首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that mature arylsulfatase B purified from human sources is composed of two non-identical chains with apparent molecular masses of 43 kDa and 8 kDa. Arylsulfatase B purified from human placenta in the present study, however, included another 7 kDa component that could be detected only by carbohydrate staining on reducing SDS-PAGE employing the Tris-Tricine system. The 43 kDa and 7 kDa components contained a carbohydrate moiety, but the 8 kDa one did not, as demonstrated by periodic acid-Schiff staining, Con-A lectin blotting, endo-glycosidase treatment and in vitro phosphorylation by UDP-N-acetylglucosamine: lysosomal enzyme N-acetylglucosamine 1-phosphotransferase. The purified arylsulfatase B migrated as a single polypeptide of 58 kDa on non-reducing SDS-PAGE, indicating that the three chains are linked by disulfide bonds. In order to determine the origin of the components, N-terminal sequencing of the isolated polypeptides was performed. As a result, the 43, 7 and 8 kDa components were found to commence with Ala-41, Ala-424 and Asp-466, respectively. These results suggest that after removal of the signal peptide, human arylsulfatase B undergoes proteolytic processing on at least two sites during maturation.  相似文献   

2.
Recombinant human interferon-gammas (rHuIFN-gamma s) were obtained from two different mammalian cells (mouse C127 cells and Chinese hamster ovary, CHO, cells) cultured in a microcarrier culture system. Both rHuIFN-gamma s were purified using sequential chromatographies for their comparison of structural properties. The peptide maps of HuIFN-gamma s digested with V8 protease and Western blot analysis demonstrated that C127 cells yielded mainly about 25kDa component and CHO cells produced about 25kDa and about 20kDa components. By the identification of glycosylated peptides, it was suggested that 20kDa and 25kDa components are glycosylated at one and at two sites, respectively. C-terminal amino acid sequence analysis indicated that both rHuIFN-gamma s consisted of at least six different species lacking 2 to 16 amino acid residues from C-terminus, so that C-termini of both rHuIFN-gamma s were slightly different from each other. Amino acid sequence and composition analyses of N-terminal peptides demonstrated that N-termini of both rHuIFN-gamma s were blocked and were supposed to be identical with that of natural HuIFN-gamma. These results suggested that different molecular heterogeneities of rHuIFN-gamma s resulted from the difference of post-translational modifications of host cells.  相似文献   

3.
Sarcosine reductase is the only reductase system present in Tissierella creatinophila when grown on creatinine plus formate. The acetyl-phosphate-forming component protein C was purified to homogeneity. SDS-PAGE of the purified protein revealed two protein bands with apparent mol. masses of 62 and 50 kDa. The N-terminal amino acid sequence of the two subunits was determined. Antibodies raised against each of the subunits of protein C from Eubacterium acidaminophilum cross-reacted with the corresponding protein present in T. creatinophila, Clostridium litorale and Clostridium sporogenes. The arsenate-dependent hydrolysis of acetyl phosphate catalyzed by protein C was partly inhibited by antibodies directed against the large subunit. Antibodies raised against the small subunit were twice as effective, which indicates that this subunit is the primary site of acetyl transfer from acetyl phosphate. The protein A component of the sarcosine reductase of T. creatinophila was purified to homogeneity by cochromatography with thioredoxin reductase on DEAE-Sephacel, hydroxylapatite, Q-Sepharose, and Sephacryl 100-HR. Protein A had an apparent mol. mass of 21 kDa. Its N-terminal amino acid sequence showed high similarities to that of other proteins A. Initial steps for the purification and preliminary characterization of the sarcosine-specific, substrate-binding protein Bsarcosine component of T. creatinophila indicated the involvement of a 50-kDa protein. Received: 18 May 1998 / Accepted: 5 August 1998  相似文献   

4.
A latent form of transforming growth factor type-beta (TGF-beta) with a high molecular weight was purified to homogeneity from rat platelets by a six-step procedure. The yield of the purified latent TGF-beta from platelets of 2,500 rats was 1.4 mg. The purified latent TGF-beta was activated by treatment with urea at concentrations of over 4M or acidic solutions of below pH 4. SDS-PAGE and gel filtration chromatography showed that the latent TGF-beta consisted of active TGF-beta and glycoproteins of about 200 kDa as masking components, and that under physiological conditions, these components formed a high molecular weight complex of about 400 kDa linked by non-covalent bonds. Here, we found that the masking protein was composed of one large subunit of about 110 kDa and two small subunits of 39 kDa linked by disulfide bridges. The N-terminal amino acid sequence of the small subunit was identical to the N-terminal region of the TGF-beta precursor lacking a signal peptide. From these findings, we proposed a structural model for the latent TGF-beta from rat platelets.  相似文献   

