首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
海绵是最原始的一类后生动物,已被作为海洋活性化合物的重要来源之一,其独特的孔状结构使其成为许多海洋微生物的优良宿主。近年来国内对海绵及其共附生微生物的研究主要集中在它们产生的活性物质方面,但对海绵共附生微生物的分布、多样性及其对宿主海绵作用的研究鲜有报道,就国内外研究进展进行了综述。  相似文献   

2.
基于皱皮软海绵宏基因组的PKS基因筛选的研究   总被引:2,自引:1,他引:1  
提取皱皮软海绵及其共附生微生物的宏基因组总DNA,使用聚酮合酶(PKS)基因的酮酰合酶(KS)域引物PCR扩增PKS基因片段获得一条671bp的片段,以pUCm-T vector为载体将该基因片段克隆到大肠杆菌中,从阳性克隆中分离出PKS基因片段,测序推导出氨基酸序列。通过BLAST比对发现此氨基酸序列与红细菌目的Rhodobacterales bacterium PKS基因KS域的氨基酸序列有96%的同源性。通过基于氨基酸序列的系统发育分析,推测此筛选得到的PKS基因属于trans-AT型。本文首次证实了皱皮软海绵中存在细菌来源的PKS基因。  相似文献   

3.
对分离自海绵和植物组织的一些微生物进行抗肿瘤活性菌株的筛选。采用SRB法对252株微生物菌株的发酵提取物进行了抗肿瘤活性的筛选。结果显示,28%的测试菌株在提取物浓度为100μg/mL时对HeLa细胞的抑制率在50%以上,经复筛确定有6株细菌和1株真菌具有良好且稳定的抗肿瘤活性,其提取物在100μg/mL时对HeLa细胞的抑制率均在80%以上,其中活性最高的两株菌HMJ-390和YX-5对HeLa细胞的IC50分别为40.56μg/mL和5.33μg/mL。经16S rDNA和ITS rDNA序列分析,鉴定HMJ-390为Cellulophagasp.,YX-5为Aspergillussp.。结果表明,作为抗肿瘤药物的潜在来源共附生微生物值得关注。  相似文献   

4.
海洋动植物共附生微生物的分离和抗菌活性研究   总被引:1,自引:0,他引:1  
从海参、海胆、海葵、海兔、石莼、羊栖菜、裙带菜分离得到125种共附生海洋微生物,以6种敏感菌为指示菌,从中获得具有抑菌活性的细菌21株,放线菌8株,真菌2株。21株抑菌海洋细菌中芽孢杆菌属为7株,占33.3%,弧菌属为11种,占52.2%,其余3株为假单孢杆菌属,占14.5%。8株抑菌海洋放线菌中链霉菌属为5株,占62.5%,小单孢菌属为3株,占36.5%。2株抑菌海洋真菌均为青霉属。  相似文献   

5.
具有多重酶活性的澳大利亚厚皮海绵共附生放线菌的研究   总被引:2,自引:0,他引:2  
从我国南海澳大利亚厚皮海绵分离得到23株放线菌,并对其蛋白酶、琼胶酶、纤维素酶、几丁质酶和酯酶活性进行了筛选,同时基于16S rDNA序列信息对放线菌进行了分子鉴定。研究发现23株放线菌全部具有较强的生物酶活性,其中21株放线菌具有至少3种以上的酶活性,17株具有除酯酶活性以外的4种酶活性。通过序列比对与系统发育分析证实12株放线菌属于链霉菌属(Streptomyces)。这些分离自海绵具有多重生物酶活性的放线菌具有较大的潜在应用价值。  相似文献   

6.
采用PCR-DGGE指纹、克隆测序和系统发育分析技术较系统地对我国南海贪婪倔海绵(Dysidea avara)和澳大利亚厚皮海绵(Craniella australiensis)共附生的优势细菌进行了研究。研究发现变形菌门(Proteobacteria)细菌是这两种海绵中的主要优势细菌,贪婪倔海绵中的变形菌包含了α、β、γ三种类型,而澳大利亚厚皮海绵中仅有γ一种类型。两种海绵都有拟杆菌(Bacteroidetes),但是具体的种类不同。这些细菌都是第一次在海绵中被发现。澳大利亚厚皮海绵共附生的优势细菌还包括放线菌属(Actinobacterium)及厚壁菌门(Firmicutes)细菌,菌群多样性要比贪婪倔海绵的丰富。两种海绵尽管来自于同一海域但其共附生优势细菌的组成明显不同,这说明海绵共附生微生物具有宿主特异性。  相似文献   

