首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xiao Z  Kong Y  Yang S  Li M  Wen J  Li L 《Cell research》2007,17(1):73-79
Neural stem cells (NSCs) constitute the cellular basis for embryonic brain development and neurogenesis. The process is regulated by NSC niche including neighbor cells such as vascular and glial cells. Since both vascular and glial cells secrete vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), we assessed the effect of VEGF and bFGF on NSC proliferation using nearly homogeneous NSCs that were differentiated from mouse embryonic stem cells. VEGF alone did not have any significant effect. When bFGF was added, however, VEGF stimulated NSC proliferation in a dose-dependent manner, and this stimulation was inhibited by ZM323881, a VEGF receptor (Flk-1)- specific inhibitor. Interestingly, ZM323881 also inhibited cell proliferation in the absence of exogenous VEGF, suggesting that VEGF autocrine plays a role in the proliferation of NSCs. The stimulatory effect of VEGF on NSC proliferation depends on bFGF, which is likely due to the fact that expression of Flk-1 was upregulated by bFGF via phosphorylation of ERK1/2. Collectively, this study may provide insight into the mechanisms by which microenvironmental niche signals regulate NSCs.  相似文献   

2.
Neural stem cells (NSCs) constitute the cellular basis for embryonic brain development and neurogenesis.The processis regulated by NSC niche including neighbor cells such as vascular and glial cells.Since both vascular and glial cellssecrete vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF),we assessed the effect ofVEGF and bFGF on NSC proliferation using nearly homogeneous NSCs that were differentiated from mouse embryonicstem cells.VEGF alone did not have any significant effect.When bFGF was added,however,VEGF stimulated NSCproliferation in a dose-dependent manner,and this stimulation was inhibited by ZM323881,a VEGF receptor (Flk-1)-specific inhibitor.Interestingly,ZM323881 also inhibited cell proliferation in the absence of exogenous VEGF,suggestingthat VEGF autocrine plays a role in the proliferation of NSCs.The stimulatory effect of VEGF on NSC proliferationdepends on bFGF,which is likely due to the fact that expression of Flk-1 was upregulated by bFGF via phosphoryla-tion of ERK1/2.Collectively,this study may provide insight into the mechanisms by which mieroenvironmental nichesignals regulate NSCs.  相似文献   

3.
4.
Copine 1 (CPNE1) is a well-known phospholipid binding protein in plasma membrane of various cell types. In brain cells, CPNE1 is closely associated with AKT signaling pathway, which is important for neural stem cell (NSC) functions during brain development. Here, we investigated the role of CPNE1 in the regulation of brain NSC functions during brain development and determined its underlying mechanism. In this study, abundant expression of CPNE1 was observed in neural lineage cells including NSCs and immature neurons in human. With mouse brain tissues in various developmental stages, we found that CPNE1 expression was higher at early embryonic stages compared to postnatal and adult stages. To model developing brain in vitro, we used primary NSCs derived from mouse embryonic hippocampus. Our in vitro study shows decreased proliferation and multi-lineage differentiation potential in CPNE1 deficient NSCs. Finally, we found that the deficiency of CPNE1 downregulated mTOR signaling in embryonic NSCs. These data demonstrate that CPNE1 plays a key role in the regulation of NSC functions through the activation of AKT-mTOR signaling pathway during brain development.  相似文献   

5.
Neural stem cell (NSC) replacement therapy is considered a promising cell replacement therapy for various neurodegenerative diseases. However, the low rate of NSC survival and neurogenesis currently limits its clinical potential. Here, we examined if hippocampal long-term potentiation (LTP), one of the most well characterized forms of synaptic plasticity, promotes neurogenesis by facilitating proliferation/survival and neuronal differentiation of NSCs. We found that the induction of hippocampal LTP significantly facilitates proliferation/survival and neuronal differentiation of both endogenous neural progenitor cells (NPCs) and exogenously transplanted NSCs in the hippocampus in rats. These effects were eliminated by preventing LTP induction by pharmacological blockade of the N-methyl-D-aspartate glutamate receptor (NMDAR) via systemic application of the receptor antagonist, 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP). Moreover, using a NPC-neuron co-culture system, we were able to demonstrate that the LTP-promoted NPC neurogenesis is at least in part mediated by a LTP-increased neuronal release of brain-derived neurotrophic factor (BDNF) and its consequent activation of tropomysosin receptor kinase B (TrkB) receptors on NSCs. Our results indicate that LTP promotes the neurogenesis of both endogenous and exogenously transplanted NSCs in the brain. The study suggests that pre-conditioning of the host brain receiving area with a LTP-inducing deep brain stimulation protocol prior to NSC transplantation may increase the likelihood of success of using NSC transplantation as an effective cell therapy for various neurodegenerative diseases.  相似文献   

