首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soybean plants (Glycine max [L.] Merr var Amsoy 71) were grown in growth chambers with high-phosphorus (high-P) and low-phosphorus (low-P) culture solutions. Low-P treatment reduced shoot growth significantly 7 days after treatment began. Root growth was much less affected by low-P, there being no significant reduction in root growth rate until 17 days had elapsed. The results suggest that low-P treatment decreased soybean growth primarily through an effect on the expansion of the leaf surface which was diminished by 85%, the main effect of low-P being on the rate of expansion of individual leaves. Low-P had a lesser effect on photosynthesis; light saturated photosynthetic rates at ambient and saturating CO2 levels were lowered by 55 and 45%, respectively, after 19 days of low-P treatment. Low-P treatment increased starch concentrations in mature leaves, expanding leaves and fibrous roots; sucrose concentrations, however, were reduced by low-P in leaves and increased in roots. Foliar F-2,6-BP levels were not affected by P treatment in the light but in darkness they increased with high-P and decreased with low-P. The increase in the starch/sucrose ratio in low-P leaves was correlated primarily with changes in the total activities of enzymes of starch and sucrose metabolism.  相似文献   

2.
Sugar Beets (Beta vulgaris L. cv F58-554H1) were cultured hydroponically in growth chambers. Leaf orthophosphate (Pi) levels were varied nutritionally. The effect of decreased leaf phosphate (low-P) status was determined on the diurnal changes in the pool sizes of leaf ribulose 1,5-bisphosphate (RuBP), 3-phosphoglycerate (PGA), triose phosphate, fructose 1,6-bisphosphate, fructose-6-phosphate, glucose-6-phosphate, adenylates, nicotinamide nucleotides, and Pi. Except for triose phosphate, low-P treatment caused a marked reduction in the levels of leaf sugar phosphates (on a leaf area basis) throughout the diurnal cycle. Low-P treatment decreased the average leaf RuBP levels by 60 to 69% of control values during the light period. Low-P increased NADPH levels and NADPH/NADP+ ratio but decreased ATP; the ATP/ADP ratio was unaffected. Low P treatment caused a marked reduction in RuBP regeneration (RuBP levels were half the RuBP carboxylase binding site concentration) but did not depress PGA reduction to triose phosphate. These results indicate that photosynthesis in low-P leaves was limited by RuBP regeneration and that RuBP formation in low-P leaves was not limited by the supply of ATP and NADPH. We suggest that RuBP regeneration was limited by the supply of fixed carbon, an increased proportion of which was diverted to starch synthesis.  相似文献   

3.
Rao IM  Terry N 《Plant physiology》1989,90(3):814-819
Sugar beets (Beta vulgaris L. cv F58-554H1) were cultured hydroponically for 2 weeks in growth chambers with two levels of orthophosphate (Pi) supplied in half strength Hoagland solution. Low-P plants were supplied with 1/20th of the Pi supplied to control plants. With low-P treatment, the acid soluble leaf phosphate and total leaf P decreased by about 88%. Low-P treatment had a much greater effect on leaf area than on photosynthesis. Low-P decreased total leaf area by 76%, dry weight per plant by 60%, and the rate of photosynthesis per area at light saturation by 35%. Low-P treatment significantly decreased the total extractable activity of phosphoglycerate kinase (by 18%) and NADP-glyceraldehyde-3-phosphate dehydrogenase (by 16%), but did not decrease the total activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (RuBPCase) and ribulose-5-phosphate kinase. Low-P treatment decreased the initial activities of three rate-limiting Calvin cycle enzymes, but had no effect on the initial activity of RuBPCase. Furthermore, low-P treatment significantly increased the total extractable activities of fructose-1,6-bisphosphatase (by 61%), fructose-1,6-bisphosphate aldolase (by 53%), and transketolase (by 46%). The results suggest that low-P treatment affected photosynthetic rate through an effect on RuBP regeneration rather than through RuBPCase activity and that the changes in Calvin cycle enzymes with low-P resulted in an increased flow of carbon to starch.  相似文献   

