首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 401 毫秒
1.
Murine embryonal carcinoma F9 cells can be induced to differentiate by 2-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC). The differentiated phenotype is similar to that of retinoic acid (RA)-treated F9 cells. In contrast to F9 cells the differentiated cells secrete plasminogen activator and express keratin intermediate filaments. Both DFMO and RA reduce ornithine decarboxylase activity, polyamine levels and inhibit cell proliferation of F9 cells. These compounds also reduce ODC, polyamine levels and proliferation of mouse BALB/c 3T6 fibroblasts. RA inhibits the induction of ODC by insulin, serum and to a lesser extent that of epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA). The action of DFMO and RA can be distinguished by their response to putrescine. The induction of differentiation and the inhibition of cell proliferation by DFMO can be totally abolished upon the addition of putrescine, whereas the actions of RA are not affected at all. These results suggest that the inhibition of ODC and reduction of polyamines are not causal in the induction of differentiation and the inhibition of proliferation by RA.  相似文献   

2.
3.
A transitory increase in ornithine decarboxylase (ODC) activity is shown not to be a prerequisite for the differentiation induced by hexamethylene bisacetamide (HMBA) in murine erythroleukemic (MEL) cells. On the contrary, conditions are described, where inhibition of the ODC activity with alpha-difluoromethyl ornithine (DFMO) stimulated the induced differentiation. Polyamine analysis demonstrated that a reduction in intracellular putrescine and spermidine occurred in MEL cells before commitment to erythrodifferentiation. The presence of DFMO increased the rapidity and the amplitude of these changes. No effect of dexamethasone on these changes in ODC activity or intracellular polyamines was observed.  相似文献   

4.
The human neuroblastoma cell line SK-N-BE can be induced to differentiate by retinoic acid (RA) or by alpha-difluoromethylornithine (DFMO). The former inducer produces neurite outgrowth, 60% reduction of growth rate, overexpression of neural antigens, and enhanced gamma-aminobutyric acid (GABA) and acetylcholinesterase levels. In contrast, DFMO causes cell body elongation, complete growth inhibition, and higher binding of antibodies directed against neuroectodermal antigens. Polyamine metabolism is also differently affected by the two agents. In particular a large spermine catabolism is induced by RA, while DFMO treatment leads to a small increase in the level of this compound. The neural differentiation induced by RA is accompanied by a marked increase in transglutaminase activity and its induction is paralleled by a transient increase of putrescine and spermidine. The putrescine and spermidine depletion determined by DFMO is accompanied instead by a large inhibition of transglutaminase activity. The inhibiting effect of DFMO treatment on transglutaminase is reversed by the addition of 1 mM putrescine to the culture medium. In the presence of both RA and DFMO a mixed morphological and biochemical pattern is observed. The possibility that the expression of transglutaminase associated to cellular differentiation may be modulated by the level of its substrates is also discussed.  相似文献   

5.
The induction of differentiation in teratocarcinoma stem cells by retinoic acid.   总被引:170,自引:0,他引:170  
S Strickland  V Mahdavi 《Cell》1978,15(2):393-403
Embryonal carcinoma cells, the stem cells of teratocarcinomas, usually undergo extensive differentiation in vivo and in vitro to a wide variety of cell types. There exist, however, several embryonal carcinoma cell lines that have almost completely lost the capacity to differentiate, so that the cells are propagated primarily as the stem cells. Using one such cell line, F9, we have found that retinoic acid at concentrations as low as 10(-9) M induces multiple phenotypic changes in the cultures in vitro. These changes include morphological alteration at the resolution of the light microscope, elevated levels of plasminogen activator production, sensitivity to cyclic AMP compounds and increased synthesis of collagen-like proteins. The nature of these changes, as well as their independence of the continued presence of retinoic acid, are consistent with the proposition that retinoic acid induces differentiation of embryonal carcinoma cells into endoderm.  相似文献   