6.
The aggregation and formation of amyloid plaques by amyloid β-peptides (Aβs) is believed to be one of the pathological hallmarks of Alzheimer’s disease (AD). Intriguingly, Aβs have also been shown to possess proliferative effects on neural stem cells (NSCs). Many essential cellular processes in NSCs, such as fate determination and proliferation, are heavily influenced by cell surface glycoconjugates, including gangliosides. It has recently been shown that Aβ1-42 alters several key glycosyltransferases and glycosidases. To further define the effects of Aβs and to clarify the potential mechanisms of action of those peptides on NSCs, NSCs were cultured from embryonic brains of the double-transgenic mouse model of AD [B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J] coexpressing mutants of amyloid precursor protein (APPswe) and presenilin1 (PSEN1dE9). We found that Aβs not only promoted cell proliferation but also altered expression of several key glycogenes for glycoconjugate metabolism, such as sialyltransferases II and III (ST-II & -III) in AD NSCs. In addition, we found upregulation of epidermal growth factor receptor and Notch1 intracellular domain. Moreover, the increased expression of ST-II and -III coincided with the elevated levels of c-series gangliosides (A2B5+ antigens) in AD NSCs. Further, we revealed that epidermal growth factor signaling and gangliosides are necessary components on Aβ-stimulated NSC proliferation. Our present study has thus provided a novel mechanism for the upregulation of c-series ganglioside expression and increases in several NSC markers to account for the proliferative effect of Aβs on NSCs in AD mouse brain. These observations support the potential beneficial effects of Aβs and gangliosides in promoting neurogenesis in AD brain.  相似文献   

7.
Neural stem cells (NSCs) have the ability to proliferate and differentiate into neurons and glia. Regulation of NSC fate by small molecules is important for the generation of a certain type of cell. The identification of small molecules that can induce new neurons from NSCs could facilitate regenerative medicine and drug development for neurodegenerative diseases. In this study, we screened natural compounds to identify molecules that are effective on NSC cell fate determination. We found that Kuwanon V (KWV), which was isolated from the mulberry tree (Morus bombycis) root, increased neurogenesis in rat NSCs. In addition, during NSC differentiation, KWV increased cell survival and inhibited cell proliferation as shown by 5-bromo-2-deoxyuridine pulse experiments, Ki67 immunostaining and neurosphere forming assays. Interestingly, KWV enhanced neuronal differentiation and decreased NSC proliferation even in the presence of mitogens such as epidermal growth factor and fibroblast growth factor 2. KWV treatment of NSCs reduced the phosphorylation of extracellular signal-regulated kinase 1/2, increased mRNA expression levels of the cyclin-dependent kinase inhibitor p21, down-regulated Notch/Hairy expression levels and up-regulated microRNA miR-9, miR-29a and miR-181a. Taken together, our data suggest that KWV modulates NSC fate to induce neurogenesis, and it may be considered as a new drug candidate that can regenerate or protect neurons in neurodegenerative diseases.  相似文献   

8.
Neural stem/progenitor cells (NSCs) have the capacity for self-renewal and differentiation into major classes of central nervous system cell types, such as neurons, astrocytes, and oligodendrocytes. The determination of fate of NSCs appears to be regulated by both intrinsic and extrinsic factors. Mounting evidence has shown that extracellular matrix molecules contribute to NSC proliferation and differentiation as extrinsic factors. Here we explore the effects of the epidermal growth factor-like (EGFL) and fibronectin type III homologous domains 6-8 (FN6-8) of the extracellular matrix molecule tenascin-R on NSC proliferation and differentiation. Our results show that domain FN6-8 inhibited NSC proliferation and promoted NSCs differentiation into astrocytes and less into oligodendrocytes or neurons. The EGFL domain did not affect NSC proliferation, but promoted NSC differentiation into neurons and reduced NSC differentiation into astrocytes and oligodendrocytes. Treatment of NSCs with beta 1 integrin function-blocking antibody resulted in attenuation of inhibition of the effect of FN6-8 on NSC proliferation. The influence of EGFL or FN6-8 on NSCs differentiation was inhibited by beta 1 integrin antibody application, implicating beta 1 integrin in proliferation and differentiation induced by EGFL and FN6-8 mediated triggering of NSCs.  相似文献   