4.
Rao IM  Terry N 《Plant physiology》1995,107(4):1313-1321
Changes in photosynthesis, carbon partitioning, and growth following resupply of orthophosphate (Pi) to moderately P-deficient plants (low-P) were determined for sugar beets (Beta vulgaris L. cv F58-554H1) cultured hydroponically in growth chambers. One set of plants was supplied with 1.0 mM Pi in half-strength Hoagland solution (control plants), and a second set (low-P plants) was supplied with 0.05 mM Pi. At the end of 2 weeks, the low-P plants were resupplied with 1.0 mM Pi. Low-P plants rapidly accumulated large amounts of Pi, and the photosynthesis rate increased to control values within 4 to 6 h. The rate of photosynthesis appeared to be controlled by ribulose-1,5-bisphosphate (RuBP); low P reduced photosynthesis and RuBP levels, and P resupply increased photosynthesis and RuBP in a manner parallel with time. Low-P treatment reduced adenylate levels substantially but not nicotinamide nucleotides; adenylate levels recovered to control values over 3 to 6 h. With low P, more photosynthate is allocated to non-P carbon compounds (e.g. starch, sucrose) than to sugar phosphates. When P is resupplied, sugar phosphates increase as starch and sucrose pools decrease; this increase in leaf (chloroplast) sugar phosphates was most likely responsible for the increases in RuBP and photosynthesis and may have increased adenylate levels (through enhanced levels of ribose-5-phosphate).  相似文献   

5.
In fully expanded leaves of greenhouse-grown cotton (Gossypium hirsutum L., cv Coker 100) plants, carbon export, starch accumulation rate, and carbon exchange rate exhibited different behavior during the light period. Starch accumulation rates were relatively constant during the light period, whereas carbon export rate was greater in the afternoon than in the morning even though the carbon exchange rate peaked about noon. Sucrose levels increased throughout the light period and dropped sharply with the onset of darkness; hexose levels were relatively constant except for a slight peak in the early morning. Sucrose synthase, usually thought to be a degradative enzyme, was found in unusually high activities in cotton leaf. Both sucrose synthase and sucrose phosphate synthetase activities were found to fluctuate diurnally in cotton leaves but with different rhythms. Diurnal fluctuations in the rate of sucrose export were generally aligned with sucrose phosphate synthase activity during the light period but not with sucrose synthase activity; neither enzyme activity correlated with carbon export during the dark. Cotton leaf sucrose phosphate synthase activity was sufficient to account for the observed carbon export rates; there is no need to invoke sucrose synthase as a synthetic enzyme in mature cotton leaves. During the dark a significant correlation was found between starch degradation rate and leaf carbon export. These results indicate that carbon partitioning in cotton leaf is somewhat independent of the carbon exchange rate and that leaf carbon export rate may be linked to sucrose formation and content during the light period and to starch breakdown in the dark.  相似文献   

6.
Maize plants (Zea mays L.) were cultured with nutrient solutioncontaining 0.001 or 0.5 mM orthophosphate (Pi). Effects of lowphosphate (low-P) nutrition on growth, leaf phosphate status,photosynthesis, and carbon partitioning were investigated. Withlow-P treatment, the fresh weight of aerial parts decreasedby about 40% by 24 days after planting. Detailed studies ofthe effects of low-P treatment on the other characteristicsof maize leaves-were done using the middle part of the thirdleaf, counting from the base. Low-P treatment had almost noeffect on specific leaf weight or soluble protein content measured13 to 21 days after planting. Low-P treatment decreased Chicontent slightly (by 15% 19 days after planting). Twenty onedays after planting, low-P treatment had greatly decreased thelevels of leaf acid extractable Pi (by 77%) and photosynthesisrates (by 68%). The detrimental effects of low-P treatment onthe rates of photosynthesis and the amounts of acid extractablePi became progressively greater with time. There was a strongcorrelation between levels of leaf acid extractable Pi and ratesof photosynthesis. The minimum level of Pi necessary to sustainthe maximum photosynthesis rate was 0.6 mmol m–2. Belowthis minimum content of Pi, the rate of photosynthesis decreasedsharply with decreasing Pi. To investigate the direct effectof Pi depletion on photosynthate partitioning at equivalentrates of photosynthesis, the rates in controls were reducedto almost the same as those in 18 or 19 day old low-P plants(about 50% of those in controls) by lowering light intensityand/ or ambient CO2 concentration. The data clearly indicatesthat low-P treatment had a direct effect in lowering photosynthatepartitioning into starch. Starch mobilization during the nightwas also inhibited under low-P conditions. (Received January 7, 1991; Accepted March 5, 1991)  相似文献   

