-18 on the OPG and ODF mRNA levels in these cells. When bone marrow stromal ST2 cells, osteoblastic MC3T3-E1 cells, and mouse calvarial osteoblasts were stimulated with IL-18, the expression of OPG mRNA, but not ODF mRNA, was transiently increased, its expression reaching a maximal level at 3 h after the beginning of the culture. In accordance with this observation, all these cells expressed the mRNAs of two IL-18 receptor components and MyD88, an adapter molecule involved in IL-18 signaling. Moreover, in these cells, mitogen-activated protein kinase was phosphorylated after stimulation with IL-18. These results suggest that stromal/osteoblastic cells are IL-18-responsive cells and that IL-18 may inhibit osteoclastogenesis by up-regulating OPG expression, without stimulation of ODF production, in stromal/osteoblastic cells.  相似文献   

6.
The OPG/RANKL/RANK cytokine system is essential for osteoclast biology. Various studies suggest that human metabolic bone diseases are related to alterations of this system. Here we summarize OPG/RANKL/RANK abnormalities in different forms of osteoporoses and hyperparathyroidism. Skeletal estrogen agonists (including 17beta-estradiol, raloxifene, and genistein) induce osteoblastic OPG production through estrogen receptor-alpha activation in vitro, while immune cells appear to over-express RANKL in estrogen deficiency in vivo. Of note, OPG administration can prevent bone loss associated with estrogen deficiency as observed in both animal models and a small clinical study. Glucocorticoids and immunosuppressants concurrently up-regulate RANKL and suppress OPG in osteoblastic cells in vitro, and glucocorticoids are among the most powerful drugs to suppress OPG serum levels in vivo. As for mechanisms of immobilization-induced bone loss, it appears that mechanical strain inhibits RANKL production through the ERK 1/2 MAP kinase pathway and up-regulates OPG production in vitro. Hence, lack of mechanical strainduring immobilization may favor an enhanced RANKL-to-OPG ratio leading to increased bone loss. As for hyperparathyroidism, chronic PTH exposure concurrently enhances RANKL production and suppresses OPG secretion through activation of osteoblastic protein kinase A in vitro which would favour increased osteoclastic activity. In sum, the capacity for OPG to antagonize the increases in bone loss seen in many rodent models of metabolic bone disease implicates RANKL/OPG imbalances as the likely etiology and supports the potential role for a RANKL antagonist as a therapeutic intervention in these settings.  相似文献   

7.
8.
9.
Osteoprotegerin (OPG) is a soluble receptor for receptor activator of NF kappa B-ligand, a factor required for osteoclastogenesis. OPG secreted from bone marrow stromal cells is believed to inhibit osteoclast differentiation and several agents known to influence bone resorption have been demonstrated to regulate mRNA levels of OPG. In this report we have investigated the secretion of OPG protein from primary cultures of human bone marrow stromal cells. An ELISA was developed for measuring the concentration of OPG in culture medium. OPG secretion was decreased by 50% when the human bone marrow stromal cells were treated with 1 microM of prostaglandin E(2), possibly through activation of the protein kinase A-pathway since stimulation of protein kinase A by forskolin also inhibited OPG secretion. Treatment with phorbol 12,13 di butyrate, an activator of the protein kinase C-pathway, potently stimulated the secretion of OPG from human bone marrow stromal cells. The cells were also stimulated with inflammatory mediators and glucocorticoids. Treatment with interleukin-1 alpha (IL-1 alpha) and tumor necrosis factor-alpha (TNF-alpha) stimulated OPG secretion to 500% and 400% of control whereas dexamethasone decreased OPG production by 40%. In conclusion, an ELISA measuring OPG in cell culture media was developed. Using this ELISA, the amount of OPG secreted from human bone marrow stromal cells was clearly detectable, and the secretion of OPG-protein was potently regulated by prostaglandin E(2), forskolin, phorbol 12,13 di butyrate, IL-1 alpha, TNF-alpha, and dexamethasone.  相似文献   

10.
A variety of humoral factors modulate the osteoclastogenesis. Receptor activator of NF-kappaB ligand (RANKL) expressed on osteoblast/stromal lineage cells plays a pivotal role to transduce an essential differentiation signal to osteoclast lineage cells through binding to its receptor, RANK, expressed on the latter cell population; however, the difficulty to detect RANKL protein expression hampers us in investigating the regulation of RANKL expression by humoral factors. To determine protein expression of RANKL, we have established a new method, named as a ligand-receptor precipitation (LRP) Western blot analysis, which can specifically concentrate the target protein by the use of specific binding characteristic between RANKL and RANK/osteoprotegrin (OPG). RANKL protein expression in the postnuclear supernatant was not detected by common Western blotting, but LRP Western blot analysis clearly showed that RANKL is produced as a membrane-bound protein on murine osteoblasts/stromal cells, and cleaved into a soluble form by metalloprotease. Cytokines stimulating the osteoclastogenesis, such as IL-1beta, IL-6, IL-11, IL-17, and TNF-alpha, increased the expression of RANKL with decrease of OPG expression in osteoblasts/stromal cells. In contrast, cytokines inhibiting the osteoclastogenesis, such as IL-13, INF-gamma, and TGF-beta1 suppressed the expression of RANKL and/or augmented OPG expression. Functional difference between membrane-bound and soluble RANKL was demonstrated, which showed that membrane-bound RANKL works more efficiently than soluble RANKL in the osteoclastogenesis developed from murine bone marrow cell culture. The present study indicates the usefulness of LRP Western blot analysis, which shows that the modulation of osteoclastogenesis by humoral factors is achieved, in part, by regulation of the expression of RANKL and OPG in osteoblast/stromal lineage cells.  相似文献   

