首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A variety of signaling proteins form heterocomplexes with and are regulated by the heat shock protein chaperone hsp90. These complexes are formed by a multiprotein machinery, including hsp90 and hsp70 as essential and abundant components and Hop, hsp40, and p23 as non-essential cochaperones that are present in much lower abundance in cells. Overexpression of signaling proteins can overwhelm the capacity of this machinery to properly assemble heterocomplexes with hsp90. Here, we show that the limiting component of this assembly machinery in vitro in reticulocyte lysate and in vivo in Sf9 cells is p23. Only a fraction of glucocorticoid receptors (GR) overexpressed in Sf9 cells are in heterocomplex with hsp90 and have steroid binding activity, with the majority of the receptors present as both insoluble and cytosolic GR aggregates. Coexpression of p23 with the GR increases the proportion of cytosolic receptors that are in stable GR.hsp90 heterocomplexes with steroid binding activity, a strictly hsp90-dependent activity for the GR. Coexpression of p23 eliminates the insoluble GR aggregates and shifts the cytosolic receptor from very large aggregates without steroid binding activity to approximately 600-kDa heterocomplexes with steroid binding activity. These data lead us to conclude that p23 acts in vivo to stabilize hsp90 binding to client protein.  相似文献   

3.
Nuclear import of glucocorticoid receptors (GRs) was analyzed in vitro with digitonin-permeabilized cells (S. A. Adam, R. Sterne-Marr, and L. Gerace, J. Cell Biol. 111:807-816, 1990). Indirect immunofluorescence methods were used to monitor the transport of GRs from rat hepatoma and fibroblast cell cytosol into HeLa nuclei. In vitro nuclear import of GRs was shown to be hormone dependent and to require ATP and incubation at ambient temperatures (i.e., 30 degrees C). Hormone-dependent dissociation of GR-bound proteins, such as the 90-kDa heat shock protein, hsp90, is part of an activation process that is obligatory for the expression of the receptor's DNA-binding activity. Inhibition of in vitro GR activation by Na2MoO4 blocked hormone-dependent nuclear import, demonstrating that receptor activation is required for nuclear import. The addition to GR-containing cytosol of antiserum directed against the cytosolic 70-kDa heat shock protein, hsp70, while effective in blocking the nuclear import of simian virus 40 large tumor antigen (SV40 TAg), did not affect hormone-dependent nuclear import of endogenous, full-length GRs or an exogenously added truncated GR protein (i.e., XGR556) that lacks a hormone-binding domain but possesses a constitutively active nuclear localization signal sequence (NLS). Depletion of hsp70 from HeLa cell cytosol did not affect the nuclear import of exogenously added XGR556 but led to inhibition of SV40 TAg nuclear import. Thus, two closely related NLSs, one contained within GRs and the other contained within SV40 TAg, are distinguished by their differential requirements for hsp70 in vitro.  相似文献   

4.
5.
The glucocorticoid receptor (GR) occurs in cells in the form of a hormone-responsive complex (HRC) with hsp90. The HRC is dynamic, with hsp90 constantly directing disassembly, and hsp70, assisted by hsp90, driving reassembly. WCL2 cells stably overexpress GR to an extent that reduces the excess of hsp90 and hsp70 over GR by about 10-fold, compared to the ratio in HeLa cells. Yet the half-lives of the HRC in WCL2 and HeLa cells are comparable. As a result, the rate of assembly in WCL2 is overwhelmed by accumulation of the non-hormone-binding form of GR in its complex with hsp70 and hsp90. This form comprised some 50% of total GR in WCL2 cells. When the cells were heated to 44 degrees C, the hormone-binding activity and solubility of GR fell in parallel, and the receptor formed heavy aggregates by sequestering large amounts of hsp70. About 40% of this aggregated receptor was degraded in cells recovering at 37 degrees C in the presence of cycloheximide. Concentration of GR protein increased with increasing induction of hsp70 following exposure to 41-44 degrees C. However, balance between hormone-binding and inert forms of GR could shift in either direction in response to the increase or decrease of hsp90 induction, depending on the temperature. Suppression of degradation following re-exposure of the cells to 44 degrees C correlated better with induction of hsp90 than hsp70. We infer that sequestration of hsp70 by heat-unfolded receptor is the primary factor opposing degradation, while induction of hsp90 acts to further suppress degradation by accelerating HRC assembly.  相似文献   