7.
Sources of Carbon for Export from Spinach Leaves throughout the Day   总被引:7,自引:3,他引:4       下载免费PDF全文
Rates of net carbon exchange, export, starch, and sucrose synthesis were measured in leaves of spinach (Spinacia oleracea L.) throughout a 14-hour period of sinusoidal light to determine the sources of carbon contributing to export. Net carbon exchange rate closely followed light level, but export remained relatively constant throughout the day. In the morning when photosynthesis was low, starch degradation provided most of the carbon for export, while accumulated sucrose was exported during the evening. At high photosynthesis rate, the regulatory metabolite fructose 2,6-bisphosphate was low, allowing more of the newly fixed carbon to flow to sucrose through cytosolic fructose bisphosphatase. When the rate of sucrose synthesis exceeded the rate of export from the leaf, sucrose accumulated and soon thereafter sucrose synthesis declined. A decreasing sucrose synthesis rate resulted in additional carbon moving to the synthesis of starch, which was maintained throughout the remainder of the day. The declining sucrose synthesis rate coincided with decreasing activity of sucrose phosphate synthase present in gel-filtered leaf extracts. A rise in the leaf levels of uridine diphosphoglucose and fructose 6-phosphate throughout the day was consistent with this declining activity.  相似文献   

8.
The control of photosynthetic starch/sucrose formation in leaves of soybean (Glycine max L. Merr.) cultivars was studied in relation to stage of plant development, photosynthetic photoperiod, and nitrogen source. At each sampling, leaf tissue was analyzed for starch content, activities of sucrose-metabolizing enzymes, and labeling of starch and sucrose (by 14CO2 assimilation) in isolated cells. In three of the four varieties tested, nodulated plants had lower leaf starch levels and higher activities of sucrose phosphate synthetase (SPS), and isolated mesophyll cells incorporated more carbon (percentage of total 14CO2 fixed) into sucrose and less into starch as compared to nonnodulated (nitrate-dependent) plants. The variation among cultivars and nitrogen treatments observed in the activity of SPS in leaf extracts was positively correlated with labeling of sucrose in isolated cells (r = 0.81) and negatively correlated with whole leaf starch content (r = −0.66). The results suggested that increased demand for assimilates by nodulated roots may be accommodated by greater partitioning of carbon into sucrose in the mesophyll cells. We have also confirmed the earlier report (Chatterton, Silvius 1979 Plant Physiol 64: 749-753) that photoperiod affects partitioning of fixed carbon into starch. Within two days of transfer of nodulated soybean Ransom plants from a 14-hour to a 7-hour photoperiod, leaf starch accumulation rates doubled, and this effect was associated with increased labeling of starch and decreased labeling of sucrose in isolated cells. Concurrently, activities of SPS, sucrose synthase, and uridine diphosphatase in leaves were decreased.  相似文献   

9.
Carbon Partitioning in Mature Leaves of Pepper: Effects of Daylength   总被引:2,自引:0,他引:2  
Grange, R. 1. 1985. Carbon partitioning in mature leaves ofpepper: effects of daylength.—J. exp. Bot. 36: 1749–1759. The partitioning of recently fixed carbon has been examinedin mature pepper leaves grown in 6, 10 or 14 h photoperiodsat different irradiances chosen to give similar radiation integralsand in a 6 h photoperiod at the lowest of these irradiances.The partitioning of carbon into export, starch, sugars and respirationwas followed over the photopenod and the subsequent night ina mature leaf. The maximum export rate during the day (approximately 18 µgC cm–2 leaf h–1) was not significantly differentamong the treatments. Net photosynthesis rate was directly relatedto irradiance; the proportion of net photosynthesis exportedduring the day was 33% in 6-h days and 57% in 14-h days. Leafstarch accumulation (as a proportion of net photosynthesis rate)increased slightly when plants were grown in 6-h days. The remobilization of starch and sugars at night allowed exportrates to remain similar over 24 h when plants were grown in10-h or 14-h photoperiods. Leaves grown in 6-h days showed nosignificant changes in export rate during the first few hoursof night but exhausted their starch reserves during the nightand export rates declined. Sucrose and hexose levels decreased at the onset of darkness,but did not fall below 40 µg cm–2 in plants grownin 10-h or 14-h photoperiods; when this level was reached after3–4 h of darkness, starch breakdown began. In leaves grownin both 6-h treatments, sucrose levels fell below 40 µgcm–2 when starch reserves were depleted during the nightand the export rate decreased concurrently. The results are discussed in relation to the control of exportand starch metabolism in the leaf. Key words: Pepper, partitioning, daylength  相似文献   