11.
12.
Effects of different magnitudes of mechanical strain on Osteoblasts in vitro   总被引:11,自引:0,他引:11  
In addition to systemic and local factors, mechanical strain plays a crucial role in bone remodeling during growth, development, and fracture healing, and especially in orthodontic tooth movement. Although many papers have been published on the effects of mechanical stress on osteoblasts or osteoblastic cells, little is known about the effects of different magnitudes of mechanical strain on such cells. In the present study, we investigated how different magnitudes of cyclic tensile strain affected osteoblasts. MC3T3-E1 osteoblastic cells were subjected to 0%, 6%, 12% or 18% elongation for 24h using a Flexercell Strain Unit, and then the mRNA and protein expressions of osteoprotegerin (OPG) and receptor activator of nuclear factor-kappaB ligand (RANKL) were examined. The results showed that cyclic tensile strain induced a magnitude-dependent increase (0%, 6%, 12%, and 18%) in OPG synthesis and a concomitant decrease in RANKL mRNA expression and sRANKL release from the osteoblasts. Furthermore, the induction of OPG mRNA expression by stretching was inhibited by indomethacin or genistein, and the stretch-induced reduction of RANKL mRNA was inhibited by PD098059. These results indicate that different magnitudes of cyclic tensile strain influence the biological behavior of osteoblasts, which profoundly affects bone remodeling.  相似文献   

13.
14.
Osteoprotegerin (OPG) is a major regulator of osteoclastogenesis, bone resorption and vascular calcification. OPG is produced by various cell types including mesenchymally derived cells, in particular, osteoblastic cells. Here we show OPG production by osteoblastic cells was stimulated by platelet-derived growth factor (PDGF) in two human osteosarcoma cell lines (MG63, Saos-2), a mouse pre-osteoblastic cell line (MC3T3-E1) and human bone marrow stromal cells (hMSC) by 152%, 197%, 113% and 45% respectively over 24 h. OPG was measured in the cell culture medium by immunoassay. PDGF isoforms AA, BB and AB show similar stimulation of OPG production. Message for OPG was also increased similarly to the increased secretion into the culture medium. Using specific inhibitors of cell signalling we demonstrate that PDGF acts through the PDGF receptor, PKC, PI3K, ERK and P38 and not via NF-kB or JNK. The importance of PDGF in fracture healing suggests a role for OPG production in countering bone resorption during the early phase of this process.  相似文献   

15.
16.
LPS is a potent stimulator of bone resorption in inflammatory diseases. The mechanism by which LPS induces osteoclastogenesis was studied in cocultures of mouse osteoblasts and bone marrow cells. LPS stimulated osteoclast formation and PGE(2) production in cocultures of mouse osteoblasts and bone marrow cells, and the stimulation was completely inhibited by NS398, a cyclooxygenase-2 inhibitor. Osteoblasts, but not bone marrow cells, produced PGE(2) in response to LPS. LPS-induced osteoclast formation was also inhibited by osteoprotegerin (OPG), a decoy receptor of receptor activator of NF-kappaB ligand (RANKL), but not by anti-mouse TNFR1 Ab or IL-1 receptor antagonist. LPS induced both stimulation of RANKL mRNA expression and inhibition of OPG mRNA expression in osteoblasts. NS398 blocked LPS-induced down-regulation of OPG mRNA expression, but not LPS-induced up-regulation of RANKL mRNA expression, suggesting that down-regulation of OPG expression by PGE(2) is involved in LPS-induced osteoclast formation in the cocultures. NS398 failed to inhibit LPS-induced osteoclastogenesis in cocultures containing OPG knockout mouse-derived osteoblasts. IL-1 also stimulated PGE(2) production in osteoblasts and osteoclast formation in the cocultures, and the stimulation was inhibited by NS398. As seen with LPS, NS398 failed to inhibit IL-1-induced osteoclast formation in cocultures with OPG-deficient osteoblasts. These results suggest that IL-1 as well as LPS stimulates osteoclastogenesis through two parallel events: direct enhancement of RANKL expression and suppression of OPG expression, which is mediated by PGE(2) production.  相似文献   