6.
7.
Binding of heat shock proteins to the avian progesterone receptor.   总被引:13,自引:4,他引:9       下载免费PDF全文
The protein composition of the avian progesterone receptor was analyzed by immune isolation of receptor complexes and gel electrophoresis of the isolated proteins. Nonactivated cytosol receptor was isolated in association with the 90-kilodalton (kDa) heat shock protein, hsp90, as has been described previously. A 70-kDa protein was also observed and was shown by Western immunoblotting to react with an antibody specific to the 70-kDa heat shock protein. Thus, two progesterone receptor-associated proteins are identical, or closely related, to heat shock proteins. When the two progesterone receptor species, A and B, were isolated separately in the absence of hormone, both were obtained in association with hsp90 and the 70-kDa protein. However, activated receptor isolated from oviduct nuclear extracts was associated with the 70-kDa protein, but not with hsp90. A hormone-dependent dissociation of hsp90 from the cytosolic form of the receptor complex was observed within the first hour of in vivo progesterone treatment, which could explain the lack of hsp90 in nuclear receptor complexes. In a cell-free system, hsp90 binding to receptor was stabilized by molybdate but disrupted by high salt. These treatments, however, did not alter the binding of the 70-kDa protein to receptor. Association of the 70-kDa protein with the receptor could be disrupted by the addition of ATP at elevated temperatures (23 degrees C). The receptor-associated 70-kDa protein is an ATP-binding protein, as demonstrated by its affinity labeling with azido[32P]ATP. These results indicate that the two receptor-associated proteins interact with the progesterone receptor by different mechanisms and that they are likely to affect the structure or function of the receptor in different ways.  相似文献   

8.
We have recently reported that the glucocorticoid receptor (GR) becomes bound to the 90-kDa heat shock protein (hsp90) at or near the end of receptor translation in vitro (Dalman, F. C., Bresnick, E. H., Patel, P. D., Perdew, G. H., Watson, S. J., Jr., and Pratt, W. B. (1989) J. Biol. Chem. 264, 19815-19821). In this paper we compare the hsp90 binding and DNA binding activities of the thyroid hormone receptor (TR) to those of the GR after cell-free translation of the two receptors in rabbit reticulocyte lysate. In contrast to the newly translated GR, which is bound to hsp90 and must be transformed to the DNA binding state, the TR is not bound to hsp90 and is translated in its DNA binding form without any requirement for transformation. When the GR is translated in wheat germ extract, which does not contain hsp90, it is translated in its DNA binding form in the same manner as the TR synthesized in reticulocyte lysate. These observations provide direct evidence that binding of GR to hsp90 is associated with repression of its DNA binding function. The fact that the TR does not bind to hsp90 and is translated in its DNA binding form is consistent with the different behavior of this receptor with respect to classic steroid receptors in the intact cell. We propose that binding to hsp90 may account for the fact that most of the steroid receptors are recovered in the cytosolic fraction after lysis of hormone-free cells in low salt buffer whereas the hormone-free TR is recovered in tight association with the nucleus.  相似文献   

9.
《The Journal of cell biology》1993,120(5):1101-1112
Mammalian cells constitutively express a cytosolic and nuclear form of heat shock protein (hsp) 70, referred to here as hsp 73. In response to heat shock or other metabolic insults, increased expression of another cytosolic and nuclear form of hsp 70, hsp 72, is observed. The constitutively expressed hsp 73, and stress-inducible hsp 72, are highly related proteins. Still unclear, however, is exactly why most eukaryotic cells, in contrast to prokaryotic cells, express a novel form of hsp 70 (i.e., hsp 72) after experiencing stress. To address this question, we prepared antibodies specific to either hsp 72 or hsp 73 and have compared a number of biological properties of the two proteins, both in vivo and in vitro. Using metabolic pulse-chase labeling and immunoprecipitation analysis, both the hsp 72 and hsp 73 specific antibodies were found to coprecipitate a significant number of newly synthesized proteins. Such interactions appeared transient and sensitive to ATP. Consequently, we suspect that both hsp 72 and hsp 73 function as molecular chaperones, interacting transiently with nascent polypeptides. During the course of these studies, we routinely observed that antibodies specific to hsp 73 resulted in the coprecipitation of hsp 72. Similarly, antibodies specific to hsp 72 were capable of coprecipitating hsp 73. Using a number of different approaches, we show that the constitutively expressed, pre-existing hsp 73 rapidly forms a stable complex with the newly synthesized stress inducible hsp 72. As is demonstrated by double-label indirect immunofluorescence, both proteins exhibit a coincident locale within the cell. Moreover, injection of antibodies specific to hsp 73 into living cells effectively blocks the ability of both hsp 73 and hsp 72 to redistribute from the cytoplasm into the nucleus and nucleolus after heat shock. These results are discussed as they relate to the possible structure and function of the constitutive (hsp 73) and highly stress inducible (hsp 72) forms of hsp 70, both within the normal cell as well as in the cell experiencing stress.  相似文献   