10.
Leaves of Vitis vinifera L., cv. Cabernet Sauvignon contained 2.0 mg of starch per g fresh weight, whereas young green berries and maturing grape berries contained less than 0.03 mg of starch, despite the presence of abundant substrates (reducing sugars and sucrose) in berries for starch synthesis. the activities of several enzymes likely to be involved in starch synthesis were determined in extracts of berries and leaves. Fractionation procedures resulted in final recoverable ADPglucose-starch glucosyltransferase activity which was 2–3 times the activity measured in crude extracts of leaves. Compared to leaves, berries contained low activities of ADPglucose-starch glucosyltransferase and ADPglucose pyrophosphorylase. These enzymes increased only 2- to 3-fold from young to maturing berries. ADPglucose-starch glucosyltransferase activity in the absence of added primer was found in leaf extracts but not in berry extracts. The activities of UDP-glucose pyrophosphorylase, phosphorylase and amylase were comparable in both leaves and berries and increased 6- to 7-fold during berry development. The low activities of ADPglucose-starch glucosyltransferase and ADPglucose pyrophosphorylase probably account for the paucity of starch in grape berries.  相似文献   

11.
Carbon Partitioning and Export in Mature Leaves of Pepper (Capsicum annuum)   总被引:1,自引:0,他引:1  
The partitioning of recently fixed carbon by mature pepper leaveshas been examined over a 10 h photoperiod using a constant specificradioactivity 14CO2 labelling technique. Changes in the ratesof carbon partitioning into export, starch, sucrose and hexoseswere examined following changes in irradiance during the photoperiod.Leaves grown under 80 W m–2 PAR were exposed to this irradiancefor the first 4 h of the photoperiod then the iiradiance wasdecreased. Leaves accumulated sufficient reserves in the first4 h to maintain export at the initial rate (approximately 20µg carbon cm–2 leaf h–1) over the following6 h of the photoperiod when the net photosynthesis rate (Pn)was decreased to 10% of the initial rate by the decreased irradiance.Export was initially maintained by the depletion of sucroseand hexose and then by carbon from the degradation of starchin the light. If leaves were exposed to low irradiance at the beginning ofthe photoperiod, then the export rate was linearly related tothe Pn during that period. When Pn exceeded that required tomaintain an export rate of approximately 20 µg carboncm–2 h–1, then more carbon was partitioned intostarch. At low initial irradiance, a greater proportion of photosynthatewas partitioned into export rather than starch and at high initialirradiancc the reverse occurred. There was a linear relationship between starch accumulationrate and Pn for all leaves but the relationship between Pn andexport rate was only significant for leaves with low levelsof reserve carbon. The results show that mature pepper leaves subjected to differentirradiances maintain constant export rates through alterationsof carbon partitioning. Export at low Pn is maintained at theexpense of sugar and starch reserves, with partitioning in highirradiance being predominantly to starch. Key words: Carbon partitioning, Starch, Export, Pepper (Capsicum annuum L.)  相似文献   