5.
A novel mannose- and glucose-specific lectin with high hemagglutinating activity was isolated from seeds of the Chinese chestnut Castanea mollisima. The lectin possessed a molecular mass of 140 kDa and was made up of two subunits, one with a molecular mass of 31 kDa and another with a molecular mass of 32 kDa. They exhibited substantial homology in N-terminal sequence to the storage protein legumin. The lectin was unstable in the presence of acid and alkali and at temperatures above 50 degrees C, but it was unaffected by various salts. The lectin was purified with a procedure involving ion exchange chromatography on CM-Sepharose, Q-Sepharose and Resource Q and gel filtration on Superose 12.  相似文献   

6.
beta-Galactosidase (EC. 3.2.1.23) from ripe carambola (Averrhoa carambola L. cv. B10) fruit was fractionated through a combination of ion exchange and gel filtration chromatography into four isoforms, viz. beta-galactosidase I, II, III and IV. This beta-galactosidases had apparent native molecular masses of 84, 77, 58 and 130 kDa, respectively. beta-Galactosidase I, the predominant isoform, was purified to electrophoretic homogeneity; analysis of the protein by SDS-PAGE revealed two subunits with molecular masses of 48 and 36 kDa. N-terminal amino acid sequence of the respective polypeptides shared high similarities albeit at different domains, with the deduced amino acid sequence of certain plant beta-galactosidases, thus, explaining the observed low similarity between the two subunits. beta-Galactosidase I was probably a heterodimer that have glycoprotein properties and a pI value of 7.2, with one of the potential glycosylation sites appeared to reside within the 48-kDa-polypeptide. The purified beta-galactosidase I was substantially active in hydrolyzing (1-->4)beta-linked spruce and a mixture of (1-->3)beta- and (1-->6)beta-linked gum arabic galactans. This isoform also had the capability to solubilize and depolymerize structurally intact pectins as well as to modify alkaline-soluble hemicelluloses, reflecting in part changes that occur during ripening.  相似文献   

7.
By a number of criteria, we have demonstrated that the translation termination factor eRF1 (eukaryotic release factor 1) associates with protein phosphatase 2A (PP2A). Trimeric PP2A1 was purified from rabbit skeletal muscle using an affinity purification step. In addition to the 36 kDa catalytic subunit (PP2Ac) and established regulatory subunits of 65 kDa (PR65) and 55 kDa (PR55), purified preparations contained two proteins with apparent Mrs of 54 and 55 kDa. Protein microsequencing revealed that the 55 kDa component is a novel protein, whereas the 54 kDa protein was identified as eRF1, a protein that functions in translational termination as a polypeptide chain release factor. Using the yeast two-hybrid system, human eRF1 was shown to interact specifically with PP2Ac, but not with the PR65 or PR55 subunits. By deletion analysis, the binding domains were found to be located within the 50 N-terminal amino acids of PP2Ac, and between amino acid residues 338 and 381 in the C-terminal part of human eRF1. This association also occurs in vivo, since PP2A can be co-immunoprecipitated with eRF1 from mammalian cells. We observed a significant increase in the amount of PP2A associated with the polysomes when eRF1 was transiently expressed in COS1 cells, and eRF1 immunoprecipitated from those fractions contained associated PP2A. Since we did not observe any dramatic effects of PP2A on the polypeptide chain release activity of eRF1 (or vice versa), we postulate that eRF1 also functions to recruit PP2A into polysomes, thus bringing the phosphatase into contact with putative targets among the components of the translational apparatus.  相似文献   

8.
Two proteins, component I (CI) and component II (CII), catalyze the biotransformation of crotonobetaine to L(-)-carnitine in Proteus sp. CI was purified to electrophoretic homogeneity from cell-free extracts of Proteus sp. The N-terminal amino acid sequence of CI showed high similarity (80%) to the caiB gene product from Escherichia coli O44K74, which encodes the L(-)-carnitine dehydratase. CI alone was unable to convert crotonobetaine into L(-)-carnitine even in the presence of the cosubstrates crotonobetainyl-CoA or gamma-butyrobetainyl-CoA, which are essential for this biotransformation. The relative molecular mass of CI was determined to be 91.1 kDa. CI is composed of two identical subunits of molecular mass 43.6 kDa. The isoelectric point is 5.0. CII was purified to electrophoretic homogeneity from cell-free extracts of Proteus sp. and its N-terminal amino acid sequence showed high similarity (75%) to the caiD gene product of E. coli O44K74. The relative molecular mass of CII was shown to be 88.0 kDa, and CII is composed of three identical subunits of molecular mass 30.1 kDa. The isoelectric point of CII is 4.9. For the biotransformation of crotonobetaine to L(-)-carnitine, the presence of CI, CII, and a cosubstrate (crotonobetainyl-CoA or gamma-butyrobetainyl-CoA) were shown to be essential.  相似文献   

