首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The choline required for synthesis of acetylcholine is derived exogenously by Aplysia ganglia. Under physiological conditions choline was taken up primarlily by neuropile and nerves and not by cholinergic cell bodies. In addition, compared with their contents of choline acetyltransferase, those components of nervous tissue which contain nerve terminals and axons synthesized acetylcholine far more efficiently. Choline was accumulated by high and low affinity uptake processes; the high affinity process appeared to be characteristic of cholinergic nuerons (Swartz, J. H., M. L. Eisenstadt, and H. Cedar.1975. J. Gen. Physiol. 65:255). The two uptake processes were similarly affected by temperature with a Q10 of 2.8. Both were dependent on a variety of ions in a complicated manner. High affinity uptake seemed to be more dependent on Na+, showed greater inhibition by ouabain, and was selectively inhibited by oxotremorine. We found that the functional state of neurons did not alter uptake of radioactive choline by either process, nor did it change the conversion to radioactive acetylcholine.  相似文献   

2.
In the present study the occurrence and localization of urotensin I (UI, a corticotropin releasing factor-like peptide) in the CNS of Aplysia californica were investigated by immunocytochemistry and radioimmunoassay. The RIA cross-reactivity pattern indicated that the UI antiserum used recognized an epitope in the C-terminal region of the UI, but it did not cross-react with mammalian corticotropin-releasing factor (CRF) and partially recognized sauvagine (SVG, a frog CRF-like peptide). The use of CRF-specific and sauvagine-specific antisera failed to give positive immunostaining. The application of UI antiserum (which does not cross-react with CRF in RIA) gave a positive staining, which was blocked by synthetic sucker (Catostomus commersoni) UI, but not by rat/human CRF (10 microM). On the basis of immunostaining and RIA parallel to fish UI displacement curves of cerebral ganglia extracts, the unknown UI/CRF-like substance in the Aplysia ganglia is likely to have greater homology with sucker UI than with the known CRF peptides. Urotensin I-immunoreactive (UI-ir) neurons were seen mainly in the F neuron clusters, located in the midline and rostrodorsal portion of the cerebral ganglia. Few UI-ir neurons were also found in the C and D neuron clusters of the cerebral ganglia, as well as in the left pleural and abdominal ganglia. In addition, numerous fine and coarse, and beaded UI-ir fibers were found in the cerebral commissure. UI-ir fibers were also seen in the neuropile of the buccal, pedal and pleural ganglia, and abdominal ganglion. A cuff-like arrangement of UI-ir fibers was seen in the supralabial nerves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abstract: The metabolism of polyamines was investigated by injecting purified [3H]putrescine directly into the soma of the giant neuron R2 of Aplysia . Injected putrescine was rapidly metabolized to spermidine, spermine, and several catabolites, including GABA and monoacetylputrescine. Identification of these products was by comparison with the authentic compound using ion exchange chromatography. When R2 was injected with amounts of [3H]putrescine determined so that the intracellular content of labeled precursor was less than 6 × 10-6 M , metabolism was rapid and occurred via pathways similar to those in mammalian tissues. At concentrations of labeled precursor greater than 2 × 10−4 M , relatively little putrescine was converted to product. By 4 h after injection, putrescine and its labeled products appeared in R2's axon, where additional metabolism occurred. These results indicated that the enzymes involved in polyamine interconversion are not restricted to R2's cell body, and this suggestion was corroborated by finding ornithine decarboxylase and S -adenosylmethionine decarboxylase activities in Aplysia nerves. The distribution of the polyamines along R2's axon was compared with that of 3H-glycoproteins, with the finding that while the acid-soluble polyamines move by diffusion, labeled polyamines associated with protein are rapidly transported.  相似文献   