7.
邱并生 《微生物学通报》2013,40(8):1531-1532
海洋中蕴藏着目前尚无法估量的微生物未知种群和资源,在众多海洋生态系统中,珊瑚礁生态系统是海洋中物种多样性程度最高的生态类型,其中几乎生活着所有海洋生物的门类.随着海洋天然产物和海洋药物研究的不断深入,海洋共附生微生物,特别是热带珊礁无脊椎动物来源的共附生生物,引起了人们的广泛关注.珊瑚共附生真菌的研究可能揭示珊瑚的生存能力和健康状态,同时又是开发利用海洋真菌的重要种质资源.  相似文献   

8.
海绵由于其独特的生理结构、进食方式使其体内部聚集了大量的微生物,这些微生物产生了多种结构新颖的生物活性物质,因此海绵及其共附生微生物的研究成为了海洋药物研发的热点。就海绵中共附生真菌的分布情况,新技术的应用及其生物次级代谢产物的生物活性展开综述。  相似文献   

9.
海洋共附生微生物天然产物生物合成基因研究进展   总被引:1,自引:0,他引:1  
许静  徐俊 《微生物学报》2008,48(7):975-979
对海洋无脊椎动物天然产物的研究表明,很多种活性物质的真正生产者是与其共生或附生的未培养微生物.克隆这些未培养微生物中特定活性物质的生物合成基因,不仅为活性物质的来源提供遗传学证据,也使通过异源表达相关生物合成基因来大量获取目标化合物成为可能.本文综述了来源于海绵、海鞘、苔藓虫、深海管状蠕虫和深海沉积物中共附生微生物天然产物生物合成基因簇的研究进展.  相似文献   

10.
丛生盔形珊瑚共附生可培养真菌多样性分析   总被引:3,自引:0,他引:3  
旨在研究珊瑚共附生可培养真菌多样性。运用稀释平板法和基于ITS-rDNA基因序列的系统发育分析对珊瑚共附生可培养真菌多样性进行研究, 将所得到的基因序列与NCBI数据库GenBank中的序列进行相似性比较并构建系统发育树。实验中从丛生盔形珊瑚表面和内部共分离得到19株菌落形态各异的真菌。ITS-rDNA序列分析及形态学鉴定表明, 丛生盔形珊瑚共附生真菌主要包括曲霉菌Aspergillus sp.、枝孢霉菌Cladosporium sp.、炭角菌Xylariales sp.、青霉菌Penicillium sp.、葡萄穗霉菌Stachybotrys sp.、赤霉菌Gibberella moniliformis、镰刀霉菌Fusarium sp.等。分离得到的菌株中, 4-13与GenBank中已报道的基因序列的相似性仅为89%。结果表明, 与丛生盔形珊瑚共附生的可培养真菌较为丰富, 是潜在的新的微生物菌种资源, 具有进一步研究的价值。  相似文献   

11.
多聚酮的微生物合成及其多样性研究进展   总被引:2,自引:0,他引:2  
多聚酮多是由微生物产生的一大类天然产物,在结构和功能上具有多样性。很多聚酮具有抗细菌、抗真菌、抗寄生虫、抗肿瘤等生物活性,有很大的临床应用价值。随着研究的不断深入,一方面更多的天然产物聚酮被发现。另一方面对它们合成相关酶的作用机制研究也更加深入。主要对多聚酮的合成机制以及多聚酮合成类型的多样性展开论述。  相似文献   

12.
Type I polyketide synthases (PKSI) are modular multidomain enzymes involved in the biosynthesis of many natural products of industrial interest. PKSI modules are minimally organized in three domains: ketosynthase (KS), acyltransferase (AT), and acyl carrier protein. The KS domain phylogeny of 23 PKSI clusters was determined. The results obtained suggest that many horizontal transfers of PKSI genes have occurred between actinomycetales species. Such gene transfers may explain the homogeneity and the robustness of the actinomycetales group since gene transfers between closely related species could mimic patterns generated by vertical inheritance. We suggest that the linearity and instability of actinomycetales chromosomes associated with their large quantity of genetic mobile elements have favored such horizontal gene transfers.Reviewing Editor : Dr. Nicolas Galtier  相似文献   