9.
Neural stem cells (NSCs) are self-renewing cells that can differentiate into multiple neural lineages and repopulate regions of the brain after injury. We have investigated the role of endocannabinoids (eCBs), endogenous cues that modulate neuronal functions including neurogenesis, and their receptors CB1 and CB2 in mouse NSCs. Real-time PCR and Western blot analyses indicated that CB1 is present at higher levels than CB2 in NSCs. The eCB anandamide (AEA) or the CB1-specific agonist ACEA enhanced NSC differentiation into neurons, but not astrocytes and oligodendrocytes, whereas the CB2-specific agonist JWH133 was ineffective. Conversely, the effect of AEA was inhibited by CB1, but not CB2, antagonist, corroborating the specificity of the response. CB1 activation also enhanced maturation of neurons, as indicated by morphometric analysis of neurites. CB1 stimulation caused long-term inhibition of the ERK1/2 pathway. Consistently, pharmacological inhibition of the ERK1/2 pathway recapitulated the effects exerted by CB1 activation on neuronal differentiation and maturation. Lastly, gene array profiling showed that CB1 activation augmented the expression of genes involved in neuronal differentiation while decreasing that of stemness genes. These results highlight the role of CB1 in the regulation of NSC fate and suggest that its activation may represent a pro-neuronal differentiation signal.  相似文献   

10.
Neural stem cells (NSCs) or neuronal progenitor cells are cells capable of differentiating into oligodendrocytes, myelin-forming cells that have the potential of remyelination. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are two neurotrophic factors that have been studied to stimulate NSC differentiation thus playing a role in multiple sclerosis pathogenesis and several other demyelinating disorders. While several studies have demonstrated the proliferative and protective capabilities of these neurotrophic factors, their cellular and molecular functions are still not well understood. Thus, in the present study, we focus on understanding the role of these neurotrophins (BDNF and NGF) in oligodendrogenesis from NSCs. Both neurotrophic factors have been shown to promote NSC proliferation and NSC differentiation particularly into oligodendroglial lineage in a dose-dependent fashion. Further, to establish the role of these neurotrophins in NSC differentiation, we have employed pharmacological inhibitors for TrkA and TrkB receptors in NSCs. The use of these inhibitors suppressed NSC differentiation into oligodendrocytes along with the downregulation of phosphorylated ERK suggesting active involvement of ERK in the functioning of these neurotrophins. The morphometric analysis also revealed the important role of both neurotrophins in oligodendrocytes development. These findings highlight the importance of neurotrophic factors in stimulating NSC differentiation and may pave a role for future studies to develop neurotrophic factor replacement therapies to achieve remyelination.  相似文献   

11.
Gap junctional intercellular communication (GJC) varies during progression of the cell cycle. We propose here that Cdc25A, a dual specificity phosphatase crucial for cell cycle progression, is linked to connexin (Cx) phosphorylation and the modulation of GJC. Inhibition of Cdc25 phosphatases in rat liver epithelial cells employing a 1,4-naphthoquinone-based inhibitor, NSC95397, induced cell cycle arrest, tyrosine phosphorylation of the epidermal growth factor receptor (EGFR), and activation of extracellular signal-regulated kinases ERK-1 and -2. ERK activation was blocked by specific inhibitors of MAPK/ERK kinases 1/2 or of the EGFR tyrosine kinase. An EGFR-dephosphorylation assay suggested that Cdc25A interacts with the EGFR, with inhibition by NSC95397 resulting in activation of the receptor. As a consequence of ERK activation, Cx43 was phosphorylated, resulting in a downregulation of GJC. Loss of GJC was prevented by inhibition of ERK activation. In summary, cell cycle and GJC are connected via Cdc25A and the EGFR-ERK pathway.  相似文献   

12.
The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.  相似文献   

13.
Urotensin II and its receptor are coexpressed in the heart and up-regulated during cardiac dysfunction. In cultured neonatal cardiomyocytes, we mimicked this up-regulation using an adenovirus to increase expression of the urotensin receptor. In this model system, urotensin II promoted strong hypertrophic growth and phenotypic changes, including cell enlargement and sarcomere reorganization. Urotensin II potently activated the MAPKs, ERK1/2 and p38, and blocking these kinases with PD098059 and SB230580, respectively, significantly inhibited urotensin II-mediated hypertrophy. In contrast, urotensin II did not activate JNK. The activation of ERK1/2 and p38 as well as cellular hypertrophy was independent of protein kinase C, and calcium and phosphoinositide 3-kinase, yet dependent on the capacity of the urotensin receptor to trans-activate the epidermal growth factor receptor. Urotensin II promoted the tyrosine phosphorylation of epidermal growth factor receptors, which was inhibited by the selective epidermal growth factor receptor kinase inhibitor, AG1478. These data indicate that perturbations in cardiac homeostasis, which lead to up-regulation of urotensin II receptors, promote urotensin II-mediated cardiomyocyte hypertrophy via ERK1/2 and p38 signaling pathways in an epidermal growth factor receptor-dependent manner.  相似文献   