12.
Starch and sucrose metabolism of one- and two-year-old needles of Norway spruce (Picea abies [L.] Karst., about 30 years old) was investigated from three months before until three months after bud break at a natural site. We distinguish different metabolic states according to the extractable activities of enzymes (α-amylase [EC 3.2.1.1], ADP-glucose pyrophosphorylase [AGP, EC 2.7.7.27], D-enzyme [EC 2.4.1.25], starch phosphorylase [STP. EC 2.4.1.1]), sucrose phosphate synthase [SPS, EC 2.4.1.14], sucrose syntbase [SS, EC 2.4.1.13]. acid invertase [AI, EC 3.2.1.261) and pool sizes of related metabolites (starch, glucose, fructose, sucrose, raffinose, stachyose, fructose 6-phosphate [F6P], glucose 6-phosphate [G6P], fructose 2,6-bisphosphate [F26BP], and inorganic phosphate [P1]). The period ending with bud break was characterized by high rates of net photosynthesis, a pronounced decrease in the amount of soluble sugars, and a steep rise in starch (from the detection limit to approximately 600 nmol glycosyl units [mg dry weight]-1). In parallel, the extractable activity of AGP increased, while D-enzyme was on a relative high level when compared with the period after bud break. With respect to sucrose metabolism, F26BP, an inhibitor of sucrose synthesis, decreased from 1 to 0.4 pmol (mg dry weight)-1. This was complemented by SPS activity, which was due to both increased protein levels shown by immunoblotting and activation under metabolite control (high levels of G6P and a low Pi/G6P ratio). This indicates a high capacity of synthesis of starch and sucrose in the period before bud break. These observations are in accordance with estimates of photosynthetic carbon gain, which indicate that in early spring large amounts of carbon from current photosynthesis are exported out of the needles. In addition, the content of nonstructural carbohydrates (expressed as hexoses) increased in the bark of the stem. This could also be a consequence of an enhanced carbon export from the needles. After the onset of bud break, starch concentration decreased in all tissues under investigation. In contrast, the level of total nonstructural carbohydrates in the outermost sapwood nearly doubled from bud break until the end of sampling. In the needles, net photosynthesis was reduced by about 75% and a decrease in SPS activity and protein level were found together with lower G6P concentration, and an increased Pi/G6P ratio. These results suggest that during that period sucrose synthesis was reduced in the older needles. In addition, under conditions of reduced photosynthesis, carbon demand of current year needles was in part ensured by the mobilization of starch in the older needles. Taken together our data show that before bud break carbon metabolism of mature leaves is related with the sink demands of storage organs. After bud break the accumulated assimilate pools in needles and stem, mainly the bark, are mobilized and support carbon supply to new tissues.  相似文献   

13.
To evaluate leaf carbon balance during rapid pod-fill in soybean (Glycine max [L.] Merrill), measurements were made of CO2 assimilation at mid-day and changes in specific leaf weight, starch, and sucrose concentrations over a 9-hour interval. Assimilate export was estimated from CO2 assimilation and leaf dry matter accumulation. Chamber-grown `Amsoy 71' and `Wells' plants were subjected on the day of the measurements to one of six photosynthetic photon flux densities in order to vary CO2 assimilation rates.

Rate of accumulation of leaf dry matter and rate of export both increased as CO2 assimilation rate increased in each cultivar.

Starch concentrations were greater in Amsoy 71 than in Wells at all CO2 assimilation rates. At low CO2 assimilation rates, export rates in Amsoy 71 were maintained in excess of 1.0 milligram CH2O per square decimeter leaf area per hour at the expense of leaf reserves. In Wells, however, export rate continued to decline with decreasing CO2 assimilation rate. The low leaf starch concentration in Wells at low CO2 assimilation rates may have limited export by limiting carbon from starch remobilization.

Both cultivars exhibited positive correlations between CO2 assimilation rate and sucrose concentration, and between sucrose concentration and export rate. Carbon fixation and carbon partitioning both influenced export rate via effects on sucrose concentration.

  相似文献   

14.
Summary Intermediates involved in carbon partitioning between starch and sucrose [dihydroxyacetone phosphate + glyceraldehyde 3-phosphate (TP), 3-phosphoglyceric acid, fructose 6-phosphate (F6P), fructose 2,6-bisphosphate (F26BP), in addition to glucose, fructose, sucrose and starch] were analysed in lyophilized needles of Norway spruce (Picea abies L. Karst). Samples were taken from all distinct parts of first and second order branches and the analysed data related to season, needle age, needle position and degree of needle loss (control and class 2 approx. 30%–40% needle loss). Positive and inverse correlations of F26BP, an important regulator of carbon partitioning between starch and sucrose, and F6P or TP existed in all samples. F26BP levels were highest in developing needles and gradually decreased during maturation, which is possibly indicative of changes in the relative sink strength during development (switch from import to export of sucrose). In class 2 needles the amount of F26BP was significantly increased. Together with nearly unaltered levels of sucrose but only slightly decreased amounts of starch the results can be taken as evidence for impaired carbon export in our class 2 samples. The data are discussed with respect to needle development and a possible impact of both air pollutants and mineral deficiency at the location from which the samples were taken.  相似文献   