10.
In the absence of hormone, human progesterone receptors (PR) are recovered in the cytosolic fraction of cell lysates as a multimeric complex containing the steroid-binding polypeptide, heat shock protein-90 (hsp90), and heat shock protein-70 (hsp70). Activated forms of human PR that acquire the ability to bind to DNA are dissociated from hsp90, but retain association with hsp70. The present study has examined whether associated hsp70 has a function in receptor-DNA binding. When activated PR was bound to specific target DNA in a gel shift assay, no hsp70 was detectable in the PR-DNA complex, as evidenced by the failure of several antibodies to hsp70 to affect the mobility or the amount of complexes. To determine whether hsp70 might indirectly influence DNA-binding activity, we have examined the effect of hsp70 dissociation on PR-DNA-binding activity. Dissociation was achieved either by treatment of immunoaffinity-purified immobilized PR complexes with ATP or by the binding of PR complexes to ATP-agarose, followed by elution with high salt. Under both conditions, dissociation from hsp70 neither enhanced nor impaired the ability of PR to bind to specific DNA. These results suggest that hsp70 is not involved in PR binding to DNA, either directly by participating in DNA binding or indirectly by modulating PR-DNA-binding activity. This implies that hsp70 functions at an earlier stage in the receptor activation pathway. Consistent with the known involvement of hsp70 in stabilizing unfolded states of other target proteins, we propose that hsp70 may assist in nuclear transport of PR or in assembly-disassembly of the 8-10S multimeric complex.  相似文献   

11.
12.
Unliganded glucocorticoid receptors (GRs) released from chromatin after hormone withdrawal remain associated with the nucleus within a novel subnuclear compartment that serves as a nuclear export staging area. We set out to examine whether unliganded nuclear receptors cycle between distinct subnuclear compartments or require cytoplasmic transit to regain hormone and chromatin-binding capacity. Hormone-withdrawn rat GrH2 hepatoma cells were permeabilized with digitonin to deplete cytoplasmic factors, and then hormone-binding and chromatin-binding properties of the recycled nuclear GRs were measured. We found that recycled nuclear GRs do not require cytosolic factors or ATP to rebind hormone. Nuclear GRs that rebind hormone in permeabilized cells target to high-affinity chromatin-binding sites at 30 C, but not 0 C, in the presence of ATP. Since geldanamycin, a heat shock protein-90 (hsp90)-binding drug, inhibits hormone binding to recycled nuclear GRs, hsp90 may be required to reassemble the receptor into a form capable of productive interactions with hormone. Geldanamycin also inhibits GR release from chromatin during hormone withdrawal, suggesting that hsp90 chaperone function may play multiple roles to facilitate chromatin recycling of GR.  相似文献   

13.
14.
15.
It has recently been reported that incubation of avian progesterone receptors, mouse glucocorticoid receptors, or the viral tyrosine kinase pp60src with rabbit reticulocyte lysate reconstitutes their association with the 90 kDa heat shock protein, hsp90. The reassociation is thought to require unfolding of the steroid receptor or pp60src before hsp90 can bind. The unfoldase activity may be provided by hsp70, which is also present in the reconstituted receptor heterocomplex. In this paper we review evidence that hsp70 and hsp90 are associated in cytosolic heterocomplexes that contain a limited number of other proteins. From an analysis of known receptor-hsp interactions and a predicted direct interaction between hsp90 and hsp70 we have developed an admittedly very speculative model of glucocorticoid receptor unfolding and stabilization. One important feature of the model is that the receptor becomes attached to a heat shock protein heterocomplex rather than undergoing independent unfolding and stabilization events. The model requires that hsp70 and hsp90 bind directly to the receptor at independent sites. Importantly, the model accomodates the stoichiometry of 2 hsp90 per 1 molecule of receptor that has been assayed in the untransformed GR heterocomplex in cytosols prepared from hormone-free cells.  相似文献   