13.
贪婪倔海绵中抗菌活性细菌的筛选及初步鉴定   总被引:3,自引:0,他引:3  
采用平板涂布法从我国南海三亚周边海域贪婪倔海绵(Dysidea avara)中分离海绵共附生细菌,采用金黄色葡萄球菌、大肠埃希氏菌、荧光假单胞菌、枯草芽孢杆菌、白假丝酵母、宛氏拟青霉、黑曲霉7种指标菌进行抑菌试验筛选抗菌活性菌,同时对于得到的活性菌进行生理生化鉴定。共分离获得个149个细菌菌株,发现20株具有抑制真菌和革兰氏阳性细菌的活性,占细菌总数的13.4%。经过细菌形态观察和生理生化试验,发现此20株活性菌属于革兰氏阳性芽孢杆菌属(Bacillus sp.)。  相似文献   

14.
为考察土壤和海水中Ⅰ型聚酮合酶(polyketide synthase,PKS)基因的多样性和差异,本研究自行设计了一套针对PKS基因中酮缩合酶(ketosynthase,KS)片段的简并引物,使用PCR方法直接克隆东海洋山港沿岸土壤和海水DNA样本中的KS片段,去除重复序列后,共获得了23条不同的KS片段(长度为630 bp~690 bp),提交GenBank皆获登录号,其中19条来自土壤(DQ640993,DQ640997、DQ641926、DQ641927、DQ673137~DQ673151),4条来自海水(DQ673151,EF554859~EF554861),由核苷酸序列推断出的氨基酸序列保守,与GenBank中已知KS基因片段的相似度在45%到85%之间,种系发生分析表明,其中14条KS片段(来源于海水的KS片段皆在其中)应来源于典型的KS群,而剩余9条则来源于杂合的PKSmRPS(Non-ribosomalpeptide synthetase.非核糖体多肽合成酶)群.另外,几条KS基因特征明显,可用于进一步的研究.  相似文献   

15.
Chemical investigation of the marine sponge Dysidea avara, collected from the South China Sea, yielded 13 steroids, including nine new ( 1 – 9 ) and four known ( 10 – 13 ) ones. The new structures were elucidated as (3S,14R)-3,14-dihydroxycholesta-5,8-dien-7-one ( 1 ), (22E,24R)-7α-ethoxy-5α,6α-epoxyergosta-8(14),22-dien-3β-ol ( 2 ), 3β-hydroxy-7α-ethoxy-5α,6α-epoxy-8(14)-cholestene ( 3 ), 3β,5α-dihydroxy-6α-ethoxychofesta-7,9(11)-diene ( 4 ), 3β,5α-dihydroxy-6β-ethoxycholest-7-ene ( 5 ), (22E,24R)-24-ethoxy-3β,5α-dihydroxy-6β-ethoxyergosta-7,22-diene ( 6 ), (22E)-3β,5α-dihydroxy-6β-ethoxycholesta-7,22-diene ( 7 ), 24-ethoxy-3β,5α-dihydroxy-6β-ethoxycholest-7-ene ( 8 and 9 ), by extensive spectroscopic analyses, such as HR-ESI-MS, 1D and 2D NMR data. The absolute configuration of 1 was assigned by comparison the experimental ECD spectra with the calculated ones. Among the 13 metabolites, compounds 1 , 4 , 11 , 12 , and 13 showed NF-κB inhibitory activities in human HER-293 cells with IC50 values of 6.4, 18.7, 8.1, 9.6, and 7.5 μM, respectively. Preliminary structure−activity relationship analysis unveiled that the conjugated ketones or unsaturated double bonds might be the functional groups for the five active steroids.  相似文献   