15.
To evaluate assimilate export from soybean (Glycine max [L.] Merrill) leaves at night, rates of respiratory CO2 loss, specific leaf weight loss, starch mobilization, and changes in sucrose concentration were measured during a 10-hour dark period in leaves of pod-bearing `Amsoy 71' and `Wells II' plants in a controlled environment. Lateral leaflets were removed at various times between 2200 hours (beginning dark period) and 0800 hours (ending dark period) for dry weight determination and carbohydrate analyses. Respiratory CO2 loss was measured throughout the 10-hour dark period. Rate of export was estimated from the rate of loss in specific leaf weight and rate of CO2 efflux. Rate of assimilate export was not constant. Rate of export was relatively low during the beginning of the dark period, peaked during the middle of the dark period, and then decreased to near zero by the end of darkness. Rate of assimilate export was associated with rate of starch mobilization and amount of starch reserves available for export. Leaves of Amsoy 71 had a higher maximum export rate in conjunction with a greater total change in starch concentration than did leaves of Wells II. Sucrose concentration rapidly declined during the first hour of darkness and then remained constant throughout the rest of the night in leaves of both cultivars. Rate of assimilate export was not associated with leaf sucrose concentration.  相似文献   

16.
The effects of low concentrations of phosphate (low-P) on soluble protein content, the activities of 12 different enzymes, and the rates of photosynthesis and respiration on the basis of leaf area were investigated in maize (Zea mays L.) leaves 16 to 24 days after planting (DAP). With low-P treatment, a drastic decrease in the rate of photosynthesis to only 6% of the maximum rate in control plants was observed by 24 DAP. Low-P treatment had almost no effect on the rate of respiration until 21 DAP, but then the rate of respiration decreased progressively to about 55% of the maximum rate in control plants. The soluble protein content in low-P plants decreased to 56% of the maximum content in control plants. The changes in the activities of enzymes in low-P plants showed several different patterns. The activities of pyruvate, orthophosphate dikinase, 3-phosphoglycerate kinase, phosphoenolpyruvate carboxylase (PEPC), ribulose 1,5-bisphosphate carboxylase, fructose 1,6-bisphosphate aldolase, catalase, phosphohexose isomerase, chloroplastic fructose 1,6-bisphosphatase, and ADP-glucose-pyrophosphorylase decreased steadily from 85 to 100% of the maximum activity found in 18- to 21-day-old control plants (Vmax) to 30 to 70% of Vmax. The activity of sucrose phosphate synthase remained virtually constant at approximately 85 to 100% of Vmax. The activity of UDP-glucose-pyrophosphorylase remained almost constant up to 21 DAP and then decreased to 80% of Vmax by 24 DAP. The activity of cytochrome c oxidase increased slightly up to 21 DAP but then decreased to 50% of Vmax by 24 DAP. As indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of soluble proteins, the subunit of PEPC stained less intensely in 24-d-old low-P plants. The possibility is discussed that during low-P treatment there is selective degradation of PEPC without a concomitant degradation of sucrose phosphate synthase, both of which are known to be localized in the cytoplasmic compartment of mesophyll cells.  相似文献   

17.
Li B  Geiger DR  Shieh WJ 《Plant physiology》1992,99(4):1393-1399
Starch accumulation and sucrose synthesis and export were measured in leaves of sugar beet (Beta vulgaris L.) during a period of prolonged irradiance in which illumination was extended beyond the usual 14-hour day period. During much of the 14-hour day period, approximately 50% of the newly fixed carbon was distributed to sucrose, about 40% to starch, and less than 10% to hexose. Beginning about 2 hours before the end of the usual light period, the portion of newly fixed carbon allocated to sucrose gradually increased, and correspondingly less carbon went to starch. By the time the transition ended, about 4 hours into the extension of the light period, nearly 90% of newly fixed carbon was incorporated into sucrose and little or none into starch. Most of the additional sucrose was exported. Gradual cessation of starch accumulation was not the result of a futile cycle of simultaneous starch synthesis and degradation. Neither was it the result of a decrease in the extractable activity of adenosine diphosphoglucose pyrophosphorylase or phosphoglucose isomerase, enzymes important in starch synthesis. Nor was there a notable change in control metabolites considered to be important in regulating starch synthesis. Starch accumulation appeared to decrease markedly because of an endogenous circadian shift in carbon allocation, which occurred in preparation for the usual night period and which diverted carbon from the chloroplast to the cytosol and sucrose synthesis.  相似文献   