16.
17.
The relationship between hsp 70 localization and heat resistance   总被引:4,自引:0,他引:4  
Using indirect immunofluorescence we have investigated the kinetics of nuclear accumulation and removal of hsp 70 in HA-1 Chinese hamster fibroblasts exposed to elevated temperatures. The kinetics of accumulation of hsp 70 in the nuclei were found to be time/temperature dependent at all temperatures tested (42-45 degrees C). At a given temperature, the fraction of cells manifesting nuclear localization of hsp 70 increased with exposure time. For a given duration of heating, the fraction of cells manifesting nuclear localization of hsp 70 increased with the temperature. The kinetics of the nuclear accumulation of hsp 70 were similar for normal HA-1 cells, their heat-resistant variants, and transiently thermotolerant cells (triggered by prior exposure to a brief heat shock or to sodium arsenite). Upon return to 37 degrees C after heat shock, the kinetics of removal of the hsp 70 associated with the nucleus was dependent on the severity of the initial heat challenge. However, for a given heat dose, the decay of nuclear localization of hsp 70 was more rapid in thermotolerant and heat-resistant cells than in their normal counterparts. These results suggest that the increased levels of hsp 70 associated with the transient or permanently heat-resistant state may play a direct role in restoring and/or repairing heat-induced nuclear and nucleolar alterations associated with heat-induced cell killing. Furthermore, they also suggest that the heat-resistant state may involve ameliorated repair of heat-induced cellular alterations.  相似文献   

18.
We have recently found a novel 40-kDa heat-shock protein (hsp 40) in mammalian and avian cells and reported that the N-terminal amino acid sequence of mammalian hsp 40 has homology with the bacterial DnaJ heat-shock protein. Also, hsp 40 has been shown to be translocated from the cytoplasm into the nuclei/nucleoli by heat shock and colocalized with hsc 70 (p73) in the nucleoli of exactly the same cells. We here investigated the effect of ATP on the release of hsp 70 (both constitutive p73 and inducible p72) and hsp 40 from the nuclei/nucleoli of heat-shocked HeLa cells which were permeabilized with Nonidet-P40 using immunoflourescence and immunoblotting. Hsp 70 in the nucleoli was released by the addition of ATP but not by ADP, GTP, nonhydrolyzable ATP, nor high salt buffer. In contrast, hsp 40 was not released from the nucleoli with any of these treatments or any combination of these treatments. Thus, hsp 40 might dissociate spontaneously from the nucleoli after hsp 70 has been released in an ATP-dependent manner. Using cell fractionation methods, we showed that while the majority of hsp 40 is localized in the cytoplasm, a small portion of it is located in the microsome fraction in non-heat-shocked control cells and in cells which recovered from heat shock.  相似文献   

19.
The intracellular distribution of heat shock proteins (hsps) from Drosophila Kc cells is different in heat and in arsenite-treated cells. While the cytoplasmic localization of hsp 84 is confirmed in both treatments, the association of hsp 70 with the nucleus occurs only in heat-treated cells. This heat-dependent association of certain hsps with the nuclear pellet is confirmed by incubation of cells at various temperatures ranging from 23 to 39 °C. Furthermore their presence in this nuclear pellet can be correlated with the translocation and phosphorylation of a major cellular cytoskeletal protein of Mr 45,000. It is concluded that the previously reported nuclear association of hsps is not necessarily indicative of a nuclear function. It is further suggested that hsps might have a structural function within the cell.  相似文献   

20.
We have previously shown that a 50-kDa protein is one component of a heteromeric complex immunoprecipitated by the 90-kDa heat shock protein (hsp90) monoclonal antibodies 8D3 and 3G3 (Perdew, G. H., and Whitelaw, M. L. (1991) J. Biol. Chem. 266, 6708-6713). In this report, we compare the 50-kDa protein with that found in pp60v-src-hsp90-p50 complexes immunoprecipitated from Rous sarcoma virus-transformed cells with antibodies to pp60v-src. 35S- and 32P-labeled p50 proteins from each system were identical in their mobilities by sodium dodecyl sulfate-polyacryl-amide gel electrophoresis. The profile of N-chlorosuccinimide cleavage products derived from each 32P-labeled p50 protein were also identical when resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We have developed a mouse monoclonal antibody, 3M/1B5p50, capable of detecting p50 on Western blots. This antibody detected the 50-kDa protein which co-purified with the pa104 pp60v-src mutant of the avian sarcoma virus oncoprotein in 44A rat fibroblasts. We did not detect p50 in association with native glucocorticoid receptor in L cells or with the overexpressed glucocorticoid receptor in Chinese hamster ovary cells. Two experiments utilizing immunochemical staining implied that essentially all cytosolic p50 is associated with hsp90. Firstly, immunoprecipitating hsp90 from Hepa 1 cytosol with monoclonal antibody 3G3 left the cytosol depleted of p50. Secondly, cytosol fractionated by sucrose gradient revealed that p50 cosedimented with hsp90, confirming the existence of p50 only in association with hsp90.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号