4.
5.
The marine mollusc Aplysia californica has proved to be a useful preparation for analyzing the development of learning and memory on both behavioral and cellular levels. An important issue in this analysis concerns the anatomical substrate upon which learning is superimposed during development. As a first step in examining this question, in the present study we have determined the number of neurons in all the major central ganglia at each stage during juvenile development, a time when several forms of learning first emerge in Aplysia. We found that a large and highly nonlinear proliferation of neurons occurs during juvenile development, with the greatest increase in cell number occurring during a specific juvenile stage: Stage 12. The neuronal proliferation is system-wide, occurring in each of the central ganglia simultaneously, suggesting the action of a general developmental signal or trigger (perhaps a hormone). Accompanying the increase in neuron number in Stage 12 there is a large increase in neuropilar volume (150-fold), which significantly increases the opportunity for synaptic interactions late in juvenile development.  相似文献   

6.
The content, synthesis and transport of d ‐aspartate (d ‐Asp) in the CNS of Aplysia californica is investigated using capillary electrophoresis (CE) with both laser‐induced fluorescence and radionuclide detection. Millimolar concentrations of d ‐Asp are found in various regions of the CNS. In the cerebral ganglion, three adjacent neuronal clusters have reproducibly different d ‐Asp levels; for example, in the F‐ and C‐clusters, up to 85% of the free Asp is present in the d ‐form. Heterogeneous distribution of d ‐Asp is also found in the individual identified neurons tested, including the optical ganglion top‐layer neurons, metacerebral cells, R2 neurons, and F‐, C‐ and G‐cluster neurons. The F‐cluster neurons have the highest percentage of d ‐Asp (~58% of the total Asp), whereas the lowest value of ~8% is found in R2 neurons. In pulse‐chase experiments with radiolabeled d ‐Asp, followed by CE with radionuclide detection, the synthesis of d ‐Asp from l ‐aspartate (l ‐Asp) is confirmed. Is d ‐Asp in the soma, or is it transported to distantly located release sites? d ‐Asp is clearly detected in the major nerves of A. californica, including the pleuroabdominal and cerebrobuccal connectives and the anterior tentacular nerves, suggesting it is transported long distances. In addition, both d ‐Asp and l ‐Asp are transported in the pleuroabdominal connectives in a colchicine‐dependent manner, whereas several other amino acids are not. Finally, d ‐Asp produces electrophysiological effects similar to those induced by l ‐Asp. These data are consistent with an active role for d ‐Asp in cell‐to‐cell communication.  相似文献   

7.
8.
Incorporation of L-[3H]fucose into glycoproteins was studied in R2, the giant neuron in the abdominal ganglion of Aplysia. [3H]fucose injected directly into the cell body of R2 was readily incorporated into glycoproteins which, as shown by autoradiography, were confined almost entirely to the injected neuron. Within 4 h after injection, 67% of the radioactivity in R2 had been incorporated into glycoproteins; at least 95% of these could be sedimented by centrifugation at 105,000 g, suggesting that they are associated with membranes. Extraction of the particulate fraction with sodium dodecyl sulfate (SDS), followed by gel filtration on Sephadex G-200 and polyacrylamide gel electrophoresis in SDS revealed the presence of only five major radioactive glycoprotein components which ranged in apparent molecular weight from 100,000 to 200,000 daltons. Similar results were obtained after intrasomatic injection of [3H]N-acetylgalactosamine. Mild acid hydrolysis of particulate fractions released all of the radioactivity in the form of fucose. When ganglia were incubated in the presence of [3H]fucose, radioactivity was preferentially incorporated into glial cells and connective tissue. In contrast to the relatively simple electrophoretic patterns obtained from cells injected with [3H]fucose, gel profiles of particulate fractions labeled with [14C]valine were much more complex.  相似文献   