6.
Differentiation of mouse neuroblastoma cells has been shown to be accompanied by changes in polyamine metabolism and a decrease in polyamine content. We have previously shown that alpha-difluoromethyl ornithine, a suicide inhibitor of ornithine decarboxylase (ODC, EC 4.1.1.17) and suboptimal concentrations of dibutyryl cAMP (0.1 to 0.2 mM) are effective in inducing the differentiation of mouse Neuro-2a (N2a) neuroblastoma cells. Exogenously added putrescine or spermidine can block the action of DFMO and dibutyryl cAMP, suggesting that polyamines may play a regulatory role in neuroblastoma differentiation. We have now isolated from N2a cells a clonal variant line, DF-40, whose ODC gene has been amplified by 40-fold. The DF-40 cells overproduced the ODC enzyme and contained very high levels of putrescine, spermidine and spermine. Treatment of DF-40 cells with dibutyryl cAMP or DFMO/dibutyryl cAMP led to a more than 80% reduction in polyamine content. Such a decrease did not cause the DF-40 cells to differentiate. Polyamine content in the treated DF-40 cells was still comparable or higher than that in the undifferentiated N2a cells. In contrast, serum-deprivation induced full differentiation of DF-40 cells. Levels of polyamine in the differentiated DF-40 cells, however, were also found to be comparable to that in the undifferentiated N2a cells. Exogenously added polyamines could not block the differentiation of DF-40 cells induced by serum-deprivation, suggesting that the action of polyamines in regulating neuroblastoma differentiation may depend on the presence of serum factors.  相似文献   

7.
Medium conditioned by STO mouse fibroblast cells inhibited both the spontaneous differentiation of NG2 embryonal carcinoma cells and the differentiation of F9 embryonal carcinoma cells induced by retinoic acid. This effect was due to a differentiation retarding factor (DRF). Reduction in DRF activity in conditioned medium by boiling and by pronase treatment suggested the involvement of a polypeptide, which had an apparent molecular weight of 57000 on gel filtration. A 28-fold purification of DRF was achieved. DRF delayed but did not prevent the extensive differentiation observed after prolonged culture of NG2 colonies. Conditioned medium could be successfully used to replace feeder cells in NG2 stock cultures. Media conditioned by a variety of other cell types also contained differentiation retarding activity.  相似文献   

8.
Summary Treatment with -difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ornithine decarboxylase (ODC), depletes the putrescine and spermidine content, and reduces the growth rate of Ehrlich ascites tumor cells.The addition of putrescine, which is the immediate precursor of spermidine, promptly replenished the intracellular putrescine and spermidine pools and completely reversed the antiproliferative effect of DFMO. A sequential accumulation of spermine, spermidine and putrescine was observed.1,3-diaminopropane, a lower homolog of putrescine, did not reverse the antiproliferative effect of DFMO, despite its structural similarity and identical positive charge. By inhibiting remaining ODC activity, resistant to 5 mM DFMO, and possibly by inhibiting spermine synthase activity, 1,3-diaminopropane produced a further decrease in total polyamine content by reducing the spermine content.Mg2+, which can replace putrescine in many in vitro reactions, completely lacked the capacity to reverse the antiproliferative effect of putrescine and spermidine deficiency.Abbreviations DFMO -difluoromethylornithine - ODC ornithine decarbxylase  相似文献   

9.
In exponential-phase Chinese-hamster cells, 0.1 mM-diethyldithiocarbamate (DDC) afforded greater than 1 log survival protection to cultures treated before and during exposure to 1 mM-H2O2. Both DDC and H2O2 treatment stimulated the activity of ornithine decarboxylase (ODC), the first enzyme in polyamine synthesis, within 4 h of exposure. DDC, and to a lesser degree H2O2, also stimulated the activity of spermidine N1-acetyltransferase (SAT), the rate-limiting enzyme in polyamine catabolism. The increase in SAT activity, after exposure to DDC or another stress (heat shock), was inhibited in cells depleted of putrescine and spermidine by alpha-difluoromethylornithine (DFMO), the enzyme-activated suicide inhibitor of ODC. Pretreatment with DFMO or heat shock also induced resistance to H2O2 cytotoxicity. Since SAT activity is low in resting cells, yet stimulation of enzyme activity depends on endogenous spermidine pools, these results suggest that the expression of SAT activity occurs by a mechanism involving a stress-dependent displacement of spermidine into a new intracellular compartment. The stimulation of ODC and SAT activities does not appear to be a necessary component of the mechanism by which DDC protects cells from H2O2 cytotoxicity, although spermidine displacement may be a common facet of the cellular response to stress.  相似文献   

10.
Treatment of mouse embryonal carcinoma (F9) cells with retinoic acid, an inducer of F9 cell differentiation, greatly increased the level of mRNA specific to one of the heat-shock proteins (HSP86). Experiments including the one employing differentiation-resistant mutant F9 cells suggested that the increase represents early molecular events associated with the embryonal differentiation. The increased HSP86 mRNA declined to the original level during further incubation. The presence of cyclic AMP, which stimulates conversion of the retinoic acid-induced primitive endoderm cells to parietal endoderm cells, prevented the decline. These results suggest that not only the elevation of HSP86 mRNA level represents early molecular events in F9 cell differentiation but also that sustaining the elevated level (by cyclic AMP) is associated with further differentiation of the embryonal cells.  相似文献   