14.
Human colon tumors have elevated levels of 15-lipoxygenase-1 (15-LO-1), suggesting that 15-LO-1 may play a role in the development of colorectal cancer. Also, 15-LO-1 metabolites can up-regulate epidermal growth factor signaling pathways, which results in an increase in mitogenesis. However, metabolites of 15-LO-1 can serve as ligands for peroxisome proliferator-activated receptor gamma (PPARgamma), and activation of this receptor causes most colon cancer cell lines to undergo a differentiative response and reverse their malignant phenotype. Hence, the role 15-LO-1 plays in colon cancer is not clear. To clarify the role of 15-LO-1 in carcinogenesis, the effect of 15-LO-1 and its metabolites on epidermal growth factor signaling and PPARgamma was investigated. In HCT-116 cells, exogenously added 15-LO-1 metabolites, 13-(S)-hydroxyoctadecadienoic acid, 13-(R)-hydroxyoctadecadienoic acid, and 13-(S)-hydroperoxyoctadecadienoic acid, up-regulated the MAPK signaling pathway, and an increase in PPARgamma phosphorylation was observed. Furthermore, in stable overexpressing 15-LO-1 HCT-116 cells, which produce endogenous 15-LO-1 metabolites, an up-regulation in mitogen-activated protein kinase and PPARgamma phosphorylation was observed. Incubation with a MAPK inhibitor ablated MAPK and PPARgamma phosphorylation. The 15-LO-1 up-regulates MAPK activity and increases PPARgamma phosphorylation, resulting in a down-regulation of PPARgamma activity. Thus, 15-LO-1 metabolites may not only serve as ligands for PPARgamma but can down-regulate PPARgamma activity via the MAPK signaling pathway.  相似文献   

15.
Neural stem cell (NSC) proliferation and differentiation are required to replace neurons damaged or lost after hypoxic-ischemic events and recover brain function. Periostin (POSTN), a novel matricellular protein, plays pivotal roles in the survival, migration, and regeneration of various cell types, but its function in NSCs of neonatal rodent brain is still unknown. The purpose of this study was to investigate the role of POSTN in NSCs following hypoxia-ischemia (HI). We found that POSTN mRNA levels significantly increased in differentiating NSCs. The proliferation and differentiation of NSCs in the hippocampus is compromised in POSTN knockout mice. Moreover, NSC proliferation and differentiation into neurons and astrocytes significantly increased in cultured NSCs treated with recombinant POSTN. Consistently, injection of POSTN into neonatal hypoxic-ischemic rat brains stimulated NSC proliferation and differentiation in the subventricular and subgranular zones after 7 and 14 days of brain injury. Lastly, POSTN treatment significantly improved the spatial learning deficits of rats subjected to HI. These results suggest that POSTN significantly enhances NSC proliferation and differentiation after HI, and provides new insights into therapeutic strategies for the treatment of hypoxic-ischemic encephalopathy.  相似文献   

16.
While a mother’s excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway.  相似文献   

17.
Wilson’s disease (WD) is an autosomal recessive disease caused by mutation of the ATPase copper transporting β (ATP7B) gene, resulting in abnormal copper metabolism. We aimed to investigate the protective effect of GanDouLing (GDL) on neural stem cell (NSC) function in a mouse model of WD. NSCs were treated with different concentrations of GDL alone or in combination with penicillamine, following which we evaluated cellular growth, apoptosis, and differentiation. Nuclear factor E2-related factor 2 (Nrf2) pathway and NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation were analyzed via Western blotting. Treatment with GDL alone or in combination with penicillamine significantly increased proliferation and inhibited apoptosis of NSCs in a dose-dependent manner. In addition, GDL treatment remarkably promoted differentiation of NSCs. Consistently, levels of class III β-tubulin (Tuj1) and microtubule-associated protein 2 (MAP2) were significantly elevated, whereas glial fibrillary acidic protein (GFAP) levels were obviously suppressed in the presence of GDL or penicillamine. In vivo assays confirmed that GDL increased the ratio of Ki67+, Tuj1+, and MAP2+ cells and suppressed apoptosis in the hippocampal region in WD mice. Behavioral assays revealed that both GDL and penicillamine improved memory ability in WD models. Mechanistically, GDL treatment led to activation of Nrf2 signaling and suppression of the NLRP3 inflammasome in WD mice. Notably, inhibition of Nrf2 signaling reversed the protective effects of GDL on hippocampal NSCs. Collectively, these findings demonstrate that GDL exerts a protective effect on NSCs and promotes neurogenesis by targeting Nrf2 signaling and the NLRP3 inflammasome in WD.  相似文献   