18.
In regions of their leaves, tdy1-R mutants hyperaccumulate starch. We propose 2 alternative hypotheses to account for the data, that Tdy1 functions in starch catabolism or that Tdy1 promotes sucrose export from leaves. To determine whether Tdy1 might function in starch breakdown, we exposed plants to extended darkness. We found that the tdy1-R mutant leaves retain large amounts of starch on prolonged dark treatment, consistent with a defect in starch catabolism. To further test this hypothesis, we identified a mutant allele of the leaf expressed small subunit of ADP-glucose pyrophosphorylase (agps-m1), an enzyme required for starch synthesis. We determined that the agps-m1 mutant allele is a molecular null and that plants homozygous for the mutation lack transitory leaf starch. Epistasis analysis of tdy1-R; agps-m1 double mutants demonstrates that Tdy1 function is independent of starch metabolism. These data suggest that Tdy1 may function in sucrose export from leaves.  相似文献   

19.
Huber SC 《Plant physiology》1984,76(2):424-430
The effects of K-deficiency on carbon exchange rates (CER), photosynthate partitioning, export rate, and activities of key enzymes involved in sucrose metabolism were studied in soybean (Glycine max [L.] Merr.) leaves. The different parameters were monitored in mature leaves that had expanded prior to, or during, imposition of a complete K-deficiency (plants received K-free nutrition solution). In general, recently expanded leaves had the highest concentration of K, and imposition of K-stress at any stage of leaf expansion resulted in decreased K concentrations relative to control plants (10 millimolar K). A reduction in CER, relative to control plants, was only observed in leaves that expanded during the K-stress. Stomatal conductance also declined, but this was not the primary cause of the decrease in carbon fixation because internal CO2 concentration was unaffected by K-stress. Assimilate export rate from K-deficient leaves was reduced but relative export, calculated as a percentage of CER, was similar to control leaves. Over all the data, export rate was correlated positively with both CER and activity of sucrose phosphate synthase in leaf extracts. K-deficient leaves had higher concentrations of sucrose and hexose sugars. Accumulation of hexose sugars was associated with increased activities of acid invertase. Neutral invertase activity was low and unaffected by K-nutrition. It is concluded that decreased rates of assimilate export are associated with decreased activities of sucrose phosphate synthase, a key enzyme involved in sucrose formation, and that accumulation of hexose sugars may occur because of increased hydrolysis of sucrose in K-deficient leaves.  相似文献   

20.
Diurnal changes in photosynthetic parameters and enzyme activities were characterized in greenhouse grown maize plants (Zea mays L. cv Pioneer 3184). Rates of net photosynthesis and assimilate export were highest at midday, coincident with maximum irradiance. During the day, assimilate export accounted for about 80% of net carbon fixation, and the maximum export rate (35 milligrams CH2O per square decimeter per hour) was substantially higher than the relatively constant rate maintained through the night (5 milligrams CH2O per square decimeter per hour). Activities of sucrose phosphate synthase and NADP-malate dehydrogenase showed pronounced diurnal fluctuations; maximum enzyme activities were generally coincident with highest light intensity. Reciprocal light/dark transfers of plants throughout the diurnal cycle revealed that both enzymes were deactivated by 30 minutes of darkness during the day, and they could both be substantially activated by 30 minutes of illumination at night. During 24 hours of extended darkness, sucrose phosphate synthase activity declined progressively to an almost undetectable level, but was activated after 1.5 hours of illumination. Thus, the diurnal fluctuation in maize sucrose phosphate synthase can be explained by some form of light modulation of enzyme activity and is not due to an endogenous rhythm in activity. No diurnal fluctuations were observed in the activities of NADP-malic enzyme or fructose 6-phosphate-2-kinase. Phosphoenolpyruvate carboxylase was activated by light to some extent (about 50%) when activity was measured under suboptimal conditions in vitro. The results suggested that the rates of sucrose formation and assimilate export were closely aligned with the rate of carbon fixation and the activation state of sucrose phosphate synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号