16.
【目的】从19株苦豆子内生拮抗放线菌中筛选PKSⅠ、PKSⅡ和NRPS基因阳性菌株,并对其产抗生素种类进行初步鉴定,为苦豆子内生放线菌资源的合理开发和利用提供理论依据。【方法】分别以PKSⅠ、PKSⅡ和NRPS基因引物对19株拮抗菌株进行特异性扩增,筛选阳性菌株;以7种抗生素标准样品为对照,采用TLC和HPLC法对阳性菌株所产抗生素类型进行鉴定。【结果】PKSⅠ、PKSⅡ和NRPS基因阳性菌株率分别为47.4%、10.5%和21.1%;9株内生放线菌发酵液中各有1个峰的洗脱时间与麦迪霉素的洗脱时间一致,菌株NDZKDS69的发酵液中有4个峰的洗脱时间分别与麦迪霉素、乙酰螺旋霉素、替考拉宁和土霉素标准样品的洗脱时间一致。【结论】苦豆子内生放线菌中链霉菌属(Strepomyces)菌株是大环内脂类、芳香环类和非核糖体多肽类抗生素的丰富菌源;分子指纹图谱和化学指纹图谱检测结果一致,且建立的TLC和HPLC法检测抗生素的方法简便、快捷、灵敏、重复性良好。  相似文献   

17.
18.
Marine actinobacteria were isolated from the sediment samples collected in Xinghai Bay, Xiaoping Island and Changhai in Dalian, China. Fifteen selective media were employed, of which Humic acid-Vitamin medium recovered the highest number of isolates. Eleven of the 239 isolates obtained from the selective media were selected for further investigations based on colony morphology and pigment formation. Phylogenetic analysis of their 16S rRNA sequences showed that these strains belong to the genera of Streptomyces and Micromonospora. One of these strains identified is a new species of Streptomyces. Type I polyketide synthase (PKSI) gene fragments were amplified from three strains. The PKSI sequence of one of these strains (S187) showed high homology to the KS gene involved in meridamycin biosynthesis. Based on this result, the neurotrophic activity of S187 was further investigated. Culture broth of S187 was applied to rat pheochromocytoma (PC12) cells, and a 2.3-fold increase in growth over control cells was observed by the 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide assay. These results indicated the importance of further exploration of the marine actinobacteria in Dalian sea area for antimicrobial agents and type I polyketides.  相似文献   

19.
The 54-kbp Type I polyketide synthase gene cluster, most probably involved in rifamycin biosynthesis by Amycolatopsis mediterranei, was cloned in E. coli and completely sequenced. The DNA encodes five closely packed, very large open reading frames reading in one direction. As expected from the chemical structure of rifamycins, ten polyketide synthase modules and a CoA ligase domain were identified in the five open reading frames which contain one to three polyketide synthase modules each. The order of the functional domains on the DNA probably reflects the order in which they are used because each of the modules contains the predicted acetate or propionate transferase, dehydratase, and β-ketoacyl-ACP reductase functions, required for the respective step in rifamycin biosynthesis.  相似文献   

20.
Two novel type III polyketide synthases, quinolone synthase (QNS) and acridone synthase (ACS), were cloned from Citrus microcarpa (Rutaceae). The deduced amino acid sequence of C. microcarpa QNS is unique, and it shared only 56–60% identities with C. microcarpa ACS, Medicago sativa chalcone synthase (CHS), and the previously reported Aegle marmelos QNS. In contrast to the quinolone- and acridone-producing A. marmelos QNS, C. microcarpa QNS produces 4-hydroxy-N-methylquinolone as the “single product” by the one-step condensation of N-methylanthraniloyl-CoA and malonyl-CoA. However, C. microcarpa ACS shows broad substrate specificities and produces not only acridone and quinolone but also chalcone, benzophenone, and phloroglucinol from 4-coumaroyl-CoA, benzoyl-CoA, and hexanoyl-CoA, respectively. Furthermore, the x-ray crystal structures of C. microcarpa QNS and ACS, solved at 2.47- and 2.35-Å resolutions, respectively, revealed wide active site entrances in both enzymes. The wide active site entrances thus provide sufficient space to facilitate the binding of the bulky N-methylanthraniloyl-CoA within the catalytic centers. However, the active site cavity volume of C. microcarpa ACS (760 Å3) is almost as large as that of M. sativa CHS (750 Å3), and ACS produces acridone by employing an active site cavity and catalytic machinery similar to those of CHS. In contrast, the cavity of C. microcarpa QNS (290 Å3) is significantly smaller, which makes this enzyme produce the diketide quinolone. These results as well as mutagenesis analyses provided the first structural bases for the anthranilate-derived production of the quinolone and acridone alkaloid by type III polyketide synthases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号