18.
Peroxisome proliferators-activated receptor gamma (PPARgamma) has been shown to suppress cell proliferation and tumorigenesis, whereas the gastrointestinal regulatory peptide gastrin stimulates the growth of neoplastic cells. The present studies were directed to determine whether changes in PPARgamma expression might mediate the effects of gastrin on the proliferation of colorectal cancer (CRC). Initially, using growth assays, we determined that the human CRC cell line DLD-1 expressed both functional PPARgamma and gastrin receptors. Amidated gastrin (G-17) attenuated the growth suppressing effects of PPARgamma by decreasing PPARgamma activity and total protein expression, in part through an increase in the rate of proteasomal degradation. G-17-induced degradation of PPARgamma appeared to be mediated through phosphorylation of PPARgamma at serine 84 by a process involving the biphasic phosphorylation of ERK1/2 and activation of the epidermal growth factor receptor (EGFR). These results were confirmed through the use of EGFR antagonist AG1478 and MEK1 inhibitor PD98059. Furthermore, mutation of PPARgamma at serine 84 reduced the effects of G-17, as evident by inability of G-17 to attenuate PPARgamma promoter activity, degrade PPARgamma, or inhibit the growth suppressing effects of PPARgamma. The results of these studies demonstrate that the trophic properties of gastrin in CRC may be mediated in part by transactivation of the EGFR and phosphorylation of ERK1/2, leading to degradation of PPARgamma protein and a decrease in PPARgamma activation.  相似文献   

19.
Huang X  Zhao T  Zhao H  Xiong L  Liu ZH  Wu LY  Zhu LL  Fan M 《生理学报》2008,60(3):437-441
本文旨在探讨细胞外信号调节激酶(extracellular signal-regulated kinase 1/2, ERK1/2)对小鼠神经干细胞增殖的影响.分离E14.5小鼠皮层神经干细胞,通过Western blot检测神经干细胞增殖过程中磷酸化ERK1/2的表达情况,以及不同浓度PD98059处理对神经干细胞ERK1/2磷酸化及神经球形成的影响,并用CCK-8法检测PD98059对神经干细胞增殖的影响.结果显示:ERK1/2在体外培养的神经下细胞增殖过程中被激活;PD98059显著抑制ERK1/2磷酸化及神经干细胞的成球率,且存在剂量效应依赖关系;加入PD98059后神经干细胞的生长被抑制.以上结果表明,ERK1/2在小鼠神经干细胞增殖中具有重要的作用,阻断ERK1/2信号通路后可抑制神经干细胞的增殖.  相似文献   

20.
Thrombopoietin (TPO), a hematopoietic growth factor regulating platelet production, and its receptor (TPOR) were recently shown to be expressed in the brain where they exert proapoptotic activity. Here we used PC12 cells, an established model of neuronal differentiation, to investigate the effects of TPO on neuronal survival and differentiation. These cells expressed TPOR mRNA. TPO increased cell death in neuronally differentiated PC12 cells but had no effect in undifferentiated cells. Surprisingly, TPO inhibited nerve growth factor (NGF)-induced differentiation of PC12 cells in a dose- and time-dependent manner. This inhibition was dependent on the activity of Janus kinase-2 (JAK2). Using phospho-kinase arrays and Western blot we found downregulation of the NGF-stimulated phosphorylation of the extracellular signal-regulated kinase p42ERK by TPO with no effect on phosphorylation of Akt or stress kinases. NGF-induced phosphorylation of ERK-activating kinases, MEK1/2 and C-RAF was also reduced by TPO while NGF-induced RAS activation was not attenuated by TPO treatment. In contrast to its inhibitory effects on NGF signalling, TPO had no effect on epidermal growth factor (EGF)-stimulated ERK phosphorylation or proliferation of PC12 cells. Our data indicate that TPO via activation of its receptor-bound JAK2 delays the NGF-dependent acquisition of neuronal phenotype and decreases neuronal survival by suppressing NGF-induced ERK activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号