9.
Endogenous nitric oxide (NO) is generated by nitric oxide synthases (NOSs), which convert arginine (Arg) and oxygen to citrulline (Cit) and NO. Cit can be enzymatically transformed back to Arg by argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) via a pathway involving argininosuccinate (ArgSuc). Arg, Cit, and ArgSuc levels have been measured in single neurons, neuronal clusters, and neuropil from the nervous system of the common neurobiological model Aplysia californica. Using capillary electrophoresis with laser-induced fluorescence detection, ArgSuc was found to be present in the nervous system in millimolar concentrations at levels significantly exceeding Cit levels (p<0.01). ArgSuc levels are proportional to Arg concentrations in single neurons, whereas they have no clear correlation to the Cit or Arg/Cit ratio. NOS-expressing neurons often exhibit fixative-resistant nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) staining. Incubation of ganglia with Arg results in an increase in Cit and ArgSuc levels in the NADPH-d-positive neuropil with no effect on ArgSuc levels in NADPH-d-negative neurons, suggesting NOS activity in the neuropil. Similar incubation with Cit leads to decreased ArgSuc levels in NADPH-d-negative neurons. These results can be explained by localization of NOS and ASS in different neurons; therefore, the complete Arg-Cit-NO cycle may not be present in the same neuron. The surprisingly high intracellular ArgSuc concentration suggests alternative sources of ArgSuc and that at least a portion may be formed by the reverse reaction of ASL (catalyzing the conversion of Arg to ArgSuc), which can be inhibited by Cit.  相似文献   

10.
We have used an antibody that specifically recognizes eukaryotic initiation factor 4E (eIF4E) when it is phosphorylated at Ser(207) to characterize eIF4E phosphorylation in the nervous system of APLYSIA: The level of phosphorylated eIF4E, but not the level of total eIF4E, was significantly correlated with the basal rate of translation measured from different animals. Serotonin (5-HT), a transmitter that regulates the rate of translation in APLYSIA: neurons, had mixed effects on eIF4E phosphorylation. 5-HT decreased eIF4E phosphorylation in sensory cell clusters through activation of protein kinase C. 5-HT increased eIF4E phosphorylation in the whole pleural ganglia. In the APLYSIA: nervous system, eIF4E phosphorylation correlated with phosphorylation of the p38 MAP kinase, but not the p42 MAP kinase (ERK). Furthermore, an inhibitor of the p38 MAP kinase significantly decreased basal eIF4E phosphorylation, but an inhibitor of the MAP or ERK kinase (MEK) did not. Despite the correlation of eIF4E phosphorylation with the basal rate of translation, inhibition of eIF4E phosphorylation by an inhibitor of the p38 MAP kinase did not significantly decrease the rate of translation.  相似文献   

11.
The distribution of (Na+ + K+) ATPase over the plasma membranes of the proximal convoluted tubule from canine renal cortex has been determined. Ultrathin frozen sections of this tissue were stained with rabbit antibodies to this enzyme and ferritin-conjugated goat antirabbit gamma-globulin. It is demonstrated that high concentrations of this enzyme uniformly line the intercellular spaces of this epithelium. The consequences of this observation are discussed in terms of the low resistant tight junctions of these tubules and the isotonic fluid transport which they support. Furthermore, antibodies to (Na+ + K+) ATPase recognize an antigen on the luminal surfaces of the tubules within the brush border. It is proposed that the enzyme is present in this region of the plasma membrane as well, although at much lower concentration. To further substantiate this conclusion, a brush border fraction has been purified from rabbit kidney and been shown to contain significant (Na+ + K+) ATPase. These results contradict earlier conclusions about the location of (Na+ + K+) ATPase in this tissue.  相似文献   