11.
The effects of CGP 48664 and DFMO, selective inhibitors of the key enzymes of polyamine biosynthesis, namely, ofS-adenosylmethionine decarboxylase (AdoMetDC) and ornithine decarboxylase (ODC), were investigated on growth, polyamine metabolism, and DNA methylation in the Caco-2 cell line. Both inhibitors caused growth inhibition and affected similarly the initial expression of the differentiation marker sucrase. In the presence of the AdoMetDC inhibitor, ODC activity and the intracellular pool of putrescine were enhanced, whereas the spermidine and spermine pools were decreased. In the presence of the ODC inhibitor, the AdoMetDC activity was enhanced and the intracellular pools of putrescine and spermidine were decreased. With both compounds, the degree of global DNA methylation was increased. Spermine and spermidine (but not putrescine) selectively inhibited cytosine–DNA methyltransferase activity. Our observations suggest that spermidine (and to a lesser extent spermine) controls DNA methylation and may represent a crucial step in the regulation of Caco-2 cell growth and differentiation.  相似文献   

12.
Theiss C  Bohley P  Voigt J 《Plant physiology》2002,128(4):1470-1479
Polyamines are required for cell growth and cell division in eukaryotic and prokaryotic organisms. In the unicellular green alga Chlamydomonas reinhardtii, biosynthesis of the commonly occurring polyamines (putrescine, spermidine, and spermine) is dependent on the activity of ornithine decarboxylase (ODC, EC 4.1.1.17) catalyzing the formation of putrescine, which is the precursor of the other two polyamines. In synchronized C. reinhardtii cultures, transition to the cell division phase was preceded by a 4-fold increase in ODC activity and a 10- and a 20-fold increase, respectively, in the putrescine and spermidine levels. Spermine, however, could not be detected in C. reinhardtii cells. Exogenous polyamines caused a decrease in ODC activity. Addition of spermine, but not of spermidine or putrescine, abolished the transition to the cell division phase when applied 7 to 8 h after beginning of the light (growth) phase. Most of the cells had already doubled their cell mass after this growth period. The spermine-induced cell cycle arrest could be overcome by subsequent addition of spermidine or putrescine. The conclusion that spermine affects cell division via a decreased spermidine level was corroborated by the findings that spermine caused a decrease in the putrescine and spermidine levels and that cell divisions also could be prevented by inhibitors of S-adenosyl-methionine decarboxylase and spermidine synthase, respectively, added 8 h after beginning of the growth period. Because protein synthesis was not decreased by addition of spermine under our experimental conditions, we conclude that spermidine affects the transition to the cell division phase directly rather than via protein biosynthesis.  相似文献   

13.
The role of polyamines in myoblast proliferation was studied by treating cells of Yaffe's L6 line of rat myoblasts with inhibitors of polyamine synthesis. Both an irreversible inhibitor of ornithine decarboxylase--difluoromethyl-ornithine (DFMO)--and a competitive inhibitor of S-adenosyl-methionine decarboxylase--methylglyoxal-bis(guanylhydrazone) (MGBG)--depressed spermidine levels and inhibited myoblast proliferation. Spermine levels were not significantly depressed by either inhibitor and putrescine levels were decreased only by DFMO. Putrescine and spermidine, but not magnesium, prevented inhibition of myoblast proliferation by DFMO and MGBG; determination of 14C-DFMO uptake in the presence and absence of these compounds demonstrated that they did not reduce the rate or extent of inhibitor uptake and thus prevent its inhibition of ornithine decarboxylase. Thus it seems likely that these inhibitors reduce cell proliferation by inhibiting polyamine formation. Addition of spermidine to the cells led to a substantial reduction in the activity of S-adenosyl-methionine-decarboxylase, suggesting that the enzyme is subject to negative regulation by the products of the polyamine biosynthetic pathway. Unexpectedly, addition of spermidine also increased intracellular putrescine levels; this apparently resulted from conversion of spermidine to putrescine. Addition of putrescine or spermidine in the absence of serum did not increase the rate of myoblast proliferation although it did elevate intracellular polyamine levels as expected. We conclude that some threshold level of one or more polyamines (probably spermidine) is necessary but not sufficient for initiation and maintenance of myoblast proliferation in culture.  相似文献   

14.
抗多胺代谢剂──二氟甲基鸟氨酸(DFMO)作用于经含点突变的Ha-ras基因片段转染的转化细胞(HR-1细胞)引起细胞生长的抑制,其抑制率随DFMO浓度的增加而增大,此时细胞多停滞于G_1期;多胺合成的关键酶鸟氨酸脱羧酶(ODC)活性显著下降;Ha-ras癌基因mRNA及rasP~(21)蛋白的表达受到抑制;而外源性腐胺与DFMO的同时加入可防止上述一系列改变的发生,说明DFMO使HR-1细胞某些表型向亲本细胞逆转的作用是与细胞多胺生物合成的抑制直接相关。  相似文献   