17.
The interaction between receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG) plays a dominant role in osteoclastogenesis. As both proteins are produced by osteoblast lineage cells, they are considered to represent a key link between bone formation and resorption. In this study, we investigated the expression of RANKL and OPG during bone remodeling in vivo to determine the relationship between osteoclastogenic stimulation and osteoblastic differentiation.Total RNA was prepared from rat femurs after marrow ablation on days 0, 3, 6, and 9. The temporal activation patterns of osteoblast-related genes (procollagen α1 (I), alkaline phosphatase, osteopontin, and osteocalcin) were examined by Northern blot analysis. An appreciable increase in the expression of these osteoblast markers was observed on day 3. The peak increase in gene expression was observed on day 6 followed by a slight reduction by day 9. Real-time PCR analysis showed that the OPG mRNA expression was markedly upregulated on day 6 and slightly decreased on day 9. In contrast, RANKL mRNA expression was increased by more than 20-fold on day 9. The RANKL/OPG ratio, an index of osteoclastogenic stimulation, peaked on day 9. Histological analysis showed that RANKL and OPG immunoreactivity were predominantly associated with bone marrow cells. The expression of bone formation markers was activated in the bone formation phase, followed by the stimulation of RANKL/OPG expression in the bone resorption phase, which confirmed that these molecules are key factors linking bone formation to resorption during bone remodeling.  相似文献   

18.
Macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL) induce the differentiation of bone marrow macrophages (BMMs) into osteoclasts. To delineate mechanisms involved, the effect of M-CSF on the production of osteoprotegerin (OPG), decoy receptor of RANKL, in BMMs was investigated. Mouse bone marrow cells were cultured with M-CSF for 4 days and adherent cells formed were used as BMMs. BMMs were cultured with or without M-CSF, and analyzed for expression of OPG and receptor activator of NF-kappaB (RANK; receptor for RANKL) mRNAs by real-time polymerase chain reaction and secretion of OPG by enzyme-linked immunosorbent assay. BMMs expressed macrophage markers, CD115 (c-fms), Mac-1 and F4/80, and showed phagocytotic activity. In addition, BMMs expressed OPG mRNA and secreted OPG into medium. M-CSF inhibited both the OPG mRNA expression and the OPG secretion dose-dependently and reversibly. The expression of RANK mRNA was not significantly affected by M-CSF. The results showed that M-CSF suppresses the OPG production in BMMs, which may increase the sensitivity of BMMs to RANKL.  相似文献   

19.
Osteoclast formation is controlled by stromal cells/osteoblasts expressing macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL), crucial for osteoclast progenitor cell proliferation, survival and differentiation, and osteoprotegerin (OPG) that inhibits the interaction between RANKL and its receptor RANK. Recent data have strongly indicated that the nervous system plays an important role in bone biology. In the present study, the effects of the neuropeptide vasoactive intestinal peptide (VIP), present in peptidergic skeletal nerve fibers, on the expression of RANKL, OPG, and M-CSF in osteoblasts and stromal cells have been investigated. VIP and pituitary adenylate cyclase-activating polypeptide 38 (PACAP-38), but not secretin, stimulated rankl mRNA expression in mouse calvarial osteoblasts. In contrast, VIP inhibited the mRNA expressions of opg and m-csf, effects shared by PACAP-38, but not by secretin. VIP did not affect rankl, opg, or m-csf mRNA expression in mouse bone marrow stromal cells (BMSCs). The effects by VIP on the mRNA expression of rankl, opg, and m-csf were all potentiated by the cyclic AMP phosphodiesterase inhibitor rolipram. In addition, VIP robustly enhanced the phosphorylation of ERK and the stimulatory effect by VIP on rankl mRNA was inhibited by the MEK1/2 inhibitor PD98059. These observations demonstrate that activation of VPAC(2) receptors in osteoblasts enhances the RANKL/OPG ratio by mechanisms mediated by cyclic AMP and ERK pathways suggesting an important role for VIP in bone remodeling.  相似文献   

20.
Activated T cells secrete multiple osteoclastogenic cytokines which play a major role in the bone destruction associated with rheumatoid arthritis. While the role of T cells in osteoclastogenesis has received much attention recently, the effect of T cells on osteoblast formation and activity is poorly defined. In this study, we investigated the hypothesis that in chronic inflammation activated T cells contribute to enhanced bone turnover by promoting osteoblastic differentiation. We show that T cells produce soluble factors that induce alkaline phosphatase activity in bone marrow stromal cells and elevated expression of mRNA for Runx2 and osteocalcin. This data indicate that T cell derived factors have the capacity to stimulate the differentiation of bone marrow stromal cells into the osteoblast phenotype. RANKL mRNA was undetectable under any conditions in highly purified bone marrow stromal cells. In contrast, RANKL was constitutively expressed in primary osteoblasts and only moderately up-regulated by activated T cell conditioned medium. Interestingly, both bone marrow stromal cells and osteoblasts expressed mRNA for RANK, which was strongly up-regulated in both cell types by activated T cell conditioned medium. Although, mRNA for the RANKL decoy receptor, osteoprotegerin, was also up-regulated by activated T cell conditioned medium, it's inhibitory effects may be mitigated by a simultaneous rise in the osteoprotegerin competitor TNF-related apoptosis-inducing ligand. Based on our data we propose that during chronic inflammation, T cells regulate bone loss by a dual mechanism involving both direct stimulation of osteoclastogenesis, by production of osteoclastogenic cytokines, and indirectly by induction of osteoblast differentiation and up-regulation of bone turnover via coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号