12.
D-aspartate (D-Asp) is found in specific neurons, transported to neuronal terminals and released in a stimulation-dependent manner. Because D-Asp formation is not well understood, determining its function has proved challenging. Significant levels of D-Asp are present in the cerebral ganglion of the F- and C-clusters of the invertebrate Aplysia californica, and D-Asp appears to be involved in cell-cell communication in this system. Here, we describe a novel protein, DAR1, from A. californica that can convert aspartate and serine to their other chiral form in a pyridoxal 5'-phosphate (PLP)-dependent manner. DAR1 has a predicted length of 325 amino acids and is 55% identical to the bivalve aspartate racemase, EC 5.1.1.13, and 41% identical to the mammalian serine racemase, EC 5.1.1.18. However, it is only 14% identical to the recently reported mammalian aspartate racemase, DR, which is closely related to glutamate-oxaloacetate transaminase, EC 2.6.1.1. Using whole-mount immunohistochemistry staining of the A. californica central nervous system, we localized DAR1-like immunoreactivity to the medial region of the cerebral ganglion where the F- and C-clusters are situated. The biochemical and functional similarities between DAR1 and other animal serine and aspartate racemases make it valuable for examining PLP-dependent racemases, promising to increase our knowledge of enzyme regulation and ultimately, D-serine and D-Asp signaling pathways.  相似文献   

13.
Central pattern generator (CPG) circuits control cyclic motor output underlying rhythmic behaviors. Although there have been extensive behavioral and cellular studies of food-induced feeding arousal as well as satiation in Aplysia, very little is known about the neuronal circuits controlling rhythmic consummatory feeding behavior. However, recent studies have identified premotor neurons that initiate and maintain buccal motor programs underlying ingestion and egestion in Aplysia. Other newly identified neurons receive synaptic input from feeding CPGs and in turn synapse with and control the output of buccal motor neurons. Some of these neurons and their effects within the buccal system are modulated by endogenous neuropeptides. With this information we can begin to understand how neuronal networks control buccal motor output and how their activity is modulated to produce flexibility in observed feeding behavior.  相似文献   

14.
In a giant neuron of Aplysia californica, permeabilities and conductances obtained by measuring net fluxes of Na+, K+ and Cl- with ion-specific microelectrodes were compared with those obtained by measuring transmembrane current and potential changes when the three ions were varied in the external solution. Net fluxes were measured with ion-specific microelectrodes, after blocking metabolic processes, thus allowing movement of ions down their electrochemical gradients. Permeabilities and conductances obtained from the "chemical" measurements (i.e., ion-specific electrodes) were generally comparable to the values obtained from "electrical" measurements. Where discrepancies occurred, they could be explained by showing that some of the assumptions necessary to use the "electrical" method were not quantitatively true in this system. The absolute magnitudes of the permeabilities are significantly less than those found in many axonal preparations. There is also a relatively high PNa/PK ratio. The selectivity of the membrane against ions such as Tris+ and MeSO3 is not good, Tris+ being nearly as permeable as Na+ and MeSO3 about one-half as permeable as Cl-. These properties may be characteristic of somal membranes.  相似文献   

15.
J Bode  T Moody  M Schimerlik  M Raftery 《Biochemistry》1979,18(10):1855-1861
A series of synthetic 1,n-bis(3-aminopyridinio)-alkane fluorescent probes have been used to determine the ligand binding properties of the acetylcholine receptor purified from Torpedo californica electroplax. At equilibrium, the probes bound to a single class of sites. The binding affinity of the fluorescent decamethonium analogues increased progressively as the number of methylene groups (n) increased from 4 to 12 and decreased in the range of 16--18 such groups. The receptor bound 1,12-bis(3-aminopyridinio)dodecane and 1,14-bis(3-aminopyridinio)tetradecane with the highest affinity while related monofunctional probes such as 1-(3-amino-pyridinio)propane were bound with a substantially lower affinity. The data indicate that the receptor interacts strongly with both ends of a bifunctional probe such as 1,14-bis(3-aminopyridinio)tetradecane. Also, competition between bifunctional fluorescent probe binding and the binding of conventional cholinergic ligands, was investigated and led to the conclusion that the probes, which are antagonists, form ternary complexes in the presence of acetylcholine.  相似文献   