15.
F9 line embryonal carcinoma cells were induced to differentiate into neural direction by long-term treatment of monolayer cultures with retinoic acid and dibutyryl cyclic AMP. Bi- and multi-polar cells appeared, expressing acetylcholinesterase and neurofilament proteins but not markers of glial differentiation including GFA-protein. Nerve growth factor combined with both retinoic acid and dibutyryl cyclic AMP greatly enhanced the development of neuron-like morphology and induced expression of immunoreactivity to tyrosine hydroxylase as well as to Leu-encephalin-like peptides. Similarly, serotonin-like immunofluorescence but not substance P-like immunoreactivity was demonstrable in such cultures. In addition, synaptic-like vesicles were often found in the processes. Analysis of matrix expression in neuronally differentiated F9 cells revealed marked increase in laminin production, as judged by immunofluorescence and immuno-electron microscopy, but no demonstrable intracellular staining for fibronectin or type IV collagen. The results with neuronal cells contrast with the expression of all the three matrix components in endodermally differentiating F9 cells in the same cultures.  相似文献   

16.
Inhibition of DNA synthesis in F9 embryonal carcinoma cells with high thymidine induces differentiation similar to that induced with retinoic acid (RA). The presence of differentiated cells is evident after 15 h of treatment with 2 mM thymidine, during which period DNA synthesis is inhibited 99%. The addition of RA during the period of high thymidine treatment does not increase the amount of differentiation seen at the end of the 15-h treatment, but does increase the amount seen after thymidine is removed. The inhibition of proliferation by low serum concentration does not induce differentiation in the absence of RA. In partially synchronized cultures of F9 cells, the addition of RA alters the pattern of DNA replication during the first third of S phase. If RA is present during this part of S phase, differentiation is evident both morphologically and biochemically during the following cell cycle. Addition of RA during the second half of S phase does not lead to obvious differentiation until after the next cell cycle. These results suggest that particular events during the early replication period of F9 cells are targets for RA action in induction of differentiation of F9 cells.  相似文献   

17.
The present studies were undertaken to determine the importance of the polyamine biosynthetic pathway in cellular proliferation and hormone-regulated progesterone receptor synthesis in estrogen receptor-containing breast cancer cells. Treatment of MCF-7 cells with difluoromethylornithine (DFMO), the irreversible inhibitor of the enzyme ornithine decarboxylase (ODC), prevented estradiol-induced cell proliferation in a dose-dependent fashion. DFMO inhibition of estradiol-induced cell proliferation was completely recoverable by the addition of exogenous putrescine while putrescine alone did not stimulate proliferation of control cells. ODC activity was 4-fold greater in estrogen-treated cells and DFMO (5 mM) fully inhibited ODC activity. DFMO was able to suppress only slightly further the proliferation of antiestrogen (tamoxifen) treated cells and putrescine was able to recover this DFMO inhibition. In contrast to the suppressive effect of DFMO on cell proliferation, DFMO had no effect on the ability of estrogen to stimulate increased (4-fold elevated) levels of progesterone receptor. Hence, while ODC activity appears important for estrogen-induced cell proliferation, inhibition of the activity of this enzyme has no effect on the ability of estradiol to increase cellular progesterone receptor content.  相似文献   

18.
A murine embryonal carcinoma cell line (F9) was used to examine the effect of a pulsed electromagnetic field on the growth and differentiation of malignant cells. The cells can be induced to differentiate into parietal endodermal cells by treatment with retinoic acid. The pulsed electromagnetic field (1 Gauss and 10 Gauss) promoted the growth of embryonal carcinoma cells in both the presence and absence of retinoic acid. The pulsed electromagnetic field was also found to inhibit retinoic acid-induced differentiation, when the degree of differentiation was based on morphological criteria or on the production of plasminogen activator.  相似文献   

19.
20.
Alteration of carbohydrate moieties of glycoproteins has been studied during differentiation of F9 embryonal carcinoma cells to parietal endodermal cells induced by retinoic acid and dibutyryl cyclic AMP. Synthesis of large-molecular-weight glycopeptides, which were labeled with fucose and galactose and belonged to lactosaminoglycan, sharply decreased in parallel to the morphologically distinct differentiation of the embryonal carcinoma cells. As a result of differentiation, the amount of fucose in the particulate fraction of the cells slightly decreased on the basis of the protein content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号