9.
The heterodimeric enzyme gamma-glutamyl transpeptidase (EC 2.3.2.2) was isolated from adult rat kidney and purified to homogeneity for structural studies using papain solubilization and multiple chromatographies. Two-dimensional gel electrophoresis was found to resolve the active papain-purified enzyme into at least 18 components. Seven components with apparent molecular masses of 23,000-26,000 and isoelectric point range of 5.4-7.0 constitute the light subunit, and 11 components with apparent molecular mass of 51,000-53,000 and isoelectric point range of 5.8-7.1 constitute the heavy subunit. Immunoblot analysis of two-dimensional gels showed that all of these components are immunoreactive with a mixture of the two antibodies generated separately against the light and heavy subunits. Preparative subunit separation was achieved using reverse-phase HPLC under acidic but nonreducing conditions. N-Terminal amino acid sequencing of the separated subunits of the papain-purified enzyme yielded sequence information for the first 32 residues of the heavy chain with the N-terminal starting sequence Gly-Lys-Pro-Asp-His-Val-Tyr-Ser-Arg-Ala, and for the first 36 residues of the light subunit with the N-terminal starting sequence Thr-Ala-His-Leu-Ser-Val-Val-Ser-Glu-Asp.  相似文献   

10.
Synthesis and processing of arylsulfatase A in human skin fibroblasts   总被引:10,自引:0,他引:10  
Biosynthesis of arylsulfatase A in normal and mutant human fibroblasts was studied by growing cells in the presence of L-[4,5-3H] leucine or [2-3H] mannose, isolation of labelled arylsulfatase A by immune precipitation and visualization of electrophoretically separated polypeptide by fluorography. Arylsulfatase A was synthesized as a precursor with a mean apparent molecular mass of 62 kDa. Intracellularly the precursor was converted into a 60.5 kDa polypeptide within a chase period of 1 to 7 days. The 60.5 kDa product in polyacrylamide corresponded to one of two polypeptides present in arylsulfatase A isolated from human placenta. In fibroblasts from a patient with metachromatic leukodystrophy no immune precipitable polypeptides of arylsulfatase A were detected. In normal fibroblasts less than 10% of the precursor of arylsulfatase A was secreted into the medium, whereas in mucolipidosis II fibroblasts and in control fibroblasts grown in the presence of NH4Cl up to 90% of the precursor of arylsulfatase A, appeared in the medium and remained there without change in the apparent molecular mass for at least 7 days. Arylsulfatase A polypeptides appear to contain two carbohydrate side chains. In about 90% of the polypeptides both side chains are cleaved by endo-beta-N-acetylglucosaminidase H, whereas in the remaining chains one of the two oligosaccharides is not cleaved.  相似文献   

11.
From the seeds of Ginkgo biloba, a glycoprotein, which is a major component that reacts with an antiserum against beta 1-->2 xylose-containing N-glycans, has been purified and characterized. The N-terminal amino acid sequence of the purified glycoprotein was H-K-A-N-X-V-T-V-A-F-V-M-T-Q-H-L-L-F-G-Q-. The molecular mass was estimated to be 17 kDa and 16 kDa by SDS-PAGE under reducing conditions, however, the molecular mass of this glycoprotein in the native state was 30,762 by MALDI-TOF MS, suggesting that this glycoprotein consists of two subunits; one is glycosylated and the other is not. The structure of N-glycan linked to this glycoprotein (designated 30 kDa GBGP) was identified as Man3Fuc1Xyl1GlcNAc2, which is the predominant N-glycan linked to the storage glycoproteins in the same seeds (Kimura, Y et al. (1998) Biosci. Biotechnol. Biochem. 62, 253-261). From the peptic digest of the carboxymethylated glycosylated subunit, one glycopeptide was purified by RP-HPLC and the amino acid sequence was identified as H-K-A-N-N(Man3Fuc1Xyl1Glc-NAc2)-V-T-V-A-F, which corresponded to the N-terminal amino acid sequence.  相似文献   

12.
The O-demethylase of the methylotrophic homoacetogenic bacterium strain MC was purified to apparent homogeneity. The enzyme system consisted of four different components that were designated A, B, C, and D according to their elution sequence from the anionic-exchange chromatography column. All four components were essentially required for catalysis of the transfer of the methyl group from phenyl methyl ethers to tetrahydrofolate. According to gel filtration and SDS-PAGE, components A and B were monomers with apparent molecular masses of approximately 26 kDa (subunit 25 kDa) and 36 (subunit 41 kDa), respectively; component C appeared to be a trimeric protein (195 kDa, subunit 67 kDa); and component D was probably a dimer (64 kDa, subunit 30 kDa). Component A contained one corrinoid per monomer. In crude extracts, component D appeared to be the rate-limiting protein for the complete methyl transfer reaction. Additional requirements for the reaction were ATP and low-potential reducing equivalents supplied by either titanium(III) citrate or H2 plus hydrogenase purified from strain MC. Received: 5 February 1997 / Accepted: 17 April 1997  相似文献   

13.
Alpha-Galactosidase, the product of the melA gene, was purified from a strain of Escherichia coli harboring a plasmid carrying melA, which over-produced the alpha-galactosidase. An apparent molecular weight was determined to be 50 kDa. The amino acid composition of this enzyme was determined. The result indicates that this enzyme is a hydrophilic and acidic protein. We have subjected the purified enzyme to 20 cycles of N-terminal sequence analysis. This verified the translation start site of the melA gene and the predicted N-terminal sequence.  相似文献   

14.
Abstract Malate dehydrogenase from the syntrophic propionate-oxidizing bacterium strain MPOB was purified 42-fold. The native enzyme had an apparent molecular mass of 68 kDa and consisted of two subunits of 35 kDa. The enzyme exhibited maximum activity with oxaloacetate at pH 8.5 and 60 °C. The K m for oxaloacetate was 50 μM and for NADH 30 μM. The K m values for l-malate and NAD were 4 and 1.1 mM, respectively. Substrate inhibition was found at oxaloacetate concentrations higher than 250 μM. The N-terminal amino acid sequence of the enzyme was similar to the sequences of a variety of other malate dehydrogenases from plants, animals and micro-organisms.  相似文献   

15.
A mangano-superoxide dismutase (EC 1.15.1.1) was purified to homogeneity from a strain of alkaliphilic Bacillus for the first time. The purified protein, with an isoelectric point of pH 4.5, had a molecular mass of approximately 50 kDa and consisted of two identical subunits (25 kDa). The N-terminal amino acid sequence was Ala-Tyr-Lys-Leu-Pro-Glu-Leu-Pro-Tyr-Ala-Ala-Asn-Ala-Leu-Glu-Pro-His-Ile-Asp-Glu-Ala. The optimum pH and temperature for the reaction were 7.5 and 35°C, respectively. The properties of the superoxide dismutase were compared with those of the enzyme from thermophilic Bacillus stearothermophilus. Received: September 3, 1996 / Accepted: October 4, 1996  相似文献   

16.
Transforming growth factor beta 1 (TGF-beta 1) is a regulator of cell growth and differentiation. It is produced in various of cells and tissues as a biologically latent complex, whose significance is still unknown. We established a Chinese hamster ovary cells that produced recombinant human large latent TGF-beta 1. The growth factor was purified from serum-free conditioned medium of the cell line was purified to apparent homogeneity by four steps of column chromatography. The purified protein gave a single band with the apparent molecular weight of 210,000 on SDS-PAGE, and had four subunits, of 12.5, 40, 53, and 150-190 kDa. These components were identical to TGF-beta 1, the N-terminal remnant of pro-TGF-beta 1, pro-TGF-beta 1, and latent TGF-beta 1 binding protein, respectively. The purified growth factor had biological activity similar to that of the growth factor purified from human platelets. We prepared four monoclonal antibodies by immunization of mice with the recombinant protein. In western blotting, two of the antibodies bound to latent TGF-beta 1 binding protein. The two other antibodies reacted with the N-terminal remnant of pro-TGF-beta 1. Recombinant large latent TGF-beta 1 and its monoclonal antibodies could be used for detailed structural and functional studies of the large latent TGF-beta 1 complex.  相似文献   

17.
After limited proteolysis of the dihydrolipoyl transacetylase component (E2) of Azotobacter vinelandii pyruvate dehydrogenase complex (PDC), a C-terminal domain was obtained which retained the transacetylase active site and the quaternary structure of E2 but had lost the lipoyl-containing N-terminal part of the chain and the binding sites for the peripheral components, pyruvate dehydrogenase and lipoamide dehydrogenase. The C-terminus of this domain was determined by treatment with carboxypeptidase Y and shown to be identical with the C-terminus of E2. Together with the previously determined N-terminus and the known amino acid sequence of E2, a molecular mass of 27.5 kDa was calculated. From the molecular mass of the native catalytic domain, 530 kDa, and the symmetry of the cubic structures observed on electron micrographs, a 24-meric structure is concluded instead of the 32-meric structure proposed previously. From the effect of guanidine hydrochloride on the light-scattering of intact E2 it was concluded that dissociation occurs in a two-step reaction resulting in particles with an average mass 1/6 that of the original mass before the N----D transition takes place. Cross-linking experiments with the catalytic domain indicated that the multimeric E2 is built from tetramers and that the tetramers are arranged as a dimer of dimers. A model for the quaternary structure of E2 is given, in which it is assumed that the tetrameric E2 core of PDC is formed from each of the six morphological subunits located at the lateral face of the cube. Binding of peripheral components to a site that interferes with the cubic assembly causes dissociation, resulting in the unique small PDC of A. vinelandii.  相似文献   

18.
Acetyl-coenzyme A (acetyl-CoA) synthetase (ADP forming) represents a novel enzyme in archaea of acetate formation and energy conservation (acetyl-CoA + ADP + P(i) --> acetate + ATP + CoA). Two isoforms of the enzyme have been purified from the hyperthermophile Pyrococcus furiosus. Isoform I is a heterotetramer (alpha(2)beta(2)) with an apparent molecular mass of 145 kDa, composed of two subunits, alpha and beta, with apparent molecular masses of 47 and 25 kDa, respectively. By using N-terminal amino acid sequences of both subunits, the encoding genes, designated acdAI and acdBI, were identified in the genome of P. furiosus. The genes were separately overexpressed in Escherichia coli, and the recombinant subunits were reconstituted in vitro to the active heterotetrameric enzyme. The purified recombinant enzyme showed molecular and catalytical properties very similar to those shown by acetyl-CoA synthetase (ADP forming) purified from P. furiosus.  相似文献   

19.
The nucleotide sequence of a 4.39-kb DNA fragment encoding the alpha-glucosidase gene of Candida tsukubaensis is reported. The cloned gene contains a major open reading frame (ORF 1) which encodes the alpha-glucosidase as a single precursor polypeptide of 1070 amino acids with a predicted molecular mass of 119 kDa. N-terminal amino acid sequence analysis of the individual subunits of the purified enzyme, expressed in the recombinant host Saccharomyces cerevisiae, confirmed that the alpha-glucosidase precursor is proteolytically processed by removal of an N-terminal signal peptide to yield the two peptide subunits 1 and 2, of molecular masses 63-65 kDa and 50-52 kDa, respectively. Both subunits are secreted by the heterologous host S. cerevisiae in a glycosylated form. Coincident with its efficient expression in the heterologous host, the C. tsukubaensis alpha-glucosidase gene contains many of the canonical features of highly expressed S. cerevisiae genes. There is considerable sequence similarity between C. tsukubaensis alpha-glucosidase, the rabbit sucrase-isomaltase complex (proSI) and human lysosomal acid alpha-glucosidase. The cloned DNA fragment from C. tsukubaensis contains a second open reading frame (ORF 2) which has the capacity to encode a polypeptide of 170 amino acids. The function and identity of the polypeptide encoded by ORF 2 is not known.  相似文献   

20.
Crotonobetaine reductase from Escherichia coli consists of two proteins   总被引:1,自引:0,他引:1  
Crotonobetaine reductase from Escherichia coli is composed of two proteins (component I (CI) and component II (CII)). CI has been purified to electrophoretic homogeneity from a cell-free extract of E. coli O44 K74. The purified protein shows l(-)-carnitine dehydratase activity and its N-terminal amino acid sequence is identical to the caiB gene product from E. coli O44 K74. The relative molecular mass of CI has been determined to be 86100. It is composed of two identical subunits with a molecular mass of 42600. The isoelectric point of CI was found to be 4.3. CII was purified from an overexpression strain in one step by ion exchange chromatography on Fractogel EMD TMAE 650(S). The N-terminal amino acid sequence of CII shows absolute identity with the N-terminal sequence of the caiA gene product, i.e. of the postulated crotonobetaine reductase. The relative molecular mass of the protein is 164400 and it is composed of four identical subunits of molecular mass 41500. The isoelectric point of CII is 5.6. CII contains non-covalently bound FAD in a molar ratio of 1:1. In the crotonobetaine reductase reaction one dimer of CI associates with one tetramer of CII. A still unknown low-molecular-mass effector described for the l(-)-carnitine dehydratase is also necessary for crotonobetaine reductase activity. Monoclonal antibodies were raised against the two components of crotonobetaine reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号