16.
Increasing amounts of glycoprotein synthesized from L-[3H]fucose injected into the cell body of R2, an identified Aplysia neuron, were found in the right pleuro-abdominal connective. Autoradiography revealed that the glycoproteins were localized in the axon of R2. Glycoproteins appearing in the axon presumably were synthesized in the cell body, since no significant incorporation was observed when [3H]fucose was injected directly into the axon. [3H]glycoproteins were detected in the connective after a delay of 1 h after intrasomatic injection. Thereafter, transport from the cell body was rapid, and by 10 h after injection, 45% of the total neuronal [3H]glycoprotein had appeared in the axon. By analysing the radioactivity in cell body and connective 4, 10, and 15 h after injection, we found that [3H]glycoproteins were transported selectively compared to nonmacromolecular material. Sequential sectioning of the connective revealed that [3H]glycoproteins were transported in discrete waves. The population of membrane-associated [3H]glycoproteins in the axon differed from that in the cell body. Two of the five somatic components appeared to be transported preferentially. In addition a new component appeared in the axon 10 h after injection.  相似文献   

17.
Summary the occurrence of insulin-related substances in the central nervous system of pulmonates and Aplysia californica was investigated by means of immunocytochemistry and in situ hybridization. Previous experiments have shown that, in Lymnaea stagnalis, the growth hormone-producing neurons in the cerebral ganglia (the so-called light green cells) express at least 5 genes that are related to the vertebrate insulin genes, i.e., they encode prohormones that are composed of a B- and A-chain and a connecting C peptide. These insulin related molecules also have the amino acids essential for their tertiary structure (viz. cysteines) at identical positions to those of the vertebrate insulins. In the investigated basommatophoran and stylommatophoran snails and slugs, neurons reacted with an antiserum raised against the C peptide of one of the molluscan insulin-related peptides. These neurons can be considered to be, based on morphological and endocrinological criteria, homologous to the light green cells of L. stagnalis. In A. californica, all central ganglia contain immunoreactive neurons. The highest number (about 50) was observed in the abdominal ganglion. The present results indicate that insulin-related substances are generally occurring neuropeptides in the central nervous system of molluscs.  相似文献   

18.
19.
20.
DNA sequence organization in the mollusc Aplysia californica.   总被引:7,自引:0,他引:7  
The sequence organization of the DNA of the mollusc Aplysia californica has been examined by a combination of techniques. Close-spaced interspersion of repetitive and single copy sequences occurs throughout the majority of the genome. Detailed examination of the DNA of this protostome reveals great similarities to the pattern observed in the two deuterostome organisms previously examined in detail in this laboratory, Xenopus laevis and Strongylocentrotus purpuratus. Labeled and unlabeled Aplysia DNA were prepared from developing embryos and sheared to a fragment length of 400 nucleotides. The kinetics of reassociation were studied by means of hydroxyapatite chromatography, single-strand-specific S1 nuclease, and optical methods of assay. Aplysia DNA of this fragment length contains at least five resolvable kinetic fractions. One classification of these fractions, listed with their reassociation rate constants (l M-1 sec-1) is: single copy (0.00057), slow (0.047), fast (2.58), very fast (4000), and foldback (greater than 10(5)). Sequence arrangement was deduced from: the kinetics of reassociation of DNA fragments of length 400 or 2000 nucleotides; the hyperchromicity of reassociated fragments containing duplex regions; the size of duplex regions resistant to S1 nuclease; and the reassociation of labeled fragments of various lengths with short driver fragments. More than 80% of the single copy DNA sequences are interspersed with repetitive sequences. The maximum spacing of the repeats is about 2000 nucleotides, and the average less than 1000. The very fast fraction does not show interspersion with single copy sequences or with other kinetic fractions. The foldback fraction sequences are fairly widely interspersed. The slow fraction sequences are interspersed with the fast fraction, and possibly also with the single copy DNA. The fast fraction is the dominant interspersed repetitive fraction. Its sequences are adjacent to the great majority of the single copy sequences and have an average length of